
Fall 2019 Algebra Qualifying Exam Solutions

1. Let V be a 5-dimensional vector space over a field F .

(a) Let T : V Ñ V be a linear transformation with characteristic poly-

nomial px ´ 1q3px ´ 2q2 and minimal polynomial px ´ 1q2px ´ 2q.
i. Write down a matrix which represents T in Jordan normal form.

ii. Write down the matrix which represents T in rational normal

form.

(b) Instead, let T : V Ñ V be a nilpotent linear transformation which

has exactly one 2-dimensional invariant subspace.

i. How many similarity classes of such linear maps T are there?

ii. Assuming finally that F is the finite field Fq with q elements,

find an explicit formula for the number of such linear maps T .
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2. Let A be a finite-dimensional algebra over a field F equipped with a non-

degenerate symmetric bilinear form p¨, ¨q : A ˆ A Ñ F . Let x1, . . . , xn be

a basis for A and y1, . . . , yn be the dual basis with respect to the given

form, i.e., pxi, yjq “ �i,j for all i, j “ 1, . . . , n.

(a) Show that the element

z :“
nÿ

i“1

xiyi

is well defined independent of the initial choice of the basis x1, . . . , xn.

(b) Assume for the remainder of the question that the form p¨, ¨q is in-
variant, which means that pab, cq “ pa, bcq for all a, b, c P A. Show

that pra, bs, cq “ pa, rb, csq where r¨, .¨s is the commutator.

(c) Let a P A be any element and suppose that ra, xis “ ∞n
j“1 �ijxj and

ra, yis “ ∞n
j“1 µijyj for scalars �ij , µij P F . Show that �ij ` µji “ 0.

Deduce that z lies in the center of the algebra A. (You may find the

identity ra, xys “ ra, xsy ` xra, ys helpful here.)
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3. In this question, R is a ring and e P R is an idempotent, so that eRe is

another ring with identity element e.

(a) What does it mean to say that R is semisimple? State the Artin-

Wedderburn Theorem.

(b) If V is a completely reducible R-module of finite length, show that

the algebra EndRpV q is semisimple. Deduce for a semisimple ring R

that eRe is semisimple too.

(c) Assuming that R is left Artinian, show that JpeReq “ eJpRqe, where
J denotes Jacobson radical.
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4. Let G be a finite group. Adopt the usual notation for the character table

of G. In particular, C1 “ t1u, C2, . . . , Cn are the conjugacy classes and

�1 “ 1,�2, . . . ,�n are the irreducible characters.

(a) Let ⇢ : G Ñ GLnpCq be a finite-dimensional representation with

associated character �. Prove that ker ⇢ “ tg P G | �pgq “ �p1qu.
(b) Use the row and column orthogonality relations to work out the val-

ues of ↵,�, � and � in the following character table:

C1 C2 C3 C4 C5 C6 C7 C8 C9

�1 1 1 1 1 1 1 1 1 1

�2 2 ´2 ´1 � ´� ´↵ 1 ↵ �

�3 2 ´2 ´1 � ´↵ ´� 1 � ↵

�4 3 3 0 ´1 � ↵ 0 ↵ �

�5 3 3 0 ´1 ↵ � 0 � ↵

�6 4 ´4 1 � ´1 ´1 ´1 1 1

�7 4 4 1 � ´1 ´1 1 ´1 ´1

�8 5 5 ´1 1 0 0 ´1 0 0

�9 � ´� 0 � 1 1 0 ´1 ´1

(c) Let G be a group with the character table computed in (b). Work

out the character table of the group H “ G{ZpGq, explaining your

steps. What group is H?
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5. The dihedral group G “ xa, b | a3 “ b
2 “ 1, bab “ a

´1y acts on the

C-algebra S “ Crx, ys by algebra automorphisms so that

a ¨ x “ !x, a ¨ y “ !
´1

y, b ¨ x “ y,

where ! “ e
2⇡i{3

. Let R :“ S
G

be the invariant subalgebra.

(a) Show that R “ Crx3 ` y
3
, xys.

(b) Show that R Ñ S is an integral extension.

(c) Find an explicit monic polynomial fptq P Rrts such that fpxq “ 0.
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6. Work over an algebraically closed field F of characteristic zero.

(a) Let X be an a�ne variety with coordinate algebra F rXs. State the

Nullstellensatz. Then use it to show that a subset S Ñ X is dense

(in the Zariski topology) if and only if the following property holds

for all f P F rXs:

pfpsq “ 0 for all s P Sq ñ f “ 0.

(b) Given a�ne varieties X and Y and dense subsets S Ñ X and T Ñ Y ,

prove that S ˆ T is dense in X ˆ Y .

(c) Show that the integer lattice Zn
is dense in F

n
.

51-5 points

6 points

4 points

(a) Nss :

{ 797¥73
to { do.e.gqy.es }

c-

I

V ( J ) -

-
{ see X I f IN t ft J }

ICS ) = { fe FIX ] I f- IN -

- O toes }

These maps are mutually inverse
,

inclusion reversing bijection -

for second part , we need to show SIX ⇒ ICS ) = Co ) .

Claim J -

-

V CICS ) ) .

PI . SEV CIC :D
close

,d
hence JEVCI ( s )) .

If SEV C J ) for J -

-
D-

,
V C Ifs )) E V ( ICV ( JI )) -

-
V (5)

This shows V I Ifs ) ) E Jf



Hence
, 5 = X ⇐ VCICSD -

-

X

⇐ ICS ) = IN ) = Co )
I

(b) There are
several proofs .

All should note somewhere

That F [ XX YI =
FIX ] ④ FLY ) by def . of product .

Say O E FEXXY ] is zero on
SXT .

RTP 0=0 .

Write O = § fi ④ gi E FIX ] ④ FLY ]
,

fi 's hi . rid .

for any
TET

, § fi gift ) f FIX ) is zero on
S

,

here zero as S is dense is X
.

As fi 's are bring udgseidut
,

this mistier gift 1=0 Htt
,

So go
-

= O as T is dense in Y

.

'

. O = Of

G) This follows from (b) by nitration on n as

27 is dense in F C being infinite ! ) .


