Exercises

exercise (Primitives imply vanishing integral):

Show that if f has a primitive F on Ω then γf=0 for every closed curve γΩ.

#complex/exercise/completed

solution:

Let F be a primitive of f, so zF=f. Then γf(z)dz=F(γ(1))F(γ(0))=F(p)F(p)=0. More explicitly, let z(t):[a,b]C be any parameterization of γ, then γf(z)dz=baf(z(t))z(t)dt=baF(z(t))z(t)dt=ba˜F(t)dt where ˜F(t):=F(z(t)) by the chain rule=F(z(b))F(z(a)) by FTC=0, since z(b)=z(a) for a closed curve.

exercise (Uniform limit theorem for holomorphic functions):

Show that if fnf locally uniformly and each fn is holomorphic then f is holomorphic.

#complex/exercise/work

solution:

This is S&S Theorem 5.2. Statement: if fnf uniformly locally uniformly on Ω then f is holomorphic on Ω.


    
  • Let DΩ with ¯DΩ and ΔD be a triangle.
  • Apply Cauchy-Goursat: Δfn=0.
  • fnf uniformly on Δ since it is closed and bounded and thus compact by Heine-Borel, so f is continuous and lim
  • Apply Morera’s theorem: \displaystyle\int_\Delta f vanishes on every triangle in \Omega, so f is holomorphic on \Omega.
exercise (Locally uniform limit theorem for holomorphic functions):

Prove that if f_n\to f locally uniformly with f_n holomorphic, then f_n'\to f' locally uniformly and f' is holomorphic.

#complex/exercise/work

solution:

    
  • Simplifying step: for some reason, it suffices to assume f_n\to f uniformly on all of \Omega?

  • Take \Omega_R to be \Omega with a buffer of R, so d(z, {{\partial}}\Omega) > R for every z \in \mkern 1.5mu\overline{\mkern-1.5mu\Omega_R\mkern-1.5mu}\mkern 1.5mu.

  • It suffices to show the following bound for F any holomorphic function on \Omega: \begin{align*} \sup_{z\in \Omega_R} {\left\lvert {F'(z)} \right\rvert} \leq {1\over R} \sup_{\zeta \in \Omega} {\left\lvert {F(\zeta)} \right\rvert} && \forall R ,\end{align*} where on the right we take the sup over all \Omega.

    • Then take F \coloneqq f_n-f and R\to 0 to conclude, since the right-hand side is a constant not depending on \Omega_R.
  • For any z\in \Omega_R, we have \mkern 1.5mu\overline{\mkern-1.5muD_R(z)\mkern-1.5mu}\mkern 1.5mu \subseteq \Omega_R, so Cauchy’s integral formula can be applied:

  • \begin{align*} {\left\lvert {F'(z)} \right\rvert} &= {\left\lvert { {1\over 2\pi i} \int_{{{\partial}}D_R(z)} {F(\xi) \over (\xi-z)^2 } \,d\xi} \right\rvert} \\ &\leq {1\over 2\pi} \int_{{{\partial}}D_R(z)} { { {\left\lvert {F(\xi)} \right\rvert} \over {\left\lvert {\xi-z} \right\rvert}^2 }} \,d\xi\\ &\leq {1\over 2\pi} \int_{{{\partial}}D_R(z)} { { \sup_{\zeta\in \Omega} {\left\lvert {F(\zeta)} \right\rvert} \over {\left\lvert {\xi-z} \right\rvert}^2 }} \,d\xi\\ &= {1\over 2\pi} \sup_{\zeta\in \Omega} {\left\lvert {F(\zeta)} \right\rvert} \int_{{{\partial}}D_R(z)} { { 1 \over R^2 }} \,d\xi\\ &= {1\over 2\pi} \sup_{\zeta\in \Omega} {\left\lvert {F(\zeta)} \right\rvert} {1\over R^2} \int_{{{\partial}}D_R(z)} \,d\xi\\ &= {1\over 2\pi} \sup_{\zeta\in \Omega} {\left\lvert {F(\zeta)} \right\rvert} {1\over R^2} 2\pi R \\ &\leq {1\over 2\pi} \sup_{\zeta\in \Omega} {\left\lvert {F(\zeta)} \right\rvert} {1\over R^2}\qty{ 2\pi R} \\ &= {1\over R} \sup_{\zeta \in \Omega}{\left\lvert {F(\zeta)} \right\rvert} .\end{align*}

  • Now \begin{align*} {\left\lVert {f_n' - f'} \right\rVert}_{\infty, \Omega_R} \leq {1\over R} {\left\lVert {f_n - f} \right\rVert}_{\infty, \Omega} ,\end{align*} where if R is fixed then by uniform convergence of f_n\to f, for n large enough {\left\lVert {f_n - f} \right\rVert} < {\varepsilon}/R.

exercise (Sublinear growth):

Suppose that f is entire and f has sublinear growth in the following sense: \begin{align*} {\left\lvert {f(z)\over z} \right\rvert}\to 0 \text{ as } {\left\lvert {z} \right\rvert}\to \infty .\end{align*} Show that f must be constant.

#complex/exercise/completed

solution (Direct bound):

Claim: f'(z_0) = 0 for every z_0\in {\mathbb{C}}, so f'\equiv 0, making f constant. Fix z_0, then define \begin{align*} g(z) \coloneqq \begin{cases} {f(z) - f(0) \over z-0} & z\neq 0 \\ f'(0) & z=0. \end{cases} .\end{align*} Note that for z\neq 0, \begin{align*} {\left\lvert {g(z)} \right\rvert} \coloneqq{\left\lvert {f(z) - f(0)\over z} \right\rvert} \leq {\left\lvert {f(z) \over z} \right\rvert} + {\left\lvert {f(0)\over z} \right\rvert} \overset{{\left\lvert {z} \right\rvert} \to \infty }\longrightarrow 0 ,\end{align*} where we’ve used the assumption in the last step. So for {\left\lvert {z} \right\rvert}\geq R_{\varepsilon} large enough, {\left\lvert {g(z)} \right\rvert} < {\varepsilon}. In particular, {\left\lvert {g(z)} \right\rvert}<{\varepsilon} on the circle {\left\lvert {z} \right\rvert} = R_{\varepsilon}, and by the MMP {\left\lvert {g(z)} \right\rvert} < {\varepsilon} in the disc {\left\lvert {z} \right\rvert}\leq R_{\varepsilon}. Taking {\varepsilon}\to 0 yields g(z) = 0 for all z\in {\mathbb{C}}, so f(z) = f(0) is a constant for all z.

solution (Cauchy bound):

Claim: f'(z) \equiv 0. Choose R = R({\varepsilon}) \gg 1 so that {\left\lvert {f(z)} \right\rvert} \leq {\varepsilon}{\left\lvert {z} \right\rvert} for {\left\lvert {z} \right\rvert} \geq R, and apply Cauchy’s formula: \begin{align*} {\left\lvert {f'(z)} \right\rvert} &= {\left\lvert {{1\over 2\pi i } \int_{{\left\lvert {\xi } \right\rvert}= R} { f(\xi) \over (\xi - z)^2 }\,d\xi} \right\rvert} \\ &\leq {1\over 2\pi} \int_{{\left\lvert {\xi } \right\rvert}= R} { {\left\lvert { f(\xi) } \right\rvert} \over {\left\lvert {\xi - z} \right\rvert}^2 } \,d\xi\\ &\leq {1\over 2\pi} \int_{{\left\lvert {\xi } \right\rvert}= R} { {\varepsilon}{\left\lvert {\xi} \right\rvert} \over \qty{R - {\left\lvert {z} \right\rvert}^2 } } \,d\xi\\ &= {1\over 2\pi} \qty{{\varepsilon}R\over \qty{R-{\left\lvert {z} \right\rvert}}^2 } \cdot 2\pi R \\ &= { \mathsf{O}} \qty{{\varepsilon}R^2\over R^2} = { \mathsf{O}} ({\varepsilon}) \\ &\overset{{\varepsilon}\to 0}\longrightarrow 0 .\end{align*}

exercise (Polynomial growth):

Suppose that f is entire and has polynomial growth in the following sense: \begin{align*} {\left\lvert {f(z)\over z^n} \right\rvert} \leq M \text{ for }{\left\lvert {z} \right\rvert} \geq R ,\end{align*} for some constants k and R. Show that f is a polynomial of degree at most n.

#complex/exercise/completed

solution:

Since f is entire, it equals its Laurent expansion about z_0 = 0, so \begin{align*} f(z) = \sum_{k\geq 0} c_k z^k, && c_k = {f^{(k)}(0)\over k! } = {1\over 2\pi i}\int_{{\left\lvert {\xi} \right\rvert} = R} {f(\xi) \over \xi^{k+1}}\,d\xi .\end{align*} A direct estimate yields \begin{align*} {\left\lvert {c_k} \right\rvert} &\leq {1\over 2\pi} \int_{{\left\lvert {\xi} \right\rvert} = R} {{\left\lvert {f(\xi)} \right\rvert} \over {\left\lvert {\xi} \right\rvert}^{k+1} }\,d\xi\\ &\leq {1\over 2\pi} \int_{{\left\lvert {\xi} \right\rvert} = R} {M {\left\lvert {\xi} \right\rvert}^n \over {\left\lvert {\xi} \right\rvert}^{k+1} }\,d\xi\\ &\leq {M\over 2\pi} \int_{{\left\lvert {\xi} \right\rvert} = R} {\left\lvert {\xi} \right\rvert}^{n-(k+1)} \,d\xi\\ &\leq {M\over 2\pi} \int_{{\left\lvert {\xi} \right\rvert} = R} R^{n-(k+1)} \,d\xi\\ &= {M\over 2\pi} R^{n-k-1} \cdot 2\pi R \\ &= MR^{n-k} ,\end{align*} which converges to 0 as R\to \infty provided n-k<0, i.e. k>n.

#complex/exercise/completed #complex/exercise/work