# Midterm Exam 2 (November 2018)

## Fall 2018 Midterm 2.1 #real_analysis/qual/work

Let $$f, g\in L^1([0, 1])$$, define $$F(x) = \int_0^x f(y)\,dy$$ and $$G(x) = \int_0^x g(y)\,dy$$, and show \begin{align*} \int_0^1 F(x)g(x) \,dx = F(1)G(1) - \int_0^1 f(x) G(x) \, dx .\end{align*}

## Fall 2018 Midterm 2.2 #real_analysis/qual/work

Let $$\phi\in L^1({\mathbb{R}}^n)$$ such that $$\int \phi = 1$$ and define $$\phi_t(x) = t^{-n}\phi(t^{-1}x)$$. Show that if $$f$$ is bounded and uniformly continuous then $$f\ast \phi_t \overset{t\to 0}\to f$$ uniformly.

## Fall 2018 Midterm 2.3 #real_analysis/qual/work

Let $$g\in L^\infty([0, 1])$$.

• Prove \begin{align*} {\left\lVert {g} \right\rVert}_{L^p([0, 1])} \overset{p\to\infty}\to {\left\lVert {g} \right\rVert}_{L^\infty([0, 1])} .\end{align*}

• Prove that the map \begin{align*} \Lambda_g: L^1([0, 1]) &\to {\mathbb{C}}\\ f &\mapsto \int_0^1 fg \end{align*} defines an element of $$L^1([0, 1]) {}^{ \vee }$$ with $${\left\lVert {\Lambda_g} \right\rVert}_{L^1([0, 1]) {}^{ \vee }}= {\left\lVert {g} \right\rVert}_{L^\infty([0, 1])}$$.

## Fall 2018 Midterm 2.4 #real_analysis/qual/work

See

\cref{hilbert_space_exam_question}

#real_analysis/qual/work