Entire and O of polynomial implies polynomial #complex/exercise/completed
Let f(z) be entire and assume that |f(z)|≤M|z|2 outside of some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤2.
solution:
-
Prove a more general statement: if |f(z)|≤M|z|n, then f is a polynomial of degree at most n.
-
Since f is entire, it is analytic everywhere, so f(z)=∑k≥0ckzk where ck=f(k)(0)/n! is given by the coefficient of its Taylor expansion about z=0.
-
Applying Cauchy’s estimate, on a circle of radius R, |f(k)(0)|≤sup
-
So for k \geq n+1, this goes to zero as R\to \infty, so {\left\lvert {f^{k}(0)} \right\rvert} = 0 for all such k.
-
But then f is a power series annihilated by taking n+1 derivatives, so it is a polynomial of degree at most n.
Uniform sequence implies uniform derivatives #complex/exercise/work
Let a_n(z) be an analytic sequence in a domain D such that \displaystyle \sum_{n=0}^\infty |a_n(z)| converges uniformly on bounded and closed sub-regions of D. Show that \displaystyle \sum_{n=0}^\infty |a'_n(z)| converges uniformly on bounded and closed sub-regions of D.
Tie’s Extra Questions: Spring 2014 #complex/exercise/completed
The question provides some insight into Cauchy’s theorem. Solve the problem without using the Cauchy theorem.
-
Evaluate the integral \displaystyle{\int_{\gamma} z^n dz} for all integers n. Here \gamma is any circle centered at the origin with the positive (counterclockwise) orientation.
-
Same question as (a), but with \gamma any circle not containing the origin.
-
Show that if |a|<r<|b|, then \displaystyle{\int_{\gamma}\frac{dz}{(z-a)(z-b)} dz=\frac{2\pi i}{a-b}}. Here \gamma denotes the circle centered at the origin, of radius r, with the positive orientation.
solution:
\begin{align*} \int_\gamma z^n\,dz= \int_0^{2\pi} R^n e^{itn} \cdot iRe^{it} \,dt = R^{n+1} \int_0^{2\pi} e^{i(t+1)n}\,dt = { i R^{n+1} \over i(n+1) } \delta_{n+1 = 0} .\end{align*}
About a point a and R<{\left\lvert {a} \right\rvert}, \begin{align*} \int_{{\left\lvert {z-a} \right\rvert} = R} z^n\,dz &= \int_0^{2\pi} (a + re^{it})^n \cdot ire^{it}\,dt\\ &= \int_0^{2\pi} \sum_{1\leq k\leq n} {n \choose k} a_k R^{n-k+1} e^{it(n-k)} \cdot ire^{it}\,dt\\ &= i \int_0^{2\pi} \sum_{1\leq k\leq n} {n \choose k} a_k R^{n-k+1} e^{it(n-k+1)} \,dt\\ &= i \sum_{1\leq k\leq n} {n \choose k} a_k R^{n-k+1} \int_0^{2\pi} e^{it(n-k+1)} \,dt\\ &= i \sum_{1\leq k\leq n} {n \choose k} a_k R^{n-k+1} \cdot 0 \\ &= 0 ,\end{align*} provided n\neq 0, in which case \int_\gamma \,dz= 2\pi.
For the third computation, this follows from partial fraction decomposition.
Fall 2019.3, Spring 2020 HW 2.9 (Cauchy’s Formula for Exterior Regions) #complex/qual/completed
Let \gamma be a piecewise smooth simple closed curve with interior \Omega_1 and exterior \Omega_2. Assume f' exists in an open set containing \gamma and \Omega_2 with \lim_{z\to \infty} f(z) = A. Show that \begin{align*} F(z) \coloneqq\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi=\left\{\begin{array}{ll} A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2} \end{array}\right. .\end{align*}
NOTE (DZG): I think there is a typo in this question….probably this should equal f(z) for z\in \Omega_1, which is Cauchy’s formula…
solution:
Note that G_z(\xi) \coloneqq{f(\xi) \over \xi - z} has a pole of order one at \xi = z and also a pole at \xi = \infty. If z\in \Omega_1, then \gamma encloses just the pole \xi = z, so apply the residue theorem: \begin{align*} F(z) &\coloneqq{1\over 2\pi i}\oint_\gamma {f(\xi) \over \xi - z}\,d\xi\\ &= {1\over 2\pi i}\oint_\gamma G_z(\xi) \,d\xi\\ &= \mathop{\mathrm{Res}}_{\xi = z} G_z(\xi) \\ &= \lim_{\xi\to z} (\xi - z) G_z(\xi) \\ &= \lim_{\xi\to z} (\xi - z) {f(\xi) \over \xi-z} \\ &= \lim_{\xi\to z} f(\xi) \\ &= f(z) .\end{align*}
Now if z\in \Omega_2, then \gamma encloses both \xi=z, \infty, and is oriented negatively,so \begin{align*} F(z) &= {1\over 2\pi i} \oint_\gamma G_z(\xi) \,d\xi\\ &= -\qty{\mathop{\mathrm{Res}}_{\xi = z} G_z(\xi) + \mathop{\mathrm{Res}}_{\xi = \infty} G_z(\xi)}\\ &= -\qty{f(z) + \mathop{\mathrm{Res}}_{\xi = \infty} G_z(\xi)}\\ ,\end{align*} where the last line proceeds by the same calculation as above. It remains to compute the unknown residue. Residues at \xi = \infty are computed as residues at \xi =0, and the change of variables G_z(\xi)\,d\xi\mapsto G_z(w) \,dw for w\coloneqq 1/\xi yields G_z(\xi)\,d\xi\to G_z\qty{1\over \xi}(-1/\xi^2)\,d\xi. Thus \begin{align*} \mathop{\mathrm{Res}}_{\xi=\infty} G_z(\xi) &= -\mathop{\mathrm{Res}}_{\xi=0} G_z\qty{\xi^{-1}}\xi^{-2} \\ &= - \mathop{\mathrm{Res}}_{\xi=0} {f(\xi^{-1}) \over \xi^2(\xi^{-1}- z) } \\ &= - \mathop{\mathrm{Res}}_{\xi=0} {f(\xi^{-1}) \over \xi(1 - z\xi) } \\ &= -\lim_{\xi \to 0} {f(\xi^{-1}) \over 1-z\xi} \\ &= -\lim_{\xi \to 0}f(\xi ^{-1}) \\ &= -\lim_{\xi\to\infty} f(\xi) \\ &= -A .\end{align*} So combining this yields \begin{align*} F(z) = -\qty{f(z) - A} = -f(z) + A .\end{align*}
Tie’s Extra Questions: Fall 2009 (Proving Cauchy using Green’s) #complex/exercise/completed
State and prove Green’s Theorem for rectangles. Use this to prove Cauchy’s Theorem for functions that are analytic in a rectangle.
Suppose f\in C_{\mathbf{C}}^1(\Omega) and T\subset \Omega is a triangle with T^\circ \subset \Omega.
- Apply Green’s theorem to show that \int_T f(z) ~dz = 0.
- Assume that f' is continuous and prove Goursat’s theorem.
Hint: Green’s theorem states \begin{align*} \int_{T} F d x+G d y=\int_{T^\circ}\left(\frac{\partial G}{\partial x}-\frac{\partial F}{\partial y}\right) d x d y .\end{align*}
solution:
Green’s theorem: if \Omega is a domain with positively oriented boundary with u, v continuously differentiable in \overline{\Omega}, then \begin{align*} \int_{{{\partial}}\Omega} u\,dx+ v\,dy= \iint_{\Omega}\qty{v_x - u_y}\,dx\,dy .\end{align*} Now use that if f = u+iv is analytic in a region, it satisfies Cauchy-Riemann: \begin{align*} u_x = v_y \qquad u_y = -v_x .\end{align*}
Now integrating f: \begin{align*} \oint_{{{\partial}}\Omega} f(z) \,dz &= \oint_{{{\partial}}\Omega} (u+iv)(\,dx+ i\,dy)\\ &= \oint_{{{\partial}}\Omega} \qty{u\,dx- v\,dy} + i\oint_{{{\partial}}\Omega} \qty{v\,dx+ u\,dy} \\ &= \iint_\Omega\qty{v_x + u_y}\,dx\,dy+ \iint_\Omega\qty{u_x - v_y}\,dx\,dy\\ &= \iint_\Omega\qty{v_x -v_x }\,dx\,dy+ \iint_\Omega\qty{u_x - u_x}\,dx\,dy\\ &= 0 .\end{align*}
No polynomials converging uniformly to 1/z #complex/exercise/completed
Prove that there is no sequence of polynomials that uniformly converge to f(z) = {1\over z} on S^1.
solution:
- By Cauchy’s integral formula, \int_{S^1} f = 2\pi i
- If p_j is any polynomial, then p_j is holomorphic in {\mathbb{D}}, so \int_{S^1} p_j = 0.
- Contradiction: compact sets in {\mathbf{C}} are bounded, so \begin{align*} {\left\lvert {\int f - \int p_j} \right\rvert} &\leq \int {\left\lvert {p_j - f} \right\rvert} \\ &\leq \int {\left\lVert {p_j - f} \right\rVert}_\infty \\ &= {\left\lVert {p_j - f} \right\rVert}_\infty \int_{S^1} 1 \,dz \\ &= {\left\lVert {p_j-f} \right\rVert}_\infty \cdot 2\pi \\ &\to 0 \end{align*} which forces \int f = \int p_j = 0.
Eventually sublinear implies constant #complex/exercise/completed
Suppose f: {\mathbf{C}}\to {\mathbf{C}} is entire and \begin{align*} {\left\lvert {f(z)} \right\rvert} \leq {\left\lvert {z} \right\rvert}^{1\over 2} \quad\text{ when } {\left\lvert {z} \right\rvert} > 10 .\end{align*}
Prove that f is constant.
solution:
Let R> 10, then by Cauchy: \begin{align*} 2\pi {\left\lvert {f'(z)} \right\rvert} &\leq \oint_{{\left\lvert {\xi} \right\rvert} = R} { {\left\lvert { f(\xi)} \right\rvert} \over {\left\lvert {\xi} \right\rvert}^2 } \,d\xi\\ &\leq \oint_{{\left\lvert {\xi} \right\rvert} = R} R^{-2} {\left\lvert {\xi} \right\rvert}^{1\over 2} \,d\xi\\ &= R^{-{3\over 2}} \cdot 2\pi R \\ &\sim R^{-{1\over 2}} \\ &\overset{R\to\infty}\longrightarrow 0 .\end{align*}
The Cauchy pole function is holomorphic #complex/exercise/completed
Let \gamma be a smooth curve joining two distinct points a, b\in {\mathbf{C}}.
Prove that the function \begin{align*} f(z) \coloneqq\int_\gamma {g(w) \over w-z} \,dw \end{align*} is analytic in {\mathbf{C}}\setminus\gamma.
solution:
Toward applying Morera, let T \subseteq {\mathbf{C}}\setminus\gamma be a triangle, so that z\in T and w\in \gamma implies z-w\neq 0. Then \begin{align*} \oint_T f(z) \,dz &= \oint_T \int_\gamma {g(w)\over w-z}\,dw\,dz\\ &= \int_\gamma \oint_T {g(w)\over w-z}\,dz\,dw\\ &= \int_\gamma g(w) \qty{ \oint_T {1 \over w-z}\,dz} \,dw\\ &= \int_\gamma g(w) \cdot 0 \,dw\\ &= 0 ,\end{align*} where the exchange of integrals is justified by compactness of \gamma, T, and the inner integral vanishes because for a fixed w\in \gamma, the function z\mapsto {1\over w-z} has a simple pole at w, and so is holomorphic in \gamma^c and vanishes by Goursat.
Schwarz reflection proof #complex/exercise/completed
Suppose that f: {\mathbf{C}}\to{\mathbf{C}} is continuous everywhere and analytic on {\mathbf{C}}\setminus {\mathbf{R}} and prove that f is entire.
solution:
Just reproducing the proof of holomorphicity in the Schwarz reflection theorem.
- Note f is continuous on {\mathbf{C}} since analytic implies continuous (f equals its power series, where the partials sums uniformly converge to it, and uniform limit of continuous is continuous).
- Strategy: take D a disc centered at a point x\in {\mathbf{R}}, show f is holomorphic in D by Morera’s theorem.
- Let \Delta \subset D be a triangle in D.
- Case 1: If \Delta \cap{\mathbf{R}}= 0, then f is holomorphic on \Delta and \int_\Delta f = 0.
-
Case 2: one side or vertex of \Delta intersects {\mathbf{R}}, and wlog the rest of \Delta is in {\mathbb{H}}^+.
- Then let \Delta_{\varepsilon} be the perturbation \Delta + i{\varepsilon}= \left\{{z+ i{\varepsilon}{~\mathrel{\Big\vert}~}z\in \Delta}\right\}; then \Delta_{\varepsilon}\cap{\mathbf{R}}= 0 and \int_{\Delta_{\varepsilon}} f = 0.
-
Now let {\varepsilon}\to 0 and conclude by continuity of f (???)
- We want \begin{align*} \int_{\Delta_{\varepsilon}} f = \int_a^b f(\gamma_{\varepsilon}(t)) \gamma_{\varepsilon}'(t)\,dt \overset{{\varepsilon}\to 0}\to \int_a^b f(\gamma(t)) \gamma_{\varepsilon}'(t)\,dt =\int_{\Delta} f \end{align*} where \gamma_{\varepsilon}, \gamma are curves parametrizing \Delta_{\varepsilon}, \Delta respectively.
- Since \gamma, \gamma_{\varepsilon} are closed and bounded in {\mathbf{C}}, they are compact subsets. Thus it suffices to show that f(\gamma_{\varepsilon}(t)) \gamma_{\varepsilon}'(t) converges uniformly to f(\gamma(t))\gamma'(t).
- ??
-
Case 3: \Delta intersects both {\mathbb{H}}^+ and {\mathbb{H}}^-.
- Break into smaller triangles, each of which falls into one of the previous two cases.
Prove Liouville #complex/exercise/completed
Prove Liouville’s theorem: suppose f:{\mathbf{C}}\to{\mathbf{C}} is entire and bounded. Use Cauchy’s formula to prove that f'\equiv 0 and hence f is constant.
solution:
The main idea: \begin{align*} {\left\lvert {f'(z)} \right\rvert} &\leq {1\over 2\pi }\oint_R {{\left\lvert {f(\xi)} \right\rvert} \over {\left\lvert {\xi} \right\rvert}^2 } \,d\xi\\ &= {1\over 2\pi }\oint_R {{\left\lvert {f(\xi)} \right\rvert} } R^{-2} \,d\xi\\ &\leq {1\over 2\pi }\oint_R M R^{-2} \,d\xi\\ &= {1\over 2\pi} MR^{-2}\cdot 2\pi R \\ &= MR^{-1} \\ &\overset{R\to\infty}\longrightarrow 0 .\end{align*} So f'\equiv 0.
Tie’s Extra Questions Fall 2009 (Fractional residue formula) #complex/exercise/completed
Assume f is continuous in the region: \begin{align*} 0 < {\left\lvert {z-a} \right\rvert} \leq R,\quad 0 \leq \operatorname{Arg}(z-a) \leq \beta_0 \qquad \beta_0\in (0, 2\pi] .\end{align*}
and the following limit exists: \begin{align*} \lim_{z\to a}(z-a)f(z) = A .\end{align*} Show that \begin{align*}\lim_{r \rightarrow 0} \int_{\gamma_r} f(z) dz = i A \beta_0 \; , \; \;\end{align*} where \begin{align*} \gamma_r : = \{ z \; | \; z = a + r e^{it}, \; 0 \leq t \leq \beta_0 \}. .\end{align*}
Let f be a continuous function in the region \begin{align*} D=\{z {~\mathrel{\Big\vert}~}{\left\lvert {z} \right\rvert}>R, 0\leq \arg z\leq \theta\}\quad\text{where}\quad 1\leq \theta \leq 2\pi .\end{align*} If there exists k such that \displaystyle{\lim_{z\to\infty} zf(z)=k} for z in the region D. Show that \begin{align*} \lim_{R'\to\infty} \int_{L} f(z) dz=i\theta k ,\end{align*} where L is the part of the circle |z|=R' which lies in the region D.
solution:
Without loss of generality take a=0. Since zf(z) \to A as z\to 0, z=0 is a simple pole of f and we can write f(z) = c_{-1}z^{-1}+ c_0 + c_1z + \cdots. Then \begin{align*} \int_{\gamma_r} f(z)\,dz &= \int_{\gamma_r} \sum_{k\geq -1} c_k z^k \,dz\\ &= \sum_{k\geq -1} c_k \int_{\gamma_r} z^k \,dz\\ &= c_{-1}\int_{\gamma_r}{1\over z}\,dz\\ &= c_{-1}\int_{0}^{\beta_0} {1\over re^{i t}} ire^{it} \,dt\qquad z= re^{it}, \,dz= ire^{it} \,dt\\ &= i c_{-1}\int_{0}^{\beta_0} \,dt\\ &= i c_{-1}\beta_0 .\end{align*} Now use that \begin{align*} zf(z) = c_{-1} + c_0z + \cdots \overset{z\to 0}\longrightarrow c_{-1} = A ,\end{align*} so the integral is iA\beta_0.
Spring 2020 HW 2, 2.6.7 #complex/exercise/work
Suppose f: {\mathbb{D}}\to {\mathbf{C}} is holomorphic and let d \coloneqq\sup_{z, w\in {\mathbb{D}}}{\left\lvert {f(z) - f(w)} \right\rvert} be the diameter of the image of f. Show that 2 {\left\lvert {f'(0)} \right\rvert} \leq d, and that equality holds iff f is linear, so f(z) = a_1 z + a_2.
Hint: \begin{align*} 2f'(0) = \frac{1}{2\pi i} \int_{{\left\lvert {\xi } \right\rvert}= r} \frac{ f(\xi) - f(-\xi) }{\xi^2} ~d\xi \end{align*} whenever 0<r<1.
Spring 2020 HW 2, 2.6.8 #complex/exercise/work
Suppose that f is holomorphic on the strip S = \left\{{x+iy {~\mathrel{\Big\vert}~}x\in {\mathbf{R}},~ -1<y<1}\right\} with {\left\lvert {f(z)} \right\rvert} \leq A \qty{1 + {\left\lvert {z} \right\rvert}}^\nu for \nu some fixed real number. Show that for all z\in S, for each integer n\geq 0 there exists an A_n \geq 0 such that {\left\lvert {f^{(n)}(x)} \right\rvert} \leq A_n (1 + {\left\lvert {x} \right\rvert})^\nu for all x\in {\mathbf{R}}.
Hint: Use the Cauchy inequalities.
Spring 2020 HW 2, 2.6.9 #complex/exercise/work
Let \Omega \subset {\mathbf{C}} be open and bounded and \phi: \Omega \to \Omega holomorphic. Prove that if there exists a point z_0 \in \Omega such that \phi(z_0) = z_0 and \phi'(z_0) = 1, then \phi is linear.
Hint: assume z_0 = 0 (explain why this can be done) and write \phi(z) = z + a_n z^n + O(z^{n+1}) near 0. Let \phi_k = \phi \circ \phi \circ \cdots \circ \phi and prove that \phi_k(z) = z + ka_nz^n + O(z^{n+1}). Apply Cauchy’s inequalities and let k\to \infty to conclude.
Spring 2020 HW 2, 6 #complex/exercise/work
Show by example that there exists a function f(z) that is holomorphic on \left\{{z\in {\mathbf{C}}{~\mathrel{\Big\vert}~}0 < {\left\lvert {z} \right\rvert} < 1}\right\} and for all r<1, \begin{align*} \int_{{\left\lvert {z} \right\rvert} = r} f(z) \, dz = 0 ,\end{align*} but f is not holomorphic at z=0.
Spring 2020 HW 2, 7 #complex/exercise/work
Let f be analytic on a region R and suppose f'(z_0) \neq 0 for some z_0 \in R. Show that if C is a circle of sufficiently small radius centered at z_0, then \begin{align*} \frac{2 \pi i}{f^{\prime}\left(z_{0}\right)}=\int_{C} \frac{d z}{f(z)-f\left(z_{0}\right)} .\end{align*}
Hint: use the inverse function theorem.
Spring 2020 HW 2, 8 #complex/exercise/work
Assume two functions u, b: {\mathbf{R}}^2 \to {\mathbf{R}} have continuous partial derivatives at (x_0 ,y_0). Show that f \coloneqq u + iv has derivative f'(z_0) at z_0 = x_0 + iy_0 if and only if \begin{align*} \lim _{r \rightarrow 0} \frac{1}{\pi r^{2}} \int_{\left|z-z_{0}\right|=r} f(z) d z=0 .\end{align*}
Spring 2020 HW 2, 10 #complex/exercise/work
Let f(z) be bounded and analytic in {\mathbf{C}}. Let a\neq b be any fixed complex numbers. Show that the following limit exists: \begin{align*} \lim_{R\to \infty} \int_{{\left\lvert {z} \right\rvert} = R} {f(z) \over (z-a)(z-b)} \,dz .\end{align*}
Use this to show that f(z) must be constant.
Spring 2020 HW 2, 11 #complex/exercise/work
Suppose f(z) is entire and \begin{align*} \lim_{z\to\infty} {f(z) \over z} = 0 .\end{align*}
Show that f(z) is a constant.
Spring 2020 HW 2, 12 #complex/exercise/work
Let f be analytic in a domain D and \gamma be a closed curve in D. For any z_0\in D not on \gamma, show that \begin{align*} \int_{\gamma} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z .\end{align*} Give a generalization of this result.
Spring 2020 HW 2, 13 #complex/exercise/work
Compute \begin{align*} \int_{{\left\lvert {z} \right\rvert} = 1} \qty{z + {1\over z}}^{2n} {dz \over z} \end{align*} and use it to show that \begin{align*} \int_0^{2\pi} \cos^{2n}(\theta) \, d\theta = 2\pi \qty{1\cdot 3 \cdot 5 \cdots (2n-1) \over 2 \cdot 4 \cdot 6 \cdots (2n)} .\end{align*}