Spring 2021.6 #real_analysis/qual/work
This problem may be much harder than expected. Recommended skip.
Let \(f: {\mathbb{R}}\times{\mathbb{R}}\to {\mathbb{R}}\) be a measurable function and for \(x\in {\mathbb{R}}\) define the set \begin{align*} E_x \coloneqq\left\{{ y\in {\mathbb{R}}{~\mathrel{\Big\vert}~}\mu\qty{ z\in {\mathbb{R}}{~\mathrel{\Big\vert}~}f(x,z) = f(x, y) } > 0 }\right\} .\end{align*} Show that the following set is a measurable subset of \({\mathbb{R}}\times{\mathbb{R}}\): \begin{align*} E \coloneqq\displaystyle\bigcup_{x\in {\mathbb{R}}} \left\{{ x }\right\} \times E_x .\end{align*}
Hint: consider the measurable function \(h(x,y,z) \coloneqq f(x, y) - f(x, z)\).
Fall 2021.4 #real_analysis/qual/completed
Let \(f\) be a measurable function on \(\mathbb{R}\). Show that the graph of \(f\) has measure zero in \(\mathbb{R}^{2}\).
Write \begin{align*} \Gamma \coloneqq\left\{{(x, f(x)) {~\mathrel{\Big\vert}~}x\in {\mathbb{R}}}\right\} \subseteq {\mathbb{R}}^d .\end{align*} Then \begin{align*} \mu(\Gamma) &= \int_{{\mathbb{R}}^d} \chi_\Gamma \,d\mu\\ &= \int_{{\mathbb{R}}^{d-1}}\int_{\mathbb{R}}\chi_\Gamma(x, y) \,dy\,dx\\ &= \int_{{\mathbb{R}}^{d-1}} 0 \,dx\\ &= 0 ,\end{align*} using that \(\int_{\mathbb{R}}\chi_\Gamma(x, y) \,dy= 0\) since if \(x\) is fixed then \(\chi_\Gamma(x, y) = \left\{{f(x)}\right\}\) is a point with measure zero. Since \(f\) is measurable, \(\Gamma\) is a measurable set and \(\chi_\Gamma\) is measurable. Since the iterated integral was finite, the equalities are justified by Fubini-Tonelli.
Spring 2020.4 #real_analysis/qual/completed
Let \(f, g\in L^1({\mathbb{R}})\). Argue that \(H(x, y) \coloneqq f(y) g(x-y)\) defines a function in \(L^1({\mathbb{R}}^2)\) and deduce from this fact that \begin{align*} (f\ast g)(x) \coloneqq\int_{\mathbb{R}}f(y) g(x-y) \,dy \end{align*} defines a function in \(L^1({\mathbb{R}})\) that satisfies \begin{align*} {\left\lVert {f\ast g} \right\rVert}_1 \leq {\left\lVert {f} \right\rVert}_1 {\left\lVert {g} \right\rVert}_1 .\end{align*}
Just do it! Sort out the justification afterward. Use Tonelli.
- Tonelli: non-negative and measurable yields measurability of slices and equality of iterated integrals
- Fubini: \(f(x, y) \in L^1\) yields integrable slices and equality of iterated integrals
- F/T: apply Tonelli to \({\left\lvert {f} \right\rvert}\); if finite, \(f\in L^1\) and apply Fubini to \(f\)
- See Folland’s Real Analysis II, p. 68 for a discussion of using Fubini and Tonelli.
-
If these norms can be computed via iterated integrals, we have \begin{align*} {\left\lVert {f\ast g} \right\rVert}_1 &\coloneqq\int_{\mathbb{R}}{\left\lvert {(f\ast g)(x)} \right\rvert} \,dx\\ &\coloneqq\int_{\mathbb{R}}{\left\lvert {\int_{\mathbb{R}}H(x, y) \,dy} \right\rvert} \,dx\\ &\coloneqq\int_{\mathbb{R}}{\left\lvert {\int_{\mathbb{R}}f(y)g(x-y) \,dy} \right\rvert} \,dx\\ &\leq \int_{\mathbb{R}}\int_{\mathbb{R}}{\left\lvert {f(y) g(x-y)} \right\rvert} \,dx\,dy\\ &\coloneqq\int_{\mathbb{R}}\int_{\mathbb{R}}{\left\lvert {H(x ,y)} \right\rvert}\,dx\,dy\\ &\coloneqq\int_{{\mathbb{R}}^2} {\left\lvert {H} \right\rvert} \,d\mu_{{\mathbb{R}}^2} \\ &\coloneqq{\left\lVert {H} \right\rVert}_{L^1({\mathbb{R}}^2)} .\end{align*} So it suffices to show \({\left\lVert {H} \right\rVert}_1 < \infty\).
-
A preliminary computation, the validity of which we will show afterward: \begin{align*} {\left\lVert {H} \right\rVert}_1 &\coloneqq{\left\lVert {H} \right\rVert}_{L^1({\mathbb{R}}^2)} \\ &= \int _{\mathbb{R}}\qty{ \int_{\mathbb{R}}{\left\lvert {f(y)g(x-y)} \right\rvert} \, dy } \, dx && \text{Tonelli} \\ &= \int _{\mathbb{R}}\qty{ \int_{\mathbb{R}}{\left\lvert {f(y)g(x-y)} \right\rvert} \, dx} \, dy && \text{Tonelli} \\ &= \int _{\mathbb{R}}\qty{ \int_{\mathbb{R}}{\left\lvert {f(y)g(t)} \right\rvert} \, dt} \, dy && \text{setting } t=x-y, \,dt = - dx \\ &= \int _{\mathbb{R}}\qty{ \int_{\mathbb{R}}{\left\lvert {f(y)} \right\rvert}\cdot {\left\lvert {g(t)} \right\rvert} \, dt}\, dy \\ &= \int _{\mathbb{R}}{\left\lvert {f(y)} \right\rvert} \cdot \qty{ \int_{\mathbb{R}}{\left\lvert {g(t)} \right\rvert} \, dt}\, dy \\ &\coloneqq\int _{\mathbb{R}}{\left\lvert {f(y)} \right\rvert} \cdot {\left\lVert {g} \right\rVert}_1 \,dy \\ &= {\left\lVert {g} \right\rVert}_1 \int _{\mathbb{R}}{\left\lvert {f(y)} \right\rvert} \,dy &&\text{the norm is a constant} \\ &\coloneqq{\left\lVert {g} \right\rVert}_1 {\left\lVert {f} \right\rVert}_1 \\ &< \infty && \text{by assumption} .\end{align*}
-
We’ve used Tonelli twice: to equate the integral to the iterated integral, and to switch the order of integration, so it remains to show the hypothesis of Tonelli are fulfilled.
\(H\) is measurable on \({\mathbb{R}}^2\):
-
It suffices to show \(\tilde f(x, y) \coloneqq f(y)\) and \(\tilde g(x, y) \coloneqq g(x-y)\) are both measurable on \({\mathbb{R}}^2\).
- Then use that products of measurable functions are measurable.
- \(f \in L^1\) by assumption, and \(L^1\) functions are measurable by definition.
-
The function \((x, y) \mapsto g(x-y)\) is measurable on \({\mathbb{R}}^2\):
- \(g\) is measurable on \({\mathbb{R}}\) by assumption, so the cylinder function \(G(x, y) \coloneqq g(x)\) on \({\mathbb{R}}^2\) is measurable (result from course).
-
Define a linear transformation ` \begin{align*} T \coloneqq \begin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix} \in \operatorname{GL}_2({\mathbb{R}}) && \implies ,,, T \begin{bmatrix} x \ y \end{bmatrix}
\begin{bmatrix} x-y
\ y
\end{bmatrix} ,\end{align*} `{=html} and linear functions are measurable. - Write \begin{align*} \tilde g(x-y) \coloneqq G(x-y, y) \coloneqq(G\circ T)(x, y) ,\end{align*} and compositions of measurable functions are measurable.
-
Apply Tonelli to \({\left\lvert {H} \right\rvert}\)
- \(H\) measurable implies \({\left\lvert {H} \right\rvert}\) is measurable.
- \({\left\lvert {H} \right\rvert}\) is non-negative.
- So the iterated integrals are equal in the extended sense
- The calculation shows the iterated integral is finite, so \(\int {\left\lvert {H} \right\rvert}\) is finite and \(H\) is thus integrable on \({\mathbb{R}}^2\).
Note: Fubini is not needed, since we’re not calculating the actual integral, just showing \(H\) is integrable.
Spring 2019.4 #real_analysis/qual/completed
Let \(f\) be a non-negative function on \({\mathbb{R}}^n\) and \(\mathcal A = \{(x, t) ∈ {\mathbb{R}}^n \times {\mathbb{R}}: 0 ≤ t ≤ f (x)\}\).
Prove the validity of the following two statements:
-
\(f\) is a Lebesgue measurable function on \({\mathbb{R}}^n \iff \mathcal A\) is a Lebesgue measurable subset of \({\mathbb{R}}^{n+1}\)
-
If \(f\) is a Lebesgue measurable function on \({\mathbb{R}}^n\), then \begin{align*} m(\mathcal{A})=\int _{{\mathbb{R}}^{n}} f(x) d x=\int_{0}^{\infty} m\left(\left\{x \in {\mathbb{R}}^{n}: f(x) \geq t\right\}\right) dt \end{align*}
- See Stein and Shakarchi p.82 corollary 3.3.
- Tonelli
- Important trick! \(\left\{{(x, t) {~\mathrel{\Big\vert}~}0\leq t \leq f(x)}\right\} = \left\{{ f(x) \geq t}\right\} \cap\left\{{ t\geq 0 }\right\}\)
\(\implies\):
- Suppose \(f:{\mathbb{R}}^n\to {\mathbb{R}}\) is a measurable function.
-
Rewrite \(A\):
\begin{align*}
A
&= \left\{{ (x, t) \in {\mathbb{R}}^d \times{\mathbb{R}}{~\mathrel{\Big\vert}~}0\leq t \leq f(x) }\right\} \\
&= \left\{{ (x, t) \in {\mathbb{R}}^d \times{\mathbb{R}}{~\mathrel{\Big\vert}~}0 \leq t < \infty }\right\}
\cap\left\{{ (x, t) \in {\mathbb{R}}^d\times{\mathbb{R}}{~\mathrel{\Big\vert}~}t\leq f(x) }\right\} \\
&= \qty{ {\mathbb{R}}^d \times[0, \infty) }
\cap\left\{{ (x, t) \in {\mathbb{R}}^d\times{\mathbb{R}}{~\mathrel{\Big\vert}~}f(x) -t \geq 0 }\right\} \\
&\coloneqq\qty{ {\mathbb{R}}^d \times[0, \infty) } \cap H^{-1}\qty{[0, \infty)}
,\end{align*}
where we define
\begin{align*}
H: {\mathbb{R}}^d \times{\mathbb{R}}&\to {\mathbb{R}}\\
(x, t) &\mapsto f(x) - t
.\end{align*}
- Note: this is “clearly” measurable!
- If we can show both sets are measurable, we’re done, since \(\sigma{\hbox{-}}\)algebras are closed under countable intersections.
- The first set is measurable since it is a Borel set in \({\mathbb{R}}^{d+1}\).
- For the same reason, it suffices to show \(H\) is a measurable function.
-
Define cylinder functions
\begin{align*}
F: {\mathbb{R}}^d \times{\mathbb{R}}&\to {\mathbb{R}}\\
(x, t) &\mapsto f(x)
\end{align*}
and
\begin{align*}
G: {\mathbb{R}}^d \times{\mathbb{R}}&\to {\mathbb{R}}\\
(x, t) &\mapsto t
\end{align*}
- \(F\) is a cylinder of \(f\), and since \(f\) is measurable by assumption, \(F\) is measurable.
- \(G\) is a cylinder on the identity for \({\mathbb{R}}\), which is measurable, so \(G\) is measurable.
- Define \begin{align*} H: {\mathbb{R}}^d &\to {\mathbb{R}}\\ (x, t) &\mapsto F(x, t) - G(x, t) \coloneqq f(x) - t ,\end{align*} which are linear combinations of measurable functions and thus measurable.
\(\impliedby\):
-
Suppose \({\mathcal{A}}\) is a measurable set.
-
A corollary of Tonelli applied to \(\chi_X\): if \(E\) is measurable, then for a.e. \(t\) the following slice is measurable: \begin{align*} {\mathcal{A}}_t \coloneqq\left\{{ x \in {\mathbb{R}}^d {~\mathrel{\Big\vert}~}(x,t) \in {\mathcal{A}}}\right\} &= \left\{{x\in {\mathbb{R}}^d {~\mathrel{\Big\vert}~}f(x) \geq t \geq 0}\right\} \\ &= f^{-1}\qty{[t, \infty)} .\end{align*}
- But maybe this isn’t enough, because we need \(f^{-1}\qty{[\alpha, \infty)}\) for all \(\alpha\)
-
But the other slice is also measurable for a.e. \(x\): \begin{align*} {\mathcal{A}}_x &\coloneqq\left\{{ t\in {\mathbb{R}}{~\mathrel{\Big\vert}~}(x, t) \in {\mathcal{A}}}\right\} \\ &= \left\{{ t\in {\mathbb{R}}{~\mathrel{\Big\vert}~}0 \leq t \leq f(x) }\right\} \\ &= \left\{{ t\in {\mathbb{R}}{~\mathrel{\Big\vert}~}t\in [0, f(x)] }\right\} \\ &= [0, f(x)] .\end{align*}
-
Moreover the function \(x\mapsto m({\mathcal{A}}_x)\) is a measurable function of \(x\)
-
Now note \(m({\mathcal{A}}_x) = f(x) - 0 = f(x)\), so \(f\) must be measurable.
-
Writing down what the slices are \begin{align*} \mathcal{A} &= \left\{{(x, t) \in {\mathbb{R}}^n\times{\mathbb{R}}{~\mathrel{\Big\vert}~}0 \leq t \leq f(x)}\right\} \\ \mathcal{A}_t &= \left\{{x \in {\mathbb{R}}^n {~\mathrel{\Big\vert}~}t\leq f(x) }\right\} .\end{align*}
-
Then \begin{align*} \int_{{\mathbb{R}}^n} f(x) ~dx &= \int_{{\mathbb{R}}^n} \int_0^{f(x)} 1 ~dt~dx \\ &= \int_{{\mathbb{R}}^n} \int_{0}^\infty \chi_\mathcal{A} ~dt~dx \\ &\overset{F.T.}= \int_{0}^\infty \int_{{\mathbb{R}}^n} \chi_\mathcal{A} ~dx~dt\\ &= \int_0^\infty m(\mathcal{A}_t) ~dt ,\end{align*} where we just use that \(\int \int \chi_\mathcal{A} = m(\mathcal{A})\)
-
By Tonelli, all of these integrals are equal.
- This is justified because \(f\) was assumed measurable on \({\mathbb{R}}^n\), thus by (a) \(\mathcal{A}\) is a measurable set and thus \(\chi_A\) is a measurable function on \({\mathbb{R}}^n\times{\mathbb{R}}\).
Fall 2018.5 #real_analysis/qual/completed
Let \(f \geq 0\) be a measurable function on \({\mathbb{R}}\). Show that \begin{align*} \int _{{\mathbb{R}}} f = \int _{0}^{\infty} m(\{x: f(x)>t\}) dt \end{align*}
-
Claim: If \(E\subseteq {\mathbb{R}}^a \times{\mathbb{R}}^b\) is a measurable set, then for almost every \(y\in {\mathbb{R}}^b\), the slice \(E^y\) is measurable and
\begin{align*}
m(E) = \int_{{\mathbb{R}}^b} m(E^y) \,dy
.\end{align*}
- Set \(g = \chi_E\), which is non-negative and measurable, so apply Tonelli.
- Conclude that \(g^y = \chi_{E^y}\) is measurable, the function \(y\mapsto \int g^y(x)\, dx\) is measurable, and \(\int \int g^y(x)\,dx \,dy = \int g\).
- But \(\int g = m(E)\) and \(\int\int g^y(x) \,dx\,dy = \int m(E^y)\,dy\).
Note: \(f\) is a function \({\mathbb{R}}\to {\mathbb{R}}\) in the original problem, but here I’ve assumed \(f:{\mathbb{R}}^n\to {\mathbb{R}}\).
-
Since \(f\geq 0\), set \begin{align*} E\coloneqq\left\{{(x, t) \in {\mathbb{R}}^{n} \times{\mathbb{R}}{~\mathrel{\Big\vert}~}f(x) > t}\right\} = \left\{{(x, t) \in {\mathbb{R}}^n \times{\mathbb{R}}{~\mathrel{\Big\vert}~}0 \leq t < f(x)}\right\} .\end{align*}
-
Claim: since \(f\) is measurable, \(E\) is measurable and thus \(m(E)\) makes sense.
- Since \(f\) is measurable, \(F(x, t) \coloneqq t - f(x)\) is measurable on \({\mathbb{R}}^n \times{\mathbb{R}}\).
- Then write \(E = \left\{{F < 0}\right\} \cap\left\{{t\geq 0}\right\}\) as an intersection of measurable sets.
-
We have slices \begin{align*} E^t &\coloneqq\left\{{x\in {\mathbb{R}}^n {~\mathrel{\Big\vert}~}(x, t) \in E}\right\} = \left\{{x\in {\mathbb{R}}^n {~\mathrel{\Big\vert}~}0 \leq t < f(x)}\right\} \\ E^x &\coloneqq\left\{{t\in {\mathbb{R}}{~\mathrel{\Big\vert}~}(x, t) \in E}\right\} = \left\{{t\in {\mathbb{R}}{~\mathrel{\Big\vert}~}0 \leq t \leq f(x)}\right\} = [0, f(x)] .\end{align*}
- \(E_t\) is precisely the set that appears in the original RHS integrand.
- \(m(E^x) = f(x)\).
-
Claim: \(\chi_E\) satisfies the conditions of Tonelli, and thus \(m(E) = \int \chi_E\) is equal to any iterated integral.
- Non-negative: clear since \(0\leq \chi_E \leq 1\)
- Measurable: characteristic functions of measurable sets are measurable.
-
Conclude:
- For almost every \(x\), \(E^x\) is a measurable set, \(x\mapsto m(E^x)\) is a measurable function, and \(m(E) = \int_{{\mathbb{R}}^n} m(E^x) \, dx\)
- For almost every \(t\), \(E^t\) is a measurable set, \(t\mapsto m(E^t)\) is a measurable function, and \(m(E) = \int_{{\mathbb{R}}} m(E^t) \, dt\)
-
On one hand, \begin{align*} m(E) &= \int_{{\mathbb{R}}^{n+1}} \chi_E(x, t) \\ &= \int_{{\mathbb{R}}} \int_{{\mathbb{R}}^n} \chi_E(x, t) \,dt \,dx \quad\text{by Tonelli}\\ &= \int_{{\mathbb{R}}^n} m(E^x) \,dx \quad\text{first conclusion}\\ &= \int_{{\mathbb{R}}^n} f(x) \,dx .\end{align*}
-
On the other hand, \begin{align*} m(E) &= \int_{{\mathbb{R}}^{n+1}} \chi_E(x, t) \\ &= \int_{\mathbb{R}}\int_{{\mathbb{R}}^n} \chi_E(x, t) \, dx \,dt \quad\text{by Tonelli} \\ &= \int_{\mathbb{R}}m(E^t) \,dt \quad\text{second conclusion} .\end{align*}
-
Thus \begin{align*} \int_{{\mathbb{R}}^n} f \,dx = m(E) = \int_{\mathbb{R}}m(E^t) \,dt = \int_{\mathbb{R}}m\qty{\left\{{x{~\mathrel{\Big\vert}~}f(x) > t}\right\}} .\end{align*}
Fall 2015.5 #real_analysis/qual/completed
Let \(f, g \in L^1({\mathbb{R}})\) be Borel measurable.
-
Show that
- The function \begin{align*}F(x, y) \coloneqq f(x-y) g(y)\end{align*} is Borel measurable on \({\mathbb{R}}^2\), and
- For almost every \(x\in {\mathbb{R}}\), the function \(f(x-y)g(y)\) is integrable with respect to \(y\) on \({\mathbb{R}}\).
- Show that \(f\ast g \in L^1({\mathbb{R}})\) and \begin{align*} \|f * g\|_{1} \leq \|f\|_{1} \|g\|_{1} \end{align*}
-
\(F \in {\mathcal{B}}({\mathbb{R}}^2)\):
- Write a function \(\tilde f(x, y) \coloneqq f(x)\)
- Write a linear transformation \(T = { \begin{bmatrix} {1} & {0} \\ {0} & {-1} \end{bmatrix} } \in \operatorname{GL}_2\), so \(T{\left[ {x, y} \right]} = {\left[ {x-y, 0} \right]}\)
- Write \(f(x-y) \coloneqq(\tilde f \circ T)(x, y)\), which is a composition of measurable functions and thus measurable.
- A product of measurable functions is measurable.
-
\(f\ast g \in L^1({\mathbb{R}})\): estimate \begin{align*} \int {\left\lvert { f\ast g} \right\rvert} d\mu &= \int_{\mathbb{R}}\int_{\mathbb{R}}{\left\lvert {f(x-y)g(y)} \right\rvert}\,dx\,dy\\ &= \int_{\mathbb{R}}\int_{\mathbb{R}}{\left\lvert {f(x-y)} \right\rvert}{\left\lvert {g(y)} \right\rvert}\,dx\,dy\\ &= \int_{\mathbb{R}}{\left\lvert {g(y)} \right\rvert} \int_{\mathbb{R}}{\left\lvert {f(x-y)} \right\rvert}\,dx\,dy\\ &= {\left\lVert {g} \right\rVert}_1 {\left\lVert {f} \right\rVert}_1 ,\end{align*} where we’ve used translation invariance of the \(L^1\) norm and Fubini-Tonelli justified by the finite result.
-
\(F_x(y) \coloneqq f(x-y)g(y)\) is integrable with respect to \(y\) for almost every \(x\):
- This follows from Fubini-Tonelli, which says that if \(F(x, y)\) is integrable, the slices \(F^x(y)\) are integrable for almost every \(x\). Here take \(F(x, y) \coloneqq f(x-y)g(y)\).
Spring 2014.5 #real_analysis/qual/work
Let \(f, g \in L^1([0, 1])\) and for all \(x\in [0, 1]\) define \begin{align*} F(x) \coloneqq\int _{0}^{x} f(y) \, dy {\quad \operatorname{and} \quad} G(x)\coloneqq\int _{0}^{x} g(y) \, dy. \end{align*}
Prove that \begin{align*} \int _{0}^{1} F(x) g(x) \, dx = F(1) G(1) - \int _{0}^{1} f(x) G(x) \, dx \end{align*}