Continuous on compact implies uniformly continuous
Show that a continuous function on a compact set is uniformly continuous.
solution:
Use a stronger result: a continuous function on a compact metric is uniformly continuous. Fix ε. Suppose f is continuous, then for each z∈X choose δz=δ(ε,z) to ensure Bδ(z)↪Bε(f(z)) and form the cover {Bδz(z)}x∈X⇉. By compactness, choose a finite subcover corresponding to \left\{{z_1, \cdots, z_m}\right\} and choose \delta = \min \left\{{\delta_1, \cdots, \delta_m}\right\}. The claim is that this \delta works for uniform continuity: if {\left\lvert {x-y} \right\rvert} < \delta then {\left\lvert {x-y} \right\rvert} < \delta_i for all i. Note that x\in B_{\delta_z}(z) for one of the finitely many z above, and if we adjust \delta to \delta/2, we can arrange so that both x, y\in B_{\delta_z}(z) for some z, since \begin{align*} {\left\lvert {x-y} \right\rvert} = {\left\lvert {x-z+z-y} \right\rvert} \leq {\left\lvert {x-z} \right\rvert} + {\left\lvert {z-y} \right\rvert} < {\delta \over 2 } + {\delta \over 2} = \delta < \delta_{z} ,\end{align*} and similarly \begin{align*} {\left\lvert {f(x)-f(y) } \right\rvert} \leq {\left\lvert {f(x)-f(z)} \right\rvert} + {\left\lvert {f(z)-f(y)} \right\rvert} < {\varepsilon}+ {\varepsilon} ,\end{align*} so just adjust the original {\varepsilon} chosen by the continuity of f to {\varepsilon}/2.
2010 6.1
Show that \begin{align*} \int_{{\mathbb{B}}^n} {1 \over {\left\lvert {x} \right\rvert}^p } \,dx&< \infty \iff p < n \\ \\ \\ \int_{{\mathbf{R}}^n\setminus{\mathbb{B}}^n} {1 \over {\left\lvert {x} \right\rvert}^p } \,dx&< \infty \iff p > n .\end{align*}
solution:
Todo
2010 6.2
Show that \begin{align*} \int_{{\mathbf{R}}^n} {\left\lvert { f} \right\rvert} = \int_0^{\infty } m(A_t)\,dt&& A_t \coloneqq\left\{{x\in {\mathbf{R}}^n {~\mathrel{\Big\vert}~}{\left\lvert {f(x)} \right\rvert} > t}\right\} .\end{align*}
solution:
Todo
2010 6.5
Suppose F \subseteq {\mathbf{R}} with m(F^c) < \infty and let \delta(x) \coloneqq d(x, F) and \begin{align*} I_F(x) \coloneqq\int_{\mathbf{R}}{ \delta(y) \over {\left\lvert {x-y} \right\rvert}^2 } \,dy .\end{align*}
-
Show that \delta is continuous.
-
Show that if x\in F^c then I_F(x) = \infty.
- Show that I_F(x) < \infty for almost every x
solution:
Todo
2010 7.1
Let (X, \mathcal{M}, \mu) be a measure space and prove the following properties of L^ \infty (X, \mathcal{M}, \mu):
-
If f, g are measurable on X then \begin{align*} {\left\lVert {fg} \right\rVert}_1 \leq {\left\lVert {f} \right\rVert}_1 {\left\lVert {g} \right\rVert}_{\infty } .\end{align*}
-
{\left\lVert {{-}} \right\rVert}_{\infty } is a norm on L^{\infty } making it a Banach space.
-
{\left\lVert {f_n - f} \right\rVert}_{\infty } \overset{n\to \infty }\to 0 \iff there exists an E\in \mathcal{M} such that \mu(X\setminus E) = 0 and f_n \to f uniformly on E.
-
Simple functions are dense in L^{\infty }.
2010 7.2
Show that for 0 < p < q \leq \infty, {\left\lVert {a} \right\rVert}_{\ell^q} \leq {\left\lVert {a} \right\rVert}_{\ell^p} over {\mathbf{C}}, where {\left\lVert {a} \right\rVert}_{\infty } \coloneqq\sup_j {\left\lvert {a_j} \right\rvert}.
2010 7.3
Let f, g be non-negative measurable functions on [0, \infty) with \begin{align*} A &\coloneqq\int_0^{\infty } f(y) y^{-1/2} \,dy< \infty \\ B &\coloneqq\qty{ \int_0^{\infty } {\left\lvert { g(y) } \right\rvert} }^2 \,dy< \infty .\end{align*}
Show that \begin{align*} \int_0^{\infty } \qty{ \int_0^{\infty } f(y) \,dy} {g(x) \over x} \,dx\leq AB .\end{align*}
2010 7.4
Let (X, \mathcal{M}, \mu) be a measure space and 0 < p < q< \infty. Prove that if L^q(X) \subseteq L^p(X), then X does not contain sets of arbitrarily large finite measure.
2010 7.5
Suppose 0 < a < b \leq \infty, and find examples of functions f \in L^p((0, \infty )) if and only if:
-
a < p < b
-
a \leq p \leq b
-
p = a
Hint: consider functions of the following form: \begin{align*} f(x) \coloneqq x^{- \alpha} {\left\lvert { \log(x) } \right\rvert}^{ \beta} .\end{align*}
2010 7.6
Define \begin{align*} F(x) &\coloneqq\qty{ \sin(\pi x) \over \pi x}^2 \\ G(x) &\coloneqq \begin{cases} 1 - {\left\lvert {x} \right\rvert} & {\left\lvert {x} \right\rvert} \leq 1 \\ 0 & \text{else}. \end{cases} \end{align*}
-
Show that \widehat{G}(\xi) = F(\xi)
-
Compute \widehat{F}.
- Give an example of a function g\not \in L^1({\mathbf{R}}) which is the Fourier transform of an L^1 function.
Hint: write \widehat{G}(\xi) = H(\xi) + H(-\xi) where \begin{align*} H(\xi) \coloneqq e^{2\pi i \xi} \int_0^1 y e^{2\pi i y \xi }\,dy .\end{align*}
2010 7.7
Show that for each \epsilon>0 the following function is the Fourier transform of an L^1({\mathbf{R}}^n) function: \begin{align*} F(\xi) \coloneqq\qty{1 \over 1 + {\left\lvert {\xi} \right\rvert}^2}^{\epsilon} .\end{align*}
Hint: show that
\begin{align*} K_\delta(x) &\coloneqq\delta^{-n/2} e^{-\pi {\left\lvert {x} \right\rvert}^2 \over \delta} \\ f(x) &\coloneqq\int_0^{\infty } K_{\delta}(x) e^{-\pi \delta} \delta^{\epsilon - 1} \,d \delta \\ \Gamma(s) &\coloneqq\int_0^{\infty } e^{-t} t^{s-1} \,dt\\ \implies \widehat{f}(\xi) &= \int_0^{\infty } e^{- \pi \delta {\left\lvert {\xi} \right\rvert}^2} e^{ -\pi \delta} \delta^{\epsilon - 1} = \pi^{-s} \Gamma(\epsilon) F(\xi) .\end{align*}
2010 7 Challenge 1: Generalized Holder
Suppose that \begin{align*} 1\leq p_j \leq \infty, && \sum_{j=1}^n {1\over p_j} = {1\over r} \leq 1 .\end{align*}
Show that if f_j \in L^{p_j} for each 1\leq j \leq n, then \begin{align*} \prod f_j \in L^r, && {\left\lVert { \prod f_j } \right\rVert}_r \leq \prod {\left\lVert {f_j} \right\rVert}_{p_j} .\end{align*}
2010 7 Challenge 2: Young’s Inequality
Suppose 1\leq p,q,r \leq \infty with \begin{align*} {1\over p } + {1 \over q} = 1 + {1 \over r} .\end{align*}
Prove that \begin{align*} f \in L^p, g\in L^q \implies f \ast g \in L^r \text{ and } {\left\lVert {f \ast g} \right\rVert}_r \leq {\left\lVert {f} \right\rVert}_p {\left\lVert {g} \right\rVert}_q .\end{align*}
2010 9.1
Show that the set \left\{{ u_k(j) \coloneqq\delta_{ij} }\right\} \subseteq \ell^2({\mathbf{Z}}) and forms an orthonormal system.
2010 9.2
Consider L^2([0, 1]) and define \begin{align*} e_0(x) &= 1 \\ e_1(x) &= \sqrt{3}(2x-1) .\end{align*}
-
Show that \left\{{e_0, e_1}\right\} is an orthonormal system.
-
Show that the polynomial p(x) where \deg(p) = 1 which is closest to f(x) = x^2 in L^2([0, 1]) is given by \begin{align*} h(x) = x - {1\over 6} .\end{align*}
Compute {\left\lVert {f - g} \right\rVert}_2.
2010 9.3
Let E \subseteq H a Hilbert space.
-
Show that E\perp \subseteq H is a closed subspace.
-
Show that (E^\perp)^\perp = { \operatorname{cl}}_H(E).
2010 9.5b
Let f\in L^1((0, 2\pi)).
- Show that for an \epsilon>0 one can write f = g+h where g\in L^2((0, 2\pi)) and {\left\lVert {H} \right\rVert}_1 < \epsilon.
2010 9.6
Prove that every closed convex K \subset H a Hilbert space has a unique element of minimal norm.
2010 9 Challenge
Let U be a unitary operator on H a Hilbert space, let M \coloneqq\left\{{x\in H {~\mathrel{\Big\vert}~}Ux = x}\right\}, let P be the orthogonal projection onto M, and define \begin{align*} S_N \coloneqq{1\over N} \sum_{n=0}^{N-1} U^n .\end{align*} Show that for all x\in H, \begin{align*} {\left\lVert { S_N x - Px} \right\rVert}_H \overset{N\to \infty } \to 0 .\end{align*}
2010 10.1
Let \nu, \mu be signed measures, and show that \begin{align*} \nu \perp \mu \text{ and } \nu \ll {\left\lvert { \mu} \right\rvert} \implies \nu = 0 .\end{align*}
2010 10.2
Let f\in L^1({\mathbf{R}}^n) with f\neq 0.
- Prove that there exists a c>0 such that \begin{align*} Hf(x) \geq {c \over (1 + {\left\lvert {x} \right\rvert})^n } .\end{align*}
2010 10.3
Consider the function \begin{align*} f(x) \coloneqq \begin{cases} {1\over {\left\lvert {x} \right\rvert} \qty{ \log\qty{1\over x}}^2 } & {\left\lvert {x} \right\rvert} \leq {1\over 2} \\ 0 & \text{else}. \end{cases} \end{align*}
-
Show that f \in L^1({\mathbf{R}}).
-
Show that there exists a c>0 such that for all {\left\lvert {x} \right\rvert} \leq 1/2, \begin{align*} Hf(x) \geq {c \over {\left\lvert {x} \right\rvert} \log\qty{1\over {\left\lvert {x} \right\rvert}} } .\end{align*} Conclude that Hf is not locally integrable.
2010 10.4
Let f\in L^1({\mathbf{R}}) and let \mathcal{U}\coloneqq\left\{{(x, y) \in {\mathbf{R}}^2 {~\mathrel{\Big\vert}~}y > 0}\right\} denote the upper half plane. For (x, y) \in \mathcal{U} define \begin{align*} u(x, y) \coloneqq f \ast P_y(x) && \text{where } P_y(x) \coloneqq{1\over \pi}\qty{y \over t^2 + y^2} .\end{align*}
-
Prove that there exists a constant C independent of f such that for all x\in {\mathbf{R}}, \begin{align*} \sup_{y > 0} {\left\lvert { u(x, y) } \right\rvert} \leq C\cdot Hf(x) .\end{align*}
Hint: write the following and try to estimate each term: \begin{align*} u(x, y) = \int_{{\left\lvert {t} \right\rvert} < y} f(x - t) P_y(t) \,dt+ \sum_{k=0}^{\infty } \int_{A_k} f(x-t) P_y(t)\,dt&& A_k \coloneqq\left\{{2^ky \leq {\left\lvert {t} \right\rvert} < 2^{k+1}y}\right\} .\end{align*}
-
Following the proof of the Lebesgue differentiation theorem, show that for f\in L^1({\mathbf{R}}) and for almost every x\in {\mathbf{R}}, \begin{align*} u(x, y) \overset{y\to 0} \to f(x) .\end{align*}