Notation

NotationMeaning
\({\left\lVert {f} \right\rVert}_\infty \coloneqq\sup_{x\in \operatorname{dom}(f)} {\left\lvert {f(x)} \right\rvert}\)The infinity norm, \(\sup_{x\in \operatorname{dom}(f)} {\left\lvert {f(x)} \right\rvert}\)
\({\left\lVert {f} \right\rVert}_{L^\infty} \coloneqq\inf\left\{{M \geq 0 {~\mathrel{\Big\vert}~}{\left\lvert {f(x)} \right\rvert} \leq M \text{ for a.e. } x }\right\}\)The ?
\(f_n \overset{n \to \infty }\longrightarrow f\)Convergence of a sequence
\(f(x) \overset{{\left\lvert {x} \right\rvert} \to \infty}\to 0\)Vanishing at infinity
\(\displaystyle\int_{{\left\lvert {x} \right\rvert} \geq N} f \overset{N\to \infty}\longrightarrow 0\)Having small tails
\(\mathcal{H}\)A Hilbert space
\(X\)Generally a topological (or metric) space
\({\partial}_x f = {\frac{\partial }{\partial x}\,}f = {\frac{\partial f}{\partial x}\,}\)The partial derivative of \(f\) wrt \(x\)