Practice Exam (November 2014)

Fall 2018 Practice Midterm 2.1 #real_analysis/qual/work

  • Carefully state Tonelli’s theorem for a nonnegative function F(x,t) on Rn×R.

  • Let f:Rn[0,] and define A:={(x,t)Rn×R | 0tf(x)}.

    Prove the validity of the following two statements:

    • f is Lebesgue measurable on RnA is a Lebesgue measurable subset of Rn+1.
    • If f is Lebesgue measurable on Rn then m(A)=Rnf(x)dx=0m({xRn | f(x)t})dt.

Fall 2018 Practice Midterm 2.2 #real_analysis/qual/work

  • Let f,gL1(Rn) and give a definition of fg.

  • Prove that if f,g are integrable and bounded, then (fg)(x)|x|0.

  • In parts:

    • Define the Fourier transform of an integrable function f on Rn.
    • Give an outline of the proof of the Fourier inversion formula.
    • Give an example of a function fL1(Rn) such that ˆf is not in L1(Rn).

Fall 2018 Practice Midterm 2.3 #real_analysis/qual/work

\label{hilbert_space_exam_question}

Let {un}n=1 be an orthonormal sequence in a Hilbert space H.

  • Let xH and verify that for any N\in {\mathbb{N}} and deduce that \begin{align*} \sum_{n=1}^{\infty}\left|\left\langle x, u_{n}\right\rangle\right|^{2} \leq\|x\|_H^{2} .\end{align*}

  • Let \left\{{a_n}\right\}_{n\in {\mathbb{N}}} \in \ell^2({\mathbb{N}}) and prove that there exists an x\in H such that a_n = {\left\langle {x},~{u_n} \right\rangle} for all n\in {\mathbb{N}}, and moreover x may be chosen such that \begin{align*} {\left\lVert {x} \right\rVert}_H = \qty{ \sum_{n\in {\mathbb{N}}} {\left\lvert {a_n} \right\rvert}^2}^{1\over 2} .\end{align*}

  • Prove that if \left\{{u_n}\right\} is complete, Bessel’s inequality becomes an equality.
solution (part b):

    
  • Take \left\{{a_n}\right\} \in \ell^2, then note that \sum {\left\lvert {a_n} \right\rvert}^2 < \infty \implies the tails vanish.

  • Define x \coloneqq\displaystyle\lim_{N\to\infty} S_N where S_N = \sum_{k=1}^N a_k u_k

  • \left\{{S_N}\right\} is Cauchy and H is complete, so x\in H.

  • By construction, \begin{align*} {\left\langle {x},~{u_n} \right\rangle} = {\left\langle {\sum_k a_k u_k},~{u_n} \right\rangle} = \sum_k a_k {\left\langle {u_k},~{u_n} \right\rangle} = a_n \end{align*} since the u_k are all orthogonal.

  • By Pythagoras since the u_k are normal, \begin{align*} {\left\lVert {x} \right\rVert}^2 = {\left\lVert {\sum_k a_k u_k} \right\rVert}^2 = \sum_k {\left\lVert {a_k u_k} \right\rVert}^2 = \sum_k {\left\lvert {a_k} \right\rvert}^2 .\end{align*}

solution (part c):

Let x and u_n be arbitrary.

` \begin{align*} {\left\langle {x - \sum_^\infty {\left\langle {x},~{u_k} \right\rangle}u_k },~{u_n} \right\rangle} &= {\left\langle {x},~{u_n} \right\rangle}

{\left\langle {\sum_^\infty {\left\langle {x},~{u_k} \right\rangle}u_k },~{u_n} \right\rangle} \ &= {\left\langle {x},~{u_n} \right\rangle}

\sum_^\infty {\left\langle {{\left\langle {x},~{u_k} \right\rangle}u_k },~{u_n} \right\rangle} \ &= {\left\langle {x},~{u_n} \right\rangle}

\sum_^\infty {\left\langle {x},~{u_k} \right\rangle} {\left\langle {u_k },~{u_n} \right\rangle} \ &= {\left\langle {x},~{u_n} \right\rangle} - {\left\langle {x},~{u_n} \right\rangle} = 0 \ \implies x - \sum_^\infty {\left\langle {x},~{u_k} \right\rangle}u_k &= 0 \quad\text{by completeness} .\end{align*} `{=html}

So \begin{align*} x = \sum_{k=1}^\infty {\left\langle {x},~{u_k} \right\rangle} u_k \implies {\left\lVert {x} \right\rVert}^2 = \sum_{k=1}^\infty {\left\lvert {{\left\langle {x},~{u_k} \right\rangle}} \right\rvert}^2. \hfill\blacksquare .\end{align*}

Fall 2018 Practice Midterm 2.4 #real_analysis/qual/work

  • Prove Holder’s inequality: let f\in L^p, g\in L^q with p, q conjugate, and show that \begin{align*} {\left\lVert {fg} \right\rVert}_{p} \leq {\left\lVert {f} \right\rVert}_{p} \cdot {\left\lVert {g} \right\rVert}_{q} .\end{align*}

  • Prove Minkowski’s Inequality: \begin{align*} 1\leq p < \infty \implies {\left\lVert {f+g} \right\rVert}_{p} \leq {\left\lVert {f} \right\rVert}_{p}+ {\left\lVert {g} \right\rVert}_{p} .\end{align*} Conclude that if f, g\in L^p({\mathbb{R}}^n) then so is f+g.

  • Let X = [0, 1] \subset {\mathbb{R}}.

    • Give a definition of the Banach space L^\infty(X) of essentially bounded functions of X.

    • Let f be non-negative and measurable on X, prove that \begin{align*} \int_X f(x)^p \,dx \overset{p\to\infty}\to \begin{dcases} \infty \quad\text{or} \\ m\qty{\left\{{f^{-1}(1)}\right\}} \end{dcases} ,\end{align*} and characterize the functions of each type

solution:

\begin{align*} \int f^p &= \int_{x < 1} f^p + \int_{x=1}f^p + \int_{x > 1} f^p\\ &= \int_{x < 1} f^p + \int_{x=1}1 + \int_{x > 1} f^p \\ &= \int_{x < 1} f^p + m(\left\{{f = 1}\right\}) + \int_{x > 1} f^p \\ &\overset{p\to\infty}\to 0 + m(\left\{{f = 1}\right\}) + \begin{cases} 0 & m(\left\{{x\geq 1}\right\}) = 0 \\ \infty & m(\left\{{x\geq 1}\right\}) > 0. \end{cases} \end{align*}

Fall 2018 Practice Midterm 2.5 #real_analysis/qual/work

Let X be a normed vector space.

  • Give the definition of what it means for a map L:X\to {\mathbb{C}} to be a linear functional.

  • Define what it means for L to be bounded and show L is bounded \iff L is continuous.

  • Prove that (X {}^{ \vee }, {\left\lVert {{-}} \right\rVert}_{^{\operatorname{op}}}) is a Banach space.
#real_analysis/qual/work