Counterexamples

Let all of the following integrals to be over a compact interval [a,b] with 0a<b.

Questions to ask:

  • Is f bounded?
  • What is the discontinuity set Df?
  • What is the non-differentiability locus Df?
  • Is fR, i.e. Riemann integrable?
  • If fL, i.e. Lebesgue integrable?
    • If so, what is Rf?

Note that DfFσ!

Weierstrass Function

FunctionBounded?DfDfR?L?
Dirichlet χQ(x)✅, |f|1RR✅, f=0
Dirichlet 2 xχQ(x)R{0}R❌, U(f)>1/4>0=L(f)?
Dirichlet 3 x2χQ(x)R{0}R{0}?
Dirichlet 4 f(x)=x(χQ(x)χQc(x))R{0}R?
Thomae (x=pq1q)χQ(x)QR✅, f=0 1
Weierstrass f(x)=n=0ancos(bnπx)?R??
remark:

Full definition of the Weierstrass function:

f(x)=n=0ancos(bnπx)a(0,1),bZ0,ab>1+3π2.

Note that this series converges uniformly since it’s bounded above by |an|, which is geometric.

remark:

Full definition of the Thomae function:

f(x)={1q,x=pqQ, (p,q)=10,else

proof (of non-integrability of Dirichlet 4):

Restrict attention to [12,1] ¯10f=inf and \begin{align*} \underline{\int_0^1} f &= \sup \left\{{ \sum \inf f(x) (x_i - x_{i-1})}\right\} \\ \inf f(x)= -x_i \implies \sum \inf f(x) (x_i - x_{i-1}) &= \sum -x_i (x_i - x_{i-1}) \\ &< -\sum \frac 1 2 (x_i - x_{i-1}) \\ &= -\frac 1 2 \left( \frac 1 2 \right) = -\frac 1 4 \\ \implies \underline{\int_0^1} f &\leq -\frac 1 4 \end{align*} So we have \underline{\int_0^1} f \lneq 0 \lneq \overline{\int_0^1} f.

Footnotes
1.
Riemann integrable by the Lebesgue criterion.