Show that normal matrices are diagonalizable.
Consider the Vandermonde matrix: A:=(1⋯1λ1⋯λk⋮⋮λk−11⋯λk−1k).
Show that detA=∏i<j(λi−λj).
Show that a nonzero nilpotent matrix A is not diagonalizable over any field. Some useful facts:
- SpecA={0}, since Ax=λx⟹An=λnx, so An=0 forces λ=0. This forces JCF(A) to be strictly upper-triangular.
- min.
- If A were diagonalizable, \operatorname{JCF}(A) = 0.
Prove Cayley-Hamilton in the following way. Let V = \mathop{\mathrm{span}}\left\{{\mathbf{v}_1, \cdots, \mathbf{v}_n}\right\} and define the ith flag as {\operatorname{Fil}}_i V \coloneqq\mathop{\mathrm{span}}\left\{{\mathbf{v}_1, \cdots, \mathbf{v}_i}\right\} for all 1\leq i \leq n, and set {\operatorname{Fil}}_0 V \coloneqq\left\{{0}\right\}. Show that if if A is upper triangular, then A({\operatorname{Fil}}_i V) \subseteq {\operatorname{Fil}}_i V. Now supposing \mathbf{v}_i are eigenvectors for \lambda_i, show that \begin{align*} (A-\lambda_n I) {\operatorname{Fil}}_n V &\subseteq {\operatorname{Fil}}_{n-1} V \\ (A-\lambda_{n-1} I) (A-\lambda_n I ) {\operatorname{Fil}}_n V &\subseteq {\operatorname{Fil}}_{n-2} V \\ &\vdots \\ \prod_i (A-\lambda_{n-i} I) {\operatorname{Fil}}_n V &\subseteq {\operatorname{Fil}}_0 V = \left\{{0}\right\} .\end{align*} Conclude that \chi_A(A) = 0.