Math 871-872 Qualifying Exam May 2013

Do three questions from Section A and three questions from Section B. You may work on as many questions as you wish, but indicate which ones you want graded. When in doubt about the wording of a problem or what results may be assumed without proof, ask for clarification. Do not interpret a problem in such a way that it becomes trivial.

Section A: Do THREE problems from this section

(1) Let X_{α} be non-empty topological spaces and suppose that $X = \prod_{\alpha} X_{\alpha}$ is endowed with the product topology.

(a) Prove that each projection map π_{α} is continuous and open.

(b) Prove that X is Hausdorff if and only if each space X_{α} is Hausdorff.

(2) (a) Prove that every compact subspace of a Hausdorff space is closed. Show by example that the Hausdorff hypothesis cannot be removed.

(b) Prove that every compact Hausdorff space is normal.

(3) Define an equivalence relation ~ on ℝ² by (x₁, y₁) ~ (x₂, y₂) if and only if x₁² + y₁² = x₂² + y₂².
(a) Identify the quotient space X = ℝ²/~ as a familiar space and prove that it is homeomorphic to this familiar space.

(b) Determine whether the natural map $p: \mathbb{R}^2 \to X$ is a covering map. Justify your answer.

(4) A space is *locally connected* if for each point $x \in X$ and every neighborhood U of x, there is a connected neighborhood V of x contained in U.

(a) Prove that X is locally connected if and only if for every open set U of X, each connected component of U is open in X.

(b) Prove that if $p: X \to Y$ is a quotient map and X is locally connected, then Y is locally connected.

Section B: Do THREE problems from this section

(5) Let X be the space obtained from the 2-sphere S^2 by identifying the north and south poles (i.e. by identifying two diametrically opposite points).

(a) Show that X is homotopy equivalent to $S^1 \vee S^2$.

(b) Describe all connected covering spaces of X.

(6) (a) Explain in detail how the Seifert-van Kampen theorem may be used to calculate the fundamental group of a wedge sum $X \vee Y$ of two spaces under suitable assumptions on the spaces. Clarify what assumptions on the spaces you are using and how you are using them.

(b) Describe the presentation complex X_G of the group $G = \langle a, b, c : a^2 = 1 \rangle$ as a wedge sum of familiar spaces. Explain carefully what results you are using.

(7) Let Y be the standard 3-simplex Δ^3 with a total ordering on its four vertices. Let X be the Δ -complex obtained from Y by identifying, for each $k \leq 3$, all of its k-dimensional faces such that the identifications respect the vertex ordering. Thus X has a single k-simplex for each $k \leq 3$. Compute the simplicial homology groups of the Δ -complex X.

(8) (a) Describe how to construct a cell structure on the 2-sphere S^2 consisting of one 0-cell, one 1-cell and two 2-cells, and explain how to use this cell structure to calculate the simplicial homology groups of S^2 .

(b) Explain how a long exact sequence may be used to calculate all of the (singular) homology groups $H_i(S^n)$ of the *n*-sphere S^n (and calculate these groups for all *i* and *n*).