Fall 2018 Midterm 2.1 #real_analysis/qual/work
Let f,g∈L1([0,1]), define F(x)=∫x0f(y)dy and G(x)=∫x0g(y)dy, and show ∫10F(x)g(x)dx=F(1)G(1)−∫10f(x)G(x)dx.
Fall 2018 Midterm 2.2 #real_analysis/qual/work
Let ϕ∈L1(Rn) such that ∫ϕ=1 and define ϕt(x)=t−nϕ(t−1x). Show that if f is bounded and uniformly continuous then f∗ϕtt→0→f uniformly.
Fall 2018 Midterm 2.3 #real_analysis/qual/work
Let g∈L∞([0,1]).
-
Prove ‖
-
Prove that the map \begin{align*} \Lambda_g: L^1([0, 1]) &\to {\mathbf{C}}\\ f &\mapsto \int_0^1 fg \end{align*} defines an element of L^1([0, 1]) {}^{ \vee } with {\left\lVert {\Lambda_g} \right\rVert}_{L^1([0, 1]) {}^{ \vee }}= {\left\lVert {g} \right\rVert}_{L^\infty([0, 1])}.
Fall 2018 Midterm 2.4 #real_analysis/qual/work
See
\cref{hilbert_space_exam_question}