See also Qual conformal map questions.
Notation:
- Almost everything is an open set, so don’t include boundaries in definitions.
- {\mathbb{D}}\coloneqq\left\{{z {~\mathrel{\Big\vert}~}{\left\lvert {z} \right\rvert} < 1}\right\} is the open unit disc.
- {\mathbb{H}}\coloneqq\left\{{z {~\mathrel{\Big\vert}~}\Im(z) > 0}\right\} is the open upper half-plane.
- Q_i is the ith quadrant, e.g. Q_1 \coloneqq\left\{{z {~\mathrel{\Big\vert}~}\Re(z), \Im(z) > 0}\right\}.
- Q_{ij} \coloneqq Q_i \cup Q_j is the union of two quadrants. E.g. {\mathbb{H}}= Q_{23}, or Q_{14} is the right half-plane.
Tips:
-
If just mapping the disc to itself, use the hypberolic translations \begin{align*} \psi_a \coloneqq{z-a\over 1-\mkern 1.5mu\overline{\mkern-1.5mua\mkern-1.5mu}\mkern 1.5mu z} .\end{align*}
-
For lunes (regions bounded by arcs): map the cusps to 0 and \infty to get a sector.
-
For discs with slits: aim for {\mathbb{C}}\setminus[0, \infty) \xrightarrow{\sqrt z} {\mathbb{H}}.
-
For circles with tangencies: send the tangent point to \infty to get parallel lines.
-
Remembering the cross ratio: the order 1,0,\infty is very important (as images of a, b, c).
- Send b\to 0 by including z-b in the numerator.
- Send c\to \infty by including z-c in the denominator.
-
Send a\to 1 by canceling the terms just added:
- Cancel z-c in the denominator with a - c in the numerator.
- Cancel z-b in the numerator with a a - b in the denominator.
-
Inverting conformal maps: just set f(z) = w and solve for w.
-
Conformal maps preserve generalized spheres, i.e. circles get mapped to circles (which could be lines on {\mathbb{CP}}^1).
-
Orthogonal circles must go to orthogonal circles.
-
Arcs between two points must go to arcs between their images
-
{\mathbb{R}}=\left\{{\tan(t) {~\mathrel{\Big\vert}~}t\in (-\pi/2, \pi/ 2)}\right\}.
Cross-Ratios
Find a Mobius transformation sending
- 1\to 3
- i\to 0
- 2\to -1
solution:
Use cross ratios: set T(z) \coloneqq(z;,1,i,2) and S(w) = (w;,3,0,-1) and solve T(z) = S(w) \implies w = (S^{-1}T)(z): \begin{align*} {z-i \over z-2}{1-2\over 1-i} &= {w-0\over w+1}{3+1 \over 3-0} \\ \implies -\frac{\left(i + 1\right) \, {\left(z - i\right)}}{2 \, {\left(z - 2\right)}} &= \frac{4 \, w}{3 \, {\left(w + 1\right)}} \\ \implies w &= -\frac{3 \, {\left(\left(i + 1\right) \, z - i + 1\right)}}{\left(3 i + 11\right) \, z - 3 i - 13} \\ &= - {3z - 3i \over {3i+11\over i+1}z + {-3i-13 \over 3i+11}} \\ &= - {3z - 3i \over (7-4i) z + {-8+5i} } \\ &= \frac{-3 z+3 i}{(7-4 i) z+(-8+5 i)} .\end{align*}
Find a conformal map from {\mathbb{D}}^c \cap{\mathbb{H}} to {\mathbb{H}} using cross-ratios.
solution:
Idea: all cross-ratios send the complement of a positively oriented region (a,b,c) to the half-hemisphere (1,0,\infty) on {\mathbb{CP}}^1. So take (i, -1, 1)\to (1,0,\infty):
This is the cross-ratio \begin{align*} f(z) = {z+1\over z-1} {i-1\over i+1} .\end{align*}
The image of {\mathbb{D}}^c \cap{\mathbb{H}} is the 1st quadrant {\mathbb{H}}\cap\Re(z) > 0. Send this to {\mathbb{H}} with z\mapsto z^2.
Discs and Planes
{\mathbb{H}}\to{\mathbb{D}} #complex/exercise/completed
Find a fractional linear transformation T which maps {\mathbb{H}} to {\mathbb{D}}, and explicitly describe the image of the first quadrant under T.
solution:
Unclear to me how to motivate this formula, but choose f(z) = {z-i\over z+i}. Note that
- f(-1) = i
- f(0) = -1
- f(1) = -i,
so {\mathbb{R}} oriented from -\infty\to\infty is sent to S^1 oriented counterclockwise. Since this is conformal, it preserves handedness – noting that {\mathbb{H}} is on the left with respect to {\mathbb{R}}, it gets mapped to the left of S^1 with its induced orientation, i.e. the interior of {\mathbb{D}}. How to remember: {\left\lvert {z-i} \right\rvert}<{\left\lvert {z+i} \right\rvert} in {\mathbb{H}}, since points are closer to i than -i.
The image of the first quadrant: the claim is that this is {\mathbb{D}}\cap Q_{34}. Note that parameterizing seems hard! The naive idea would be to check the image of horizontal lines t + ci for c fixed heights and t\in (0, \infty) the parameterization. Instead consider handedness and where sub-regions go:
Noting that Q_1 is the bigon enclosed by 0, \infty, this maps to a bigon spanned by -1, 1. By handedness, since Q_1 is to the left of {\mathbb{R}}, it gets mapped to the left of the image of {\mathbb{R}}_{>0}, which is the lower half of the circle.
{\mathbb{H}}\to{\mathbb{D}}, cross-ratio #complex/exercise/completed
Find a conformal map {\mathbb{H}}\to {\mathbb{D}} using cross-ratios.
solution:
Idea: rotate the upper hemisphere ({\mathbb{H}}) of {\mathbb{CP}}^1 to make the equator {{\partial}}{\mathbb{D}}, “zoom” by placing i at the center so 0\to i\mapsto -1\to 0 and i\to \infty\mapsto 0\to 1. Accomplish this by sending
- \infty\to 1
- i\to 0
- -i\to \infty
Use the cross-ratio \begin{align*} R(z) \coloneqq(z, \infty, i, -i) = {z-i \over z-(-i)} {\infty - (-i) \over \infty - i} = {z-i\over z+i} .\end{align*}
Checking that this works:
- If z\in {\mathbb{R}} then {\left\lvert {z-i} \right\rvert} = {\left\lvert {z+i} \right\rvert} so {\left\lvert {F(z)} \right\rvert} = 1.
- If z\in {\mathbb{H}} then {\left\lvert {z-i} \right\rvert}\leq {\left\lvert {z+i} \right\rvert} so {\left\lvert {F(z)} \right\rvert}< 1.
{\mathbb{D}}\to{\mathbb{H}} #complex/exercise/completed
Find a conformal map from {\mathbb{D}} to {\mathbb{H}}.
solution:
Note that the standard Cayley map f(z)\coloneqq{z-i\over z+i} sends {\mathbb{H}}\to {\mathbb{D}}. Why this is true: {\left\lvert {f(z)} \right\rvert} < 1, since {\left\lvert {z-i} \right\rvert} < {\left\lvert {z+i} \right\rvert} for z\in {\mathbb{H}}. Finding an explicit inverse: \begin{align*} w &= {z-i\over z+i} \\ \implies w(z+i) - (z-i) &= 0 \\ \implies z &= -i {w+1\over w-1} ,\end{align*} which is the desired map. Why the image is in {\mathbb{H}}: it suffices to show that \Im(f(z)) > 0 for all z\in {\mathbb{D}}. Write z = x+iy and note that \Im(iz) = \Re(z), then \begin{align*} \Im(f(z)) &= \Re\qty{1-z\over 1+z} \\ &= \Re\qty{1-x-iy \over 1+x+iy} \\ &= \Re\qty{1-x^2-y^2 - i2y \over 1+x^2 + y^2} \\ &= {1-(x^2+y^2) \over 1+(x^2+y^2) } \\ &> 0 ,\end{align*} since x^2+y^2<1 for x+iy \in {\mathbb{D}}.
Upper half-disc to {\mathbb{D}} #complex/exercise/completed
Find a conformal map from \left\{{z\in {\mathbb{C}}{~\mathrel{\Big\vert}~}{\left\lvert {z} \right\rvert} < 1, \Im(z) > 0}\right\} = {\mathbb{D}}\cap{\mathbb{H}} to {\mathbb{D}}.
solution:
Note that z\mapsto z^2 doesn’t actually work, because the image is {\mathbb{D}}\setminus{\mathbb{R}}_{\geq 0} and has a slit deleted. Instead compose:
- z\mapsto i{z-1\over z+1}, which maps {\mathbb{D}}\to {\mathbb{H}} and restricts to map {\mathbb{D}}\cap{\mathbb{H}}\to Q_1.
- z\mapsto z^2, which maps Q_1\to {\mathbb{H}}
- z\mapsto {z-i\over z+i} which maps {\mathbb{H}}\to {\mathbb{D}}.
solution (Using Joukowski maps):
In parts:
- Use z\mapsto z^{-1} to send {\mathbb{H}}\cap{\mathbb{D}} to Q_{34} \cap{\mathbb{D}}^c.
- Use z\mapsto -z to map this to {\mathbb{H}}\cap{\mathbb{D}}^c
- Use z\mapsto {1\over 2}(z+z^{-1}) to map {\mathbb{H}}\cap{\mathbb{D}}^c to {\mathbb{H}}
- Then use the Cayley map z\mapsto {z-i\over z+i} to map {\mathbb{H}}\to {\mathbb{D}}.
Upper half-disc to {\mathbb{H}} #complex/exercise/completed
Find a conformal map from the upper half-disc to the upper half-plane.
solution:
- z\mapsto {1+z\over 1-z} is a standard map {\mathbb{D}}\to Q_{14} which restricts to {\mathbb{D}}\cap{\mathbb{H}}\to Q_1
- z\mapsto z^2 unwraps Q_1\to {\mathbb{H}}.
{\mathbb{D}}^c \cap{\mathbb{H}}\to{\mathbb{H}} #complex/exercise/completed
Find a conformal map {\mathbb{D}}^c \cap{\mathbb{H}}\to {\mathbb{H}}.
solution:
Claim: the map f(z) \coloneqq z+z^{-1} works. Consider the images of circles \gamma_r(t) \coloneqq rei^{t} where t\in [-\pi, \pi]. For r=1, \begin{align*} f(\gamma_1(t)) = e^{it} + e^{-it} = 2\cos(t) ,\end{align*} which sweeps out [-2, 2] twice. For arbitrary r, \begin{align*} f(\gamma_r(t)) = re^{it} + r^{-1}e^{-it} = (r+r^{-1})\cos(t) +i(r-r^{-1})\sin(t) ,\end{align*} which sweeps out an ellipse with horizontal radius r+r^{-1} and vertical radius r-r^{-1}. For 1<r<\infty, these sweep out all of {\mathbb{C}}\setminus{\mathbb{D}}. Restricting t\in [0, \pi], the \gamma_r(t) are top halves of circles which cover all of {\mathbb{H}}\setminus{\mathbb{D}}, and the images f(\gamma_r(t)) are top halves of ellipses which sweep out all of {\mathbb{H}}. This includes points inside of {\mathbb{D}}\cap{\mathbb{H}} – this is because for any t\in (0, \infty), there is always a solution r to t=r-r^{-1}: \begin{align*} t = r-r^{-1}\implies r^2-tr-1 \implies r = {t \pm \sqrt{t^2+4}\over 2} .\end{align*} So there is an image ellipse at that vertical height. Since every point z_0\in {\mathbb{H}} is on an ellipse of some vertical height t, {\mathbb{H}} is in the image.
That this map is conformal: a computation shows f'(z) = 1 + {1\over r^2}, which vanishes only at z=\pm 1. Since these are not in the domain, the derivative is nonvanishing, making f conformal.
Slits
Find a conformal map \begin{align*} {\mathbb{D}}\setminus\left[ {1\over 2}, 1\right) \to {\mathbb{D}} .\end{align*}
solution:
The picture:
In steps:
-
f_1: send 1/2\to 0 and 1\to 1 in order to lengthen the slit. Mobius transformations preserve lines, so take f_1(z) = {z-1/2 \over 1-1/2}. New domain: {\mathbb{D}}\setminus[0, 1).
-
f_2: send {\mathbb{D}}\to {\mathbb{H}} and keep track of the slit. Use the standard inverse to the Cayley transform, f_2(z) = i{1-z\over 1+z}. New domain: {\mathbb{H}}\setminus[i, i\infty), noting that {\mathbb{H}} is the open half-plane.
-
f_3: rotate the slit so it becomes a line segment from -1 to 1 passing through \infty. Use f_3(z) = z^2. New domain: {\mathbb{C}}\setminus\qty{(-\infty, 1] \cup[1, \infty) }
-
f_4: move the slit off to infinity to be left with a ray, so send -1\to \infty and 0\to 0. Take f_4(z) = {z\over z+1}, the new domain is {\mathbb{C}}\setminus[0, \infty).
-
f_5: fold it back. Branch cut log along [0, \infty) to define f_5(z) = z^{1\over 2}, so the new domain is {\mathbb{H}}.
-
f_6: apply the standard Cayley transform f_6(z) = {i-z\over i+z}
8 #complex/exercise/work
Let D be the region obtained by deleting the real interval [0, 1) from {\mathbb{D}}; find a conformal map from D to {\mathbb{D}}.
9 #complex/exercise/work
Find a conformal map from {\mathbb{C}}\setminus\left\{{x\in {\mathbb{R}}{~\mathrel{\Big\vert}~}x\leq 0}\right\} to {\mathbb{D}}.
10 #complex/exercise/work
Find a conformal map from {\mathbb{C}}\setminus\left\{{x\in {\mathbb{R}}{~\mathrel{\Big\vert}~}x\geq 1}\right\} to {\mathbb{D}}.
11 #complex/exercise/work
Find a bijective conformal map from G to {\mathbb{H}}, where \begin{align*} G \coloneqq\left\{{z\in {\mathbb{C}}{~\mathrel{\Big\vert}~}{\left\lvert {z-1} \right\rvert} < \sqrt 2,\, {\left\lvert {z+1} \right\rvert} < \sqrt 2}\right\} \setminus [0, i) .\end{align*}
Strips
Horizontal strip to {\mathbb{H}} #complex/exercise/completed
Find a conformal map from the strip \left\{{z\in {\mathbb{C}}{~\mathrel{\Big\vert}~}0 < \Im(z) < 1}\right\} to {\mathbb{H}}.
solution:
In steps:
- Dilate by z\mapsto \pi z to get 0<\Im(z) < \pi.
- Exponentiate by z\mapsto e^z to get {\mathbb{H}}.
Why e^z works: apply \operatorname{Log} to {\mathbb{H}}, use polar coordinates to write w=re^{i\theta} with 0<\theta<\pi and note \begin{align*} \operatorname{Log}(w) = \ln{\left\lvert {w} \right\rvert} +i\operatorname{Arg}(w) = \ln(r) + i\theta ,\end{align*} and noting that the image of \ln({-}) is all of {\mathbb{R}}.
Lunes
Intersection of circles
Find a conformal map L\to {\mathbb{D}} where \begin{align*} L\coloneqq\left\{{{\left\lvert {z - i } \right\rvert} < \sqrt 2}\right\} \cap\left\{{{\left\lvert {z+i} \right\rvert} < \sqrt 2}\right\} ,\end{align*} i.e. a lune with vertices -1 and 1.
solution:
The key insight: for lunes, map the corners to 0 and \infty; this yields a sector. Here we want -1\mapsto 0 and 1\mapsto \infty, so f(z) = {z+1\over z-1} gets things started.
In steps:
- z\mapsto {1+z\over 1-z} sends the lune to the sector \operatorname{Arg}(z) \in (-\pi/4, \pi/4), since it fixes and must be symmetric about the real axis, and preserves the right angle between the circles at z=-1.
- z\mapsto e^{i\pi/4}z to rotate this into Q_1.
- z\mapsto z^2 to dilate into {\mathbb{H}}.
- z\mapsto {z-i\over z+i} the standard Cayley map {\mathbb{H}}\to{\mathbb{D}}.
Lune with one intersection point
Find a conformal map: \begin{align*} {\mathbb{D}}\setminus\left\{{{\left\lvert {z - {1\over 2}} \right\rvert} = {1\over 2} }\right\} \to {\mathbb{D}} .\end{align*}
solution:
The picture:
-
Key insight: send the point of tangency to \infty to get parallel lines. Send z\mapsto {1+z \over 1-z} to send -1\to 0, 0\to 1, 1\to \infty to get a vertical strip.
-
Rotate and dilate: z\mapsto i\pi z to get a strip {\mathbb{R}}\times i(0, \pi).
-
Standard exponential z\mapsto e^{iz} sends this to {\mathbb{H}}.
-
Standard Cayley z\mapsto {z-i \over z+i} sends this to {\mathbb{D}}.
4 #complex/exercise/work
Find a conformal map from \left\{{z\in {\mathbb{C}}{~\mathrel{\Big\vert}~}{\left\lvert {z-i} \right\rvert} > 1,\, \Re(z) > 0}\right\} to {\mathbb{H}}.
5 #complex/exercise/work
Find a conformal map from \left\{{z\in {\mathbb{C}}{~\mathrel{\Big\vert}~}{\left\lvert {z} \right\rvert} < 1,\, {\left\lvert {z - {1\over 2}} \right\rvert} > {1\over 2} }\right\} to {\mathbb{D}}.
6 #complex/exercise/work
Find a conformal map from \left\{{{\left\lvert {z-1} \right\rvert} < 2}\right\} \cap\left\{{{\left\lvert {z+1} \right\rvert} < 2}\right\} to {\mathbb{H}}.
13 #complex/exercise/work
Find a conformal map from D = \{z :\ |z| < 1,\ |z - 1/2| > 1/2\} to the unit disk \Delta=\{z: \ |z|<1\}.
Sectors
Find a conformal map from the sector \left\{{\operatorname{Arg}(z) \in (0, \alpha)}\right\} \to {\mathbb{D}}.
solution:
The picture:
In steps:
- Map the sector to {\mathbb{H}} using z\mapsto z^{\pi/\alpha}, choosing a branch cut for \operatorname{Log} along {\mathbb{R}}_{\leq 0}.
- Map {\mathbb{H}}\to {\mathbb{D}} using the standard z\mapsto {z-i\over z+i}.
Joukowski-Type Regions
Map {\mathbb{C}}\setminus[-1, 1] to {\mathbb{D}}.
solution:
In steps:
-
Send -1\to 0 and 1\to \infty with z\mapsto {z+1\over z-1}. Checking that f(0) = -1, this yields {\mathbb{C}}\setminus{\mathbb{R}}_{\leq 0}.
-
Unwrap with z\mapsto \sqrt{z} to obtain the right half-plane -\pi/2<\operatorname{Arg}(z) < \pi/2.
-
Apply the rotated Cayley map z\mapsto {z-1\over z+1} to map this to {\mathbb{D}}.
Note that the composition is \begin{align*} {\sqrt{z+1\over z-1} -1 \over \sqrt{z+1\over z-1} +1} &= { \qty{ \sqrt{z+1} - \sqrt{z-1}}^2 \over (z+1)-(z-1) } \\ &= z - \sqrt{z^2-1} ,\end{align*} which has inverse z\mapsto {1\over 2}\qty{z+{1\over z}}.
Misc
Find a conformal map that sends i{\mathbb{R}} to {\left\lvert {z-{1\over 2}} \right\rvert} = {1\over 2}.
-
The double angle formulas: \begin{align*} \sin(2t) = {2\tan(t) \over 1+\tan^2(t)} && \cos(2t) = {1-\tan^2(2t) \over 1+\tan^2(t)} .\end{align*}
-
Parameterize a line by x=\tan(t) for t\in (-\pi/2, \pi/2)
-
The methods in SS Theorem 1.2: particularly the boundary behavior of F(z) \coloneqq{i-z\over i+z}, where F({\mathbb{R}}) = \left\{{\cos(2t)+i\sin(2t) = e^{2it} {~\mathrel{\Big\vert}~}t\in (-\pi/2, \pi/2)}\right\}.
-
Nyquist plots: a common applied problem, essentially computing the image F(i{\mathbb{R}}).
solution:
Idea: need the line -i\infty\to 0 \to i\infty to get mapped to a circle 0\to 1\to 0:
Take the cross ratio R(z) = (z, 0, \infty, -1) to send
- 0\to 1
- \infty\to 0
- -1\to \infty
This yields \begin{align*} R(z) = {z-\infty \over z+1}{0+1\over 0-\infty} = {1\over z+1} .\end{align*} Some deductions:
-
R preserves circles, so {\mathbb{R}}\mapsto {\mathbb{R}}.
- The segment 0\to\infty\mapsto 1\to 0
- The ray -1\to 0 \to \infty \mapsto \infty\to 1\to 0
- The ray -\infty \to -1 \mapsto 0\to -\infty
- R preserves angles, to at w=0, the image of i{\mathbb{R}} must be orthogonal to {\mathbb{R}}, so it’s either a circle or i{\mathbb{R}} itself.
- Check -i\infty \to 0 \to -\infty\mapsto 0\to 1\to 0, so the image is a circle.
- Parameterize i{\mathbb{R}}= \left\{{it{~\mathrel{\Big\vert}~}t\in {\mathbb{R}}}\right\}, then compute the image \begin{align*} f(i{\mathbb{R}}) &= \left\{{{1\over 1+it}}\right\} \\ &= \left\{{1+t\over 1+t^2}\right\} \\ &= \left\{{{1\over 1+t^2} + i {t\over 1+t^2}}\right\} \\ &= \left\{{{1\over 2} \qty{ 1 + {1-t^2\over 1+t^2} } + i{1\over 2}\qty{2t\over 1+t^2}}\right\} \\ &= \left\{{{1\over 2}\qty{1 + \cos(2t) + i\sin(2t)}}\right\} \\ &= \left\{{{1\over 2} + {1\over 2}e^{2it} }\right\} ,\end{align*} which is a circle of radius 1/2 about 1/2.
Conclusion:
- i{\mathbb{R}}\to \left\{{{\left\lvert {z-{1\over 2}} \right\rvert} = {1\over 2} }\right\} by z\to {1\over 1+z}.
- The reverse map: w\mapsto {1-w\over w}.
Map {\mathbb{D}}^c \cap{\mathbb{H}} to {\mathbb{H}}, sending
- -1\to -1
- i\to 0
- 1\to 1
solution:
Compose to get: \begin{align*} {1\over z}{z + z^{-1}} .\end{align*}
7 #complex/exercise/work
Let \Omega be the region inside the unit circle {\left\lvert {z} \right\rvert} = 1 and outside the circle {\left\lvert {z-{1\over 4}} \right\rvert} = {1\over 4}.
Find an injective conformal map from \Omega onto some annulus \left\{{r < {\left\lvert {z} \right\rvert} < 1}\right\} for constant r.
12 #complex/exercise/work
Prove that TFAE for a Möbius transformation T given by T(z) = {az + b \over cz + d}:
- T maps {\mathbb{R}}\cup\left\{{\infty}\right\} to itself.
- It is possible to choose a,b,c,d to be real numbers.
- \mkern 1.5mu\overline{\mkern-1.5muT(z)\mkern-1.5mu}\mkern 1.5mu = T(\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu) for every z\in {\mathbb{CP}}^1.
- There exist \alpha\in {\mathbb{R}}, \beta \in {\mathbb{C}}\setminus {\mathbb{R}} such that T(\alpha) = \alpha and T(\mkern 1.5mu\overline{\mkern-1.5mu\beta\mkern-1.5mu}\mkern 1.5mu) = \mkern 1.5mu\overline{\mkern-1.5muT(\beta)\mkern-1.5mu}\mkern 1.5mu.