Standard Spaces and Modifications
\begin{align*} {\mathbb{D}}^n = \mathbb{B}^n &\coloneqq\left\{{ \mathbf{x} \in {\mathbf{R}}^{n} {~\mathrel{\Big\vert}~}{\left\lVert {\mathbf{x}} \right\rVert} \leq 1}\right\} {\mathbb{S}}^n &\coloneqq\left\{{ \mathbf{x} \in {\mathbf{R}}^{n+1} {~\mathrel{\Big\vert}~}{\left\lVert {\mathbf{x}} \right\rVert} = 1}\right\} = {{\partial}}{\mathbb{D}}^n \\ .\end{align*}
Note: I’ll immediately drop the blackboard notation, this is just to emphasize that they’re “canonical” objects.
The sphere can be constructed in several equivalent ways:
- \(S^n \cong D^n / {{\partial}}D^n\): collapsing the boundary of a disc is homeomorphic to a sphere.
- \(S^n \cong D^n \coprod_{{{\partial}}D^n} D^n\): gluing two discs along their boundary.
Note the subtle differences in dimension: \(S^n\) is a manifold of dimension \(n\) embedded in a space of dimension \(n+1\).
Low Dimensional Discs/Balls vs Spheres
Constructed in one of several equivalent ways:
- \(S^n/\sim\) where \(\mathbf{x} \sim -\mathbf{x}\), i.e. antipodal points are identified.
- The space of lines in \({\mathbf{R}}^{n+1}\).
One can also define \({\mathbf{RP}}^ \infty \coloneqq\directlim_{n} {\mathbf{RP}}^n\). Fits into a fiber bundle of the form
Defined in a similar ways,
- Taking the unit sphere in \({\mathbf{C}}^n\) and identifying \(\mathbf{z} \sim -\mathbf{z}\).
- The space of lines in \({\mathbf{C}}^{n+1}\)
Can similarly define \({\mathbf{CP}}^ \infty \coloneqq\directlim_n {\mathbf{CP}}^n\). Fits into a fiber bundle of the form
The \(n{\hbox{-}}\)torus, defined as \begin{align*} T^n \coloneqq\prod_{j=1}^n S^1 = S^1 \times S^1 \times \cdots .\end{align*}
The real Grassmannian, \({\operatorname{Gr}}(n, k)_{/{\mathbf{R}}}\), i.e. the set of \(k\) dimensional subspaces of \({\mathbf{R}}^n\). One can similar define \({\operatorname{Gr}}(n, k)_{{\mathbf{C}}}\) for complex subspaces. Note that \({\mathbf{RP}}^n = {\operatorname{Gr}}(n, 1)_{{\mathbf{R}}}\) and \({\mathbf{CP}}^n = {\operatorname{Gr}}(n, 1)_{/{\mathbf{C}}}\).
The Stiefel manifold \(V_{n}(k)_{{\mathbf{R}}}\), the space of orthonormal \(k{\hbox{-}}\)frames in \({\mathbf{R}}^n\)?
Lie Groups:
-
The general linear group, \(\operatorname{GL}_{n}({\mathbf{R}})\)
- The special linear group \(SL_{n}({\mathbf{R}})\)
-
The orthogonal group, \(O_{n}({\mathbf{R}})\)
- The special orthogonal group, \(SO_{n}({\mathbf{R}})\)
-
The real unitary group, \(U_{n}({\mathbf{C}})\)
- The special unitary group, \(SU_{n}({\mathbf{R}})\)
- The symplectic group \(Sp(2n)\)
Some other spaces that show up, but don’t usually have great algebraic topological properties:
- Affine \(n\)-space over a field \({\mathbf{A}}^n(k) = k^n \rtimes GL_{n}(k)\)
- The projective space \({\mathbf{P}}^n(k)\)
- The projective linear group over a ring \(R\), \(PGL_{n}(R)\)
- The projective special linear group over a ring \(R\), \(PSL_{n}(R)\)
-
The modular groups \(PSL_{n}({\mathbf{Z}})\)
- Specifically \(PSL_{2}({\mathbf{Z}})\)
\(K(G, n)\) is an Eilenberg-MacLane space, the homotopy-unique space satisfying \begin{align*} \pi_{k}(K(G, n)) = \begin{cases} G & k=n, \\ 0 & \text{else} \end{cases} \end{align*}
Some known examples:
- \(K({\mathbf{Z}}, 1) = S^1\)
- \(K({\mathbf{Z}}, 2) = {\mathbf{CP}}^\infty\)
- \(K({\mathbf{Z}}/2{\mathbf{Z}}, 1) = {\mathbf{RP}}^\infty\)
\(M(G, n)\) is a Moore space, the homotopy-unique space satisfying \begin{align*} H_{k}(M(G, n); G) = \begin{cases} G & k=n, \\ 0 & k\neq n. \end{cases} \end{align*}
Some known examples:
- \(M({\mathbf{Z}}, n) = S^n\)
- \(M({\mathbf{Z}}/2{\mathbf{Z}}, 1) = {\mathbf{RP}}^2\)
- \(M({\mathbf{Z}}/p{\mathbf{Z}}, n)\) is made by attaching \(e^{n+1}\) to \(S^n\) via a degree \(p\) map.
- \({\mathcal{M}}\simeq S^1\) where \({\mathcal{M}}\) is the Mobius band.
- \({\mathbf{CP}}^n = {\mathbf{C}}^n \coprod {\mathbf{CP}}^{n-1} = \coprod_{i=0}^n {\mathbf{C}}^i\)
- \({\mathbf{CP}}^n = S^{2n+1} / S^n\)
- \(S^n / S^k \simeq S^n \vee \Sigma S^k\).
In low dimensions, there are some “accidental” homeomorphisms:
- \({\mathbf{RP}}^1 \cong S^1\)
- \({\mathbf{CP}}^1 \cong S^2\)
- \({\operatorname{SO}}(3) \cong {\mathbf{RP}}^2\)?
Modifying Known Spaces
Write \(D(k, X)\) for the space \(X\) with \(k\in {\mathbb{N}}\) distinct points deleted, i.e. the punctured space \(X - \left\{{x_{1}, x_{2}, \ldots x_{k}}\right\}\) where each \(x_{i} \in X\).
The “generalized uniform bouquet”? \(\mathcal{B}^n(m) = \bigvee_{i=1}^n S^m\). There’s no standard name for this, but it’s an interesting enough object to consider!
Possible modifications to a space \(X\):
- Remove a line segment
- Remove an entire line/axis
- Remove a hole
- Quotient by a group action (e.g. antipodal map, or rotation)
- Remove a knot
- Take complement in ambient space
Low Dimensional Homology Examples
\begin{align*} \begin{array}{cccccccccc} S^1 &= &[&{\mathbf{Z}}, &{\mathbf{Z}}, &0, &0, &0, &0\rightarrow & ]\\ {\mathcal{M}}&= &[&{\mathbf{Z}}, &{\mathbf{Z}}, &0, &0, &0, &0\rightarrow & ]\\ {\mathbf{RP}}^1 &= &[&{\mathbf{Z}}, &{\mathbf{Z}}, &0, &0, &0, &0\rightarrow & ]\\ {\mathbf{RP}}^2 &= &[&{\mathbf{Z}}, &{\mathbf{Z}}_{2}, &0, &0, &0, &0\rightarrow & ]\\ {\mathbf{RP}}^3 &= &[&{\mathbf{Z}}, &{\mathbf{Z}}_{2}, &0, &{\mathbf{Z}}, &0, &0\rightarrow & ]\\ {\mathbf{RP}}^4 &= &[&{\mathbf{Z}}, &{\mathbf{Z}}_{2}, &0, &{\mathbf{Z}}_{2}, &0, &0\rightarrow & ]\\ S^2 &= &[&{\mathbf{Z}}, &0, &{\mathbf{Z}}, &0, &0, &0\rightarrow & ]\\ {\mathbb{T}}^2 &= &[&{\mathbf{Z}}, &{\mathbf{Z}}^2, &{\mathbf{Z}}, &0, &0, &0\rightarrow & ]\\ {\mathbb{K}}&= &[&{\mathbf{Z}}, &{\mathbf{Z}}\oplus {\mathbf{Z}}_{2}, &0, &0, &0, &0\rightarrow & ]\\ {\mathbf{CP}}^1 &= &[&{\mathbf{Z}}, &0, &{\mathbf{Z}}, &0, &0, &0\rightarrow & ]\\ {\mathbf{CP}}^2 &= &[&{\mathbf{Z}}, &0, &{\mathbf{Z}}, &0, &{\mathbf{Z}}, &0\rightarrow & ]\\ \end{array} .\end{align*}
Table of Homotopy and Homology Structures
The following is a giant list of known homology/homotopy.
\scriptsize
\(X\) | \(\pi_*(X)\) | \(H_*(X)\) | CW Structure | \(H^*(X)\) |
---|---|---|---|---|
\({\mathbf{R}}^1\) | \(0\) | \(0\) | \({\mathbf{Z}}\cdot 1 + {\mathbf{Z}}\cdot x\) | 0 |
\({\mathbf{R}}^n\) | \(0\) | \(0\) | \(({\mathbf{Z}}\cdot 1 + {\mathbf{Z}}\cdot x)^n\) | 0 |
\(D(k, {\mathbf{R}}^n)\) | \(\pi_*\bigvee^k S^1\) | \(\bigoplus_{k} H_* M({\mathbf{Z}}, 1)\) | \(1 + kx\) | ? |
\(B^n\) | \(\pi_*({\mathbf{R}}^n)\) | \(H_*({\mathbf{R}}^n)\) | \(1 + x^n + x^{n+1}\) | 0 |
\(S^n\) | \([0 \ldots , {\mathbf{Z}}, ? \ldots]\) | \(H_*M({\mathbf{Z}}, n)\) | \(1 + x^n\) or \(\sum_{i=0}^n 2x^i\) | \({\mathbf{Z}}[{}_{n}x]/(x^2)\) |
\(D(k, S^n)\) | \(\pi_*\bigvee^{k-1}S^1\) | \(\bigoplus_{k-1}H_*M({\mathbf{Z}}, 1)\) | \(1 + (k-1)x^1\) | ? |
\(T^2\) | \(\pi_*S^1 \times \pi_* S^1\) | \((H_* M({\mathbf{Z}}, 1))^2 \times H_* M({\mathbf{Z}}, 2)\) | \(1 + 2x + x^2\) | \(\Lambda({}_{1}x_{1}, {}_{1}x_{2})\) |
\(T^n\) | \(\prod^n \pi_* S^1\) | \(\prod_{i=1}^n (H_* M({\mathbf{Z}}, i))^{n\choose i}\) | \((1 + x)^n\) | \(\Lambda({}_{1}x_{1}, {}_{1}x_{2}, \ldots {}_{1}x_{n})\) |
\(D(k, T^n)\) | \([0, 0, 0, 0, \ldots]\)? | \([0, 0, 0, 0, \ldots]\)? | \(1 + x\) | ? |
\(S^1 \vee S^1\) | \(\pi_*S^1 \ast \pi_* S^1\) | \((H_*M({\mathbf{Z}}, 1))^2\) | \(1 + 2x\) | ? |
\(\bigvee^n S^1\) | \(\ast^n \pi_* S^1\) | \(\prod H_* M({\mathbf{Z}}, 1)\) | \(1 + x\) | ? |
\({\mathbf{RP}}^1\) | \(\pi_* S^1\) | \(H_* M({\mathbf{Z}}, 1)\) | \(1 + x\) | \({}_{0}{\mathbf{Z}}\times {}_{1}{\mathbf{Z}}\) |
\({\mathbf{RP}}^2\) | \(\pi_*K({\mathbf{Z}}/2{\mathbf{Z}}, 1)+ \pi_* S^2\) | \(H_*M({\mathbf{Z}}/2{\mathbf{Z}}, 1)\) | \(1 + x + x^2\) | \({}_{0}{\mathbf{Z}}\times {}_{2}{\mathbf{Z}}/2{\mathbf{Z}}\) |
\({\mathbf{RP}}^3\) | \(\pi_*K({\mathbf{Z}}/2{\mathbf{Z}}, 1)+ \pi_* S^3\) | \(H_*M({\mathbf{Z}}/2{\mathbf{Z}}, 1) + H_*M({\mathbf{Z}}, 3)\) | \(1 + x + x^2 + x^3\) | \({}_{0}{\mathbf{Z}}\times {}_{2}{\mathbf{Z}}/2{\mathbf{Z}}\times {}_{3}{\mathbf{Z}}\) |
\({\mathbf{RP}}^4\) | \(\pi_*K({\mathbf{Z}}/2{\mathbf{Z}}, 1)+ \pi_* S^4\) | \(H_*M({\mathbf{Z}}/2{\mathbf{Z}}, 1) + H_*M({\mathbf{Z}}/2{\mathbf{Z}}, 3)\) | \(1 + x + x^2 + x^3 + x^4\) | \({}_{0}{\mathbf{Z}}\times ({}_{2}{\mathbf{Z}}/2{\mathbf{Z}})^2\) |
\({\mathbf{RP}}^n, n \geq 4\) even | \(\pi_*K({\mathbf{Z}}/2{\mathbf{Z}}, 1)+ \pi_*S^n\) | \(\prod_{\text{odd}~i < n} H_*M({\mathbf{Z}}/2{\mathbf{Z}}, i)\) | \(\sum_{i=1}^n x^i\) | \({}_{0}{\mathbf{Z}}\times \prod_{i=1}^{n/2}{}_{2}{\mathbf{Z}}/2{\mathbf{Z}}\) |
\({\mathbf{RP}}^n, n \geq 4\) odd | \(\pi_*K({\mathbf{Z}}/2{\mathbf{Z}}, 1)+ \pi_*S^n\) | \(\prod_{\text{odd}~ i \leq n-2} H_*M({\mathbf{Z}}/2{\mathbf{Z}}, i) \times H_* S^n\) | \(\sum_{i=1}^n x^i\) | \(H^*({\mathbf{RP}}^{n-1}) \times {}_{n}{\mathbf{Z}}\) |
\({\mathbf{CP}}^1\) | \(\pi_*K({\mathbf{Z}}, 2) + \pi_* S^3\) | \(H_* S^2\) | \(x^0 + x^2\) | \({\mathbf{Z}}[{}_{2}x]/({}_2x^{2})\) |
\({\mathbf{CP}}^2\) | \(\pi_*K({\mathbf{Z}}, 2) + \pi_* S^5\) | \(H_*S^2 \times H_* S^4\) | \(x^0 + x^2 + x^4\) | \({\mathbf{Z}}[{}_{2}x]/({}_2x^{3})\) |
\({\mathbf{CP}}^n, n \geq 2\) | \(\pi_*K({\mathbf{Z}}, 2) + \pi_*S^{2n+1}\) | \(\prod_{i=1}^n H_* S^{2i}\) | \(\sum_{i=1}^n x^{2i}\) | \({\mathbf{Z}}[{}_{2}x]/({}_2x^{n+1})\) |
Mobius Band | \(\pi_* S^1\) | \(H_* S^1\) | \(1 + x\) | ? |
Klein Bottle | \(K({\mathbf{Z}}\rtimes_{-1} {\mathbf{Z}}, 1)\) | \(H_*S^1 \times H_* {\mathbf{RP}}^\infty\) | \(1 + 2x + x^2\) | ? |
\normalsize
-
\({\mathbf{R}}^n\) is a contractible space, and so \([S^m, {\mathbf{R}}^n] = 0\) for all \(n, m\) which makes its homotopy groups all zero.
-
\(D(k, {\mathbf{R}}^n) = {\mathbf{R}}^n - \left\{{x_{1} \ldots x_{k}}\right\} \simeq\bigvee_{i=1}^k S^1\) by a deformation retract.
-
\(S^n \cong B^n / {\partial}B^n\) and employs an attaching map
\begin{align*} \phi: (D^n, {\partial}D^n) &\to S^n \\ (D^n, {\partial}D^n) &\mapsto (e^n, e^0) .\end{align*}
-
\(B^n \simeq{\mathbf{R}}^n\) by normalizing vectors.
-
Use the inclusion \(S^n \hookrightarrow B^{n+1}\) as the attaching map.
-
\({\mathbf{CP}}^1 \cong S^2\).
-
\({\mathbf{RP}}^1 \cong S^1\).
-
Use \(\left[ \pi_{1}, \prod \right]= 0\) and the universal cover \({\mathbf{R}}^1 \twoheadrightarrow S^1\) to yield the cover \({\mathbf{R}}^n \twoheadrightarrow T^n\).
-
Take the universal double cover \(S^n \twoheadrightarrow^{\times 2} {\mathbf{RP}}^n\) to get equality in \(\pi_{i\geq 2}\).
-
Use \({\mathbf{CP}}^n = S^{2n+1} / S^1\)
-
Alternatively, the fundamental group is \({\mathbf{Z}}\ast{\mathbf{Z}}/ bab^{-1}a\). Use the fact the \(\tilde K = {\mathbf{R}}^2\).
-
\(M \simeq S^1\) by deformation-retracting onto the center circle.
-
\(D(1, S^n) \cong {\mathbf{R}}^n\) and thus \(D(k, S^n) \cong D(k-1, {\mathbf{R}}^n) \cong \bigvee^{k-1} S^1\)