Mathematics Department The University of Georgia Math 8150 Homework Assignment 3

Due 10 pm on 2/9/2021. Late homework will not be accepted

1. Assume real value functions u, v of two variables have continuous partial derivatives at (x_0, y_0) . Show that f = u + iv has derivative $f'(z_0)$ at $z_0 = x_0 + iy_0$ if and only if

$$\lim_{r \to 0} \frac{1}{\pi r^2} \int_{|z-z_0|=r} f(z) \, dz = 0 \; .$$

2. (Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f'(z) exists in an open set containing γ and Ω_2 and $\lim_{z\to\infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1, \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}$$

3. Let f(z) be bounded and analytic in \mathbb{C} . Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz.$$

Use this to show that f(z) must be a constant (Liouville's theorem).

- 4. Suppose that f(z) is entire and $\lim_{z\to\infty} f(z)/z = 0$. Show that f(z) is a constant.
- 5. Let f be analytic on a domain D and let γ be a closed curve in D. For any z_0 in D not on γ , show that

$$\int_{\gamma} \frac{f'(z)}{(z-z_0)} dz = \int_{\gamma} \frac{f(z)}{(z-z_0)^2} dz$$

Give a generalization of this result.

- 6. Compute $\int_{|z|=1} \left(z+\frac{1}{z}\right)^{2n} \frac{dz}{z}$ and use it to show that $\int_{0}^{2\pi} \cos^{2n} \theta d\theta = 2\pi \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}.$
- 7. Prove that

$$\int_0^\infty \sin(x^2) \, dx = \int_0^\infty \cos(x^2) \, dx = \frac{\sqrt{2\pi}}{4}.$$

These are the Fresnel integrals. Here \int_0^∞ is interpreted as $\lim_{R\to\infty}\int_0^R$. [For a Hint, see textbook by Stein and Shakarchi p64, #1] 8. Show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$

[For a Hint, see textbook by Stein and Shakarchi p64, #2]

9. Goursat's theorem under the additional hypothesis that f' is continuous:

Suppose f'(z) is continuous on a region Ω , and that the triangle T along with its interior is in Ω . Apply Green's theorem to show that

$$\int_T f(z) \, dz = 0$$

[For a Hint, see textbook by Stein and Shakarchi p65, #5]

10. Suppose f'(z) exists in a region Ω except possibly at point w in Ω . Let $T \subset \Omega$ be a triangle whose interior is also contained in Ω and contains w. Show that

$$\int_T f(z) \, dz = 0.$$

11. Let f be a holomorphic function on the strip $-1 < y < 1, x \in \mathbb{R}$ such that

 $|f(z)| \le A(1+|z|)^{\eta}, \quad \eta \text{ is a fixed real number}$

for all z in the strip. Show that for each integer $n \ge 0$, there exists A_n such that

$$|f^{(n)}(x)| \le A_n (1+|x|)^{\eta}, \quad \text{for all } x \in \mathbb{R}.$$

[Hint: Use Cauchy inequalities]