Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 3

Due 10 pm on 2/9/2021. Late homework will not be accepted

1. Assume real value functions u, v of two variables have continuous partial derivatives at $\left(x_{0}, y_{0}\right)$. Show that $f=u+i v$ has derivative $f^{\prime}\left(z_{0}\right)$ at $z_{0}=x_{0}+i y_{0}$ if and only if

$$
\lim _{r \rightarrow 0} \frac{1}{\pi r^{2}} \int_{\left|z-z_{0}\right|=r} f(z) d z=0
$$

2. (Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

3. Let $f(z)$ be bounded and analytic in \mathbb{C}. Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z
$$

Use this to show that $f(z)$ must be a constant (Liouville's theorem).
4. Suppose that $f(z)$ is entire and $\lim _{z \rightarrow \infty} f(z) / z=0$. Show that $f(z)$ is a constant.
5. Let f be analytic on a domain D and let γ be a closed curve in D. For any z_{0} in D not on γ, show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Give a generalization of this result.
6. Compute $\int_{|z|=1}\left(z+\frac{1}{z}\right)^{2 n} \frac{d z}{z}$ and use it to show that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=2 \pi \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

7. Prove that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4} .
$$

These are the Fresnel integrals. Here \int_{0}^{∞} is interpreted as $\lim _{R \rightarrow \infty} \int_{0}^{R}$. [For a Hint, see textbook by Stein and Shakarchi p64, \#1]
8. Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$
[For a Hint, see textbook by Stein and Shakarchi p64, \#2]
9. Goursat's theorem under the additional hypothesis that f^{\prime} is continuous:

Suppose $f^{\prime}(z)$ is continuous on a region Ω, and that the triangle T along with its interior is in Ω. Apply Green's theorem to show that

$$
\int_{T} f(z) d z=0
$$

[For a Hint, see textbook by Stein and Shakarchi p65, \#5]
10. Suppose $f^{\prime}(z)$ exists in a region Ω except possibly at point w in Ω. Let $T \subset \Omega$ be a triangle whose interior is also contained in Ω and contains w. Show that

$$
\int_{T} f(z) d z=0
$$

11. Let f be a holomorphic function on the strip $-1<y<1, x \in \mathbb{R}$ such that

$$
|f(z)| \leq A(1+|z|)^{\eta}, \quad \eta \text { is a fixed real number }
$$

for all z in the strip. Show that for each integer $n \geq 0$, there exists A_{n} such that

$$
\left|f^{(n)}(x)\right| \leq A_{n}(1+|x|)^{\eta}, \quad \text { for all } x \in \mathbb{R}
$$

[Hint: Use Cauchy inequalities]

