Midterm Exam 2 (November 2018)

Fall 2018 Midterm 2.1 #real_analysis/qual/work

Let f,gL1([0,1]), define F(x)=x0f(y)dy and G(x)=x0g(y)dy, and show 10F(x)g(x)dx=F(1)G(1)10f(x)G(x)dx.

Fall 2018 Midterm 2.2 #real_analysis/qual/work

Let ϕL1(Rn) such that ϕ=1 and define ϕt(x)=tnϕ(t1x). Show that if f is bounded and uniformly continuous then fϕtt0f uniformly.

Fall 2018 Midterm 2.3 #real_analysis/qual/work

Let gL([0,1]).

  • Prove

  • Prove that the map \begin{align*} \Lambda_g: L^1([0, 1]) &\to {\mathbf{C}}\\ f &\mapsto \int_0^1 fg \end{align*} defines an element of L^1([0, 1]) {}^{ \vee } with {\left\lVert {\Lambda_g} \right\rVert}_{L^1([0, 1]) {}^{ \vee }}= {\left\lVert {g} \right\rVert}_{L^\infty([0, 1])}.

Fall 2018 Midterm 2.4 #real_analysis/qual/work

See

\cref{hilbert_space_exam_question}

#real_analysis/qual/work