Let all of the following integrals to be over a compact interval [a,b] with 0≤a<b.
Questions to ask:
- Is f bounded?
- What is the discontinuity set Df?
- What is the non-differentiability locus D′f?
- Is f∈R, i.e. Riemann integrable?
-
If f∈L, i.e. Lebesgue integrable?
- If so, what is ∫Rf?
Note that Df∈Fσ!
Weierstrass Function
Function | Bounded? | Df | D′f | R? | L? |
---|---|---|---|---|---|
Dirichlet χQ(x) | ✅, |f|≤1 | R | R | ❌ | ✅, ∫f=0 |
Dirichlet 2 xχQ(x) | ❌ | R∖{0} | R | ❌, U(f)>1/4>0=L(f) | ? |
Dirichlet 3 x2χQ(x) | ❌ | R∖{0} | R∖{0} | ❌ | ? |
Dirichlet 4 f(x)=x(χQ(x)−χQc(x)) | ❌ | R∖{0} | R | ❌ | ? |
Thomae (x=pq↦1q)χQ(x) | ✅ | Q | R | ✅, ∫f=0 1 | ✅ |
Weierstrass f(x)=∑∞n=0ancos(bnπx) | ? | ∅ | R | ? | ? |
Full definition of the Weierstrass function:
f(x)=∞∑n=0ancos(bnπx)a∈(0,1),b∈Z≥0,ab>1+3π2.
Note that this series converges uniformly since it’s bounded above by ∑|an|, which is geometric.
Full definition of the Thomae function:
f(x)={1q,x=pq∈Q, (p,q)=10,else
proof (of non-integrability of Dirichlet 4):
Restrict attention to [12,1] ¯∫10f=inf and \begin{align*} \underline{\int_0^1} f &= \sup \left\{{ \sum \inf f(x) (x_i - x_{i-1})}\right\} \\ \inf f(x)= -x_i \implies \sum \inf f(x) (x_i - x_{i-1}) &= \sum -x_i (x_i - x_{i-1}) \\ &< -\sum \frac 1 2 (x_i - x_{i-1}) \\ &= -\frac 1 2 \left( \frac 1 2 \right) = -\frac 1 4 \\ \implies \underline{\int_0^1} f &\leq -\frac 1 4 \end{align*} So we have \underline{\int_0^1} f \lneq 0 \lneq \overline{\int_0^1} f.