Summer 2003

1. Describe all possible covering maps between \(S^2, T^2, K\)

Useful facts:

  • \(\tilde X \twoheadrightarrow X\) induces \(\pi_1(\tilde X) \hookrightarrow\pi_1(X)\)
  • \(\chi(\tilde X) = n \chi (X)\)
  • \(\pi_n(X) = [S^n, X]\)
  • \(Y \to X\) with \(\pi_1(Y) = 0\) and \(\tilde X \simeq{\operatorname{pt}}\implies\) every \(Y\xrightarrow{f} X\) is nullhomotopic.
  • \(\pi_*(T^2) = [{\mathbf{Z}}\ast {\mathbf{Z}}, 0\rightarrow]\)
  • \(\pi_*(K) = [{\mathbf{Z}}\rtimes_{{\mathbf{Z}}_2} {\mathbf{Z}}, 0\rightarrow]\)
  • Universal covers are homeomorphic.
  • \(\pi_{\geq 2}(\tilde X) \cong \pi_{\geq 2}(X)\)

Spaces

  • \(S^2 \twoheadrightarrow T^2\)
  • \(S^2 \twoheadrightarrow K\)
  • \(K \twoheadrightarrow S^2\)
  • \(T^2 \twoheadrightarrow S^2\)
  • All covered by the fact that `
\begin{align*}{\mathbf{Z}}= \pi_2(S^2) \neq \pi_2(X) = 0\end{align*} `{=html} for $X = T^2, K$. - $K \twoheadrightarrow T^2$ - Doesn't cover, would induce $\pi_1(K) \hookrightarrow\pi_1(T^2) \implies {\mathbf{Z}}\rtimes{\mathbf{Z}}\hookrightarrow{\mathbf{Z}}^2$ but this would be a non-abelian subgroup of an abelian group. - $T^2 \twoheadrightarrow K$ - Covers, #todo

2. Show that \({\mathbf{Z}}^{\ast 2}\) has subgroups isomorphic to \({\mathbf{Z}}^{\ast n}\) for every \(n\).

Facts Used

  • \(\pi_1(\bigvee^k S^1) = {\mathbf{Z}}^{\ast k}\)
  • \(\tilde X \twoheadrightarrow X \implies \pi_1(\tilde X) \hookrightarrow\pi_1(X)\)
  • Every subgroup \(G \leq \pi_1(X)\) corresponds to a covering space \(X_G \twoheadrightarrow X\)
  • \(A \subseteq B \implies F(A) \leq F(B)\) for free groups.

It is easier to prove the stronger claim that \({\mathbf{Z}}^{\mathbb{N}}\leq {\mathbf{Z}}^{\ast 2}\) (i.e. the free group on countably many generators) and use fact 4 above.

Just take the covering space \(\tilde X \twoheadrightarrow S^1 \vee S^1\) defined via the gluing map \({\mathbf{R}}\cup_{{\mathbf{Z}}} S^1\) which attaches a circle to each integer point, taking 0 as the base point. Then let \(a\) denote a translation and \(b\) denote traversing a circle, so we have \(\pi_1(\tilde X) = \left<\cup_{n\in{\mathbf{Z}}}a^nba^{-n}\right>\) which is a free group on countably many generators. Since \(\tilde X\) is a covering space, \(\pi_1(\tilde X) \hookrightarrow\pi_1(S^1 \vee S^1) = {\mathbf{Z}}^{\ast 2}\). By 4, we can restrict this to \(n\) generators for any \(n\) to get a subgroup, and \(A\leq B \leq C \implies A \leq C\) as groups.

Alternatively, just take a covering space of this form: ?? \(\hfill\blacksquare\)

3. Construct a space having \(H_*(X) = [{\mathbf{Z}}, 0, 0, 0, 0, {\mathbf{Z}}_4, 0\rightarrow]\)

Facts used:

  • Construction of Moore Spaces
  • \(\tilde H_n(\Sigma X) = \tilde H_{n-1}(X)\), using \(\Sigma X = C_X \cup_X C_X\) and Mayer-Vietoris.

Take \(X = e^0 \cup_{\Phi_1} e^5 \cup_{\Phi_2} e^6\), where \begin{align*} \Phi_1: {\partial}B^5 = S^4 \xrightarrow{z~\mapsto z^0} e^0 \\ \Phi_2: {\partial}B^6 = S^5 \xrightarrow{z~\mapsto z^4} e^5 \end{align*}

where \(\deg \Phi_2 = 4\).\(\hfill\blacksquare\)

4. Compute the complement of a knotted solid torus in \(S^3\).

Facts used:

  • \(H_*(T^2) = [{\mathbf{Z}}, {\mathbf{Z}}^2, {\mathbf{Z}}, 0\rightarrow]\)
  • \(N^{(1)} \simeq S^1\), so \(H_{\geq 2}(N) = 0\).
  • A SES \(0\to A\to B \to F \to 0\) with \(F\) free splits.
  • \(0\to A \to B \xrightarrow{\cong} C \to D \to 0\) implies \(A = D = 0\). Let \(N\) be the knotted solid torus, so that \({\partial}N = T^2\), and let \(X = S^3 - N\). Then
  • \(S^3 = N \cup_{T^2} X\)
  • \(N \cap X = T^2\)

and we apply Mayer-Vietoris to \(S^3\):

\begin{align*} 4\qquad H_4(T^2) \to H_4(N) \times H_4(X) \to H_4(S^3) \\ 3\qquad H_3(T^2) \to H_3(N) \times H_3(X) \to H_3(S^3) \\ 2\qquad H_2(T^2) \to H_2(N) \times H_2(X) \to H_2(S^3) \\ 1\qquad H_1(T^2) \to H_1(N) \times H_1(X) \to H_1(S^3) \\ 0\qquad H_0(T^2) \to H_0(N) \times H_0(X) \to H_0(S^3) \\ \end{align*}

where we can plug in known information and deduce some maps: \begin{align*} \begin{align} 4\qquad &0 \to &0 \qquad\to &0 \xrightarrow{{\partial}_4} \\ 3\qquad &0 \to &H_3(X) \qquad\to &{\mathbf{Z}}\xrightarrow{{\partial}_3}\\ 2\qquad &{\mathbf{Z}}\to &H_2(X) \qquad\to &0 \xrightarrow{{\partial}_2}\\ 1\qquad &{\mathbf{Z}}^2 \cong &{\mathbf{Z}}\times H_1(X) \qquad\to &0 \xrightarrow{{\partial}_1}\\ 0\qquad &{\mathbf{Z}}\to &{\mathbf{Z}}\times H_0(X) \qquad\to &{\mathbf{Z}}\to 0 \\ \end{align} \end{align*}

We then deduce:

  • \(H_0(X) = {\mathbf{Z}}\) by the splitting of the line 0 SES `
\begin{align*}0 \to {\mathbf{Z}}\to {\mathbf{Z}}\times H_0(X) \to {\mathbf{Z}}\to 0\end{align*} `{=html} yielding $Z\times H_0(X) \cong {\mathbf{Z}}\times {\mathbf{Z}}$. - $H_1(X) = {\mathbf{Z}}$ by the line 1 SES ` \begin{align*}0 \to {\mathbf{Z}}^2 \to {\mathbf{Z}}\times H_1(X) \to 0\end{align*} `{=html} which yields an isomorphism. - $H_2(X) = H_3(X) = 0$ by examining the SES spanning lines 3 and 2: ` \begin{align*}0 \hookrightarrow H_3(X) \hookrightarrow{\mathbf{Z}}\xrightarrow{\cong_{{\partial}_3}} {\mathbf{Z}}\twoheadrightarrow H_2(X) \twoheadrightarrow 0\end{align*} `{=html} Since ${\partial}_3$ must be an isomorphism, this forces the edge terms to be zero. $\hfill\blacksquare$

5. Compute the homology and cohomology of a closed, connected, oriented 3-manifold \(M\) with \(\pi_1(M) = {\mathbf{Z}}^{\ast 2}\).

Facts used:

  • \(M\) closed, connected, oriented \(\implies H_i(M)\cong H^{n-i}(M)\)
  • \(H_1(X) = \pi_1(X) / [\pi_1(X), \pi_1(X)]\)
  • For orientable manifolds \(H_n(M^n) = {\mathbf{Z}}\)

Homology

  • Since \(M\) is connected, \(H_0 = {\mathbf{Z}}\)
  • Since \(\pi_1(M) = {\mathbf{Z}}^{\ast 2}\), \(H_1\) is the abelianization and \(H_1(X) = {\mathbf{Z}}^2\)
  • Since \(M\) is closed/connected/oriented, Poincare Duality holds and \(H_2 = H^{3-2} = H^1 = \mathbf{F} H_1 + \mathbf{T}H_0\) by UCT. Since \(H_0={\mathbf{Z}}\) is torsion-free, we have \(H_2(M) = H_1(M) = {\mathbf{Z}}^2\).
  • Since \(M\) is an orientable manifold, \(H_3(M) = {\mathbf{Z}}\)
  • So \(H_*(M) = [{\mathbf{Z}}, {\mathbf{Z}}^2, {\mathbf{Z}}^2, {\mathbf{Z}}, 0\rightarrow]\)

Cohomology

  • By Poincare Duality, \(H^*(M) = \widehat{H_*(M)} = [{\mathbf{Z}}, {\mathbf{Z}}^2, {\mathbf{Z}}^2, {\mathbf{Z}}, 0\rightarrow]\). (Where the hat denotes reversing the list.) \(\hfill\blacksquare\)

6. Compute \(\operatorname{Ext}({\mathbf{Z}}\times {\mathbf{Z}}_2 \times {\mathbf{Z}}_3, {\mathbf{Z}}\times {\mathbf{Z}}_4 \times {\mathbf{Z}}_5)\)

Facts Used:

  • \(\operatorname{Ext}({\mathbf{Z}}, {\mathbf{Z}}_m) = {\mathbf{Z}}_m\)
  • \(\operatorname{Ext}({\mathbf{Z}}_m, {\mathbf{Z}}) = 0\)
  • \(\operatorname{Ext}(\prod_i A_i, \prod_j B_j) = \prod_i \prod_j \operatorname{Ext}(A_i, B_j)\)

Break it up into a bigraded complex, take Ext of the pieces, and sum over the complex: \(\operatorname{Ext}(\downarrow, \rightarrow)\) | \({\mathbf{Z}}\) | \({\mathbf{Z}}_4\) | \({\mathbf{Z}}_5\) ––––––––––––––––|———|———|–––– \({\mathbf{Z}}\) | 0 | 0 | 0 \({\mathbf{Z}}_2\) | \({\mathbf{Z}}_2\) | \({\mathbf{Z}}_2\) | 0 \({\mathbf{Z}}_3\) | \({\mathbf{Z}}_3\) | 0 | 0

So the answer is \({\mathbf{Z}}_2 \times {\mathbf{Z}}_2 \times {\mathbf{Z}}_3 = {\mathbf{Z}}_{12}\). \(\hfill\blacksquare\)

7. Show there is no homeomorphism \({\mathbf{CP}}^2{\circlearrowleft}_f\) such that \(f({\mathbf{CP}}^1)\) is disjoint from \({\mathbf{CP}}_1 \subset {\mathbf{CP}}_2\).

Facts used:

  • Every homeomorphism induces isomorphisms on homotopy/homology/cohomology.
  • \(H^*({\mathbf{CP}}^2) = {\mathbf{Z}}[\alpha] / (\alpha^2)\) where \(\deg \alpha = 2\).
  • \([f(X)] = f_*([X])\)
  • \(a\dot{} b = 0 \implies a=0~\text{or}~b=0\) (nondegeneracy).

Supposing such a homeomorphism exists, we would have \([{\mathbf{CP}}^1] \dot{} [f({\mathbf{CP}}^1)] = 0\) by the definition of these submanifolds being disjoint.

But \([{\mathbf{CP}}^1]\dot{}[f({\mathbf{CP}}^1)] = [{\mathbf{CP}}^1]\dot{} f_*([{\mathbf{CP}}^1])\), where \begin{align*}f_*: H^*({\mathbf{CP}}^2) \to H^*({\mathbf{CP}}^2)\end{align*} is the induced map on cohomology.

Since the intersection pairing is nondegenerate, either \([{\mathbf{CP}}^1] = 0\) or \(f_*([{\mathbf{CP}}^1]) = 0\).

We know that \(H^*({\mathbf{CP}}^2) = {\mathbf{Z}}[\alpha] / \alpha^2\) where \(\alpha = [{\mathbf{CP}}^1]\), however, so this forces \(f_*([{\mathbf{CP}}^1]) = 0\). But since this was a generator of \(H^*\), we have \(f_*(H^*({\mathbf{CP}}^2)) = 0\), so \(f\) is not an isomorphism on cohomology. \(\hfill\blacksquare\)

8. Describe the universal cover of \(X = (S^1 \times S^1) \vee S^2\) and compute \(\pi_2(X)\).

Facts used:

  • \(\pi_{\geq 2}(\tilde X) \cong \pi_{\geq 2}(X)\)
  • Structure of the universal cover of a wedge product
  • \({\mathbf{R}}^2 \twoheadrightarrow_p T^2 = S^1 \times S^1\)

\(\tilde X = {\mathbf{R}}^2 \cup_{{\mathbf{Z}}^2} S^2\), so \(\pi_2(X) \cong \pi_2(\tilde X) = \prod_{i,j \in {\mathbf{Z}}^2} {\mathbf{Z}}= {\mathbf{Z}}^{{\mathbf{Z}}^2} = {\mathbf{Z}}^{\aleph_0}\).\(\hfill\blacksquare\)

9. Let \(S^3 \to E \to S^5\) be a fiber bundle and compute \(H_3(E)\).

Facts used:

  • Homotopy LES
  • Hurewicz
  • \(0\to A\to B \to 0\) exact iff \(A\cong B\)

From the LES in homotopy we have \begin{align*} \begin{align} 4\qquad \pi_4(S^3) \to \pi_4(E) \to \pi_4(S^5) \\ 3\qquad \pi_3(S^3) \to \pi_3(E) \to \pi_3(S^5) \\ 2\qquad \pi_2(S^3) \to \pi_2(E) \to \pi_2(S^5) \\ 1\qquad \pi_1(S^3) \to \pi_1(E) \to \pi_1(S^5) \\ 0\qquad \pi_0(S^3) \to \pi_0(E) \to \pi_0(S^5) \\ \end{align} \end{align*}

and plugging in known information yields \begin{align*} \begin{align} 4\qquad &\pi_4(S^3) \to &\pi_4(E) \quad \to 0 \\ 3\qquad &{\mathbf{Z}}\to &\pi_3(E) \quad\to 0 \\ 2\qquad &0 \to &\pi_2(E) \quad\to 0 \\ 1\qquad &0 \to &\pi_1(E) \quad\to 0 \\ 0\qquad &{\mathbf{Z}}\to &\pi_0(E) \quad\to {\mathbf{Z}}\\ \end{align} \end{align*}

where rows 3 and 4 force \(\pi_3(E) \cong {\mathbf{Z}}\), rows 0 and 1 force \(\pi_0(E) = {\mathbf{Z}}\), and the remaining rows force \(\pi_1(E) = \pi_2(E) = 0\).

By Hurewicz, we thus have \(H_3(E) = \pi_3(E) = {\mathbf{Z}}\). \(\hfill\blacksquare\)