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1. Show that any finite abelian group is isomorphic to the direct product of its Sylow subgroups
(without using the fundamental theorem of finitely generated abelian groups).

Solution We proceed by induction on the number of prime factors in the order of the gro@. If
has ordemp" for some primep and integen, thenG equals its Sylowp-subgroup, so is trivially the
product of its Sylow subgroups.

Assume that any abelian group with fewer thardistinct prime factors is isomorphic to the
product of its Sylow subgroups, and Btbe abelian withG| = p; ... pim with the pj’s distinct
primes.

Let H be the subgroup db generated by the Sylow;-subgroups, for K j < m— 1. SinceG
is abelian, every element &f has order prime t@,: H is generated by elements of orda%‘rfor
1< j <m-1, and the order of the product of commuting elements_ is the least common multiples
of the orders of the factors. Thus the elementsl dfave order dividing} - -- p™%. Becausdd has

as subgroups the Sylops-subgroups o6, its order must be at Ieastl ... p'n';“:ll. Since|H| divides

|G| and sinceH has no elements of ordef, for anyk, the order oH must be exactl;pill - pirﬂjll.
By induction, then, this subgroup is isomorphic to the product of its Sylow subgroups:

H2Pyx X Pp1,

whereP; is the Sylowpj-subgroup. Now considefl together withPy, the Sylow py-subgroup.
SinceG is abelian, each of these subgroups is normal. By order considerations, the intersection of
these subgroups i§l} — every element Py, has orderp}, for somei, while all the elements in
H (except for 1) have order prime {@,. Finally, a counting argument shows théP,, = G: the
elementshk: h e H, k € Py} are distinct, and this set has sit#.

Thus by the recognition theorem for direct products,

G=H xPny
=Py X X Pmno1 X Pm.

2. If K/F is an abelian Galois extension of degree 5402 x 33 x 5, what are the possible
Galois groups? Among all such extensions, what is the maximum number of intermediaté& fields
such thafK : E] = 2? What is the minimum number?

Solution By the fundamental theorem for finitely generated abelian groups, the possible Galois
groups are:
C4 X C27 X C5, Cz X C2 X C27 X C57
C4 X Cg x C3 xCs, Co x Cy x Cg x C3 x Cs,
CaxC3xCaxC3xCs CoxCrxC3xC3xC3xCs.

Next, according to the fundamental theorem of Galois theory, the intermediateHielih [K :
E] = 2 are in bijection with subgroups of order 2 of the Galois group. Any subgroups of order 2
of the Galois group will be contained in the Sylow 2-subgroup, which is effher C, x Cy, so it



suffices to count the number of subgroups of order 2 in each of these g@yups(1,a a%,a%} has
a unique subgroup of order 21,a%}. C, x C; = {1,a,b,ab} has 3 subgroups of order 21,a},
{1,b}, {1,ab}. So the maximum number is 3, and the minimum number is 1.

3. Assume thaG is a group of order 23%& 3 x 7 x 11. Show thaG contains a normal Sylow
7-subgroup and a central Sylow 11-subgroup.

Solution According to the Sylow theoremss is congruent to 1 mod 3, and divides 77; thngss
either 1 or 7.n7 is congruent to 1 mod 7 and divides 33, and so equatg4lis congruent to 1 mod
11 and divides 21, and so equals 1. Thus there is a normal Sylow 7-subgroup and a normal Sylow
11-subgroup.

Let P be the normal Sylow 11-subgroup.is isomorphic taCy4; let x be a generator.

To show thaP is central, it suffices to show thacommutes with every element & The map
g— gxg ! sends each group elemeytb an automorphism d® = Cy1; in other words, this defines
a group homomorphisi® — Aut(Cy1). Aut(Cy1) is isomorphic ta€Cio. The order of the image &
must divide 10, and also must divide the orde&fthus the image o6 must be 1: every element
of g maps to the identity automorphism. That is, forgit G, gxg! = x, sox is central, and s@
is central.

4. Letp be a prime ana a positive integer. Use the fundamental theorem of Galois theory and
facts about the extensidfy /Fp to classify the subfields dfgn.

Solution Every subfield ofFp» must contain 1, and so must contain the prime fi§Jd Thus the
subfields ofFp are precisely the intermediate fields in this extension. The extemgio, is
Galois, with Galois groufs = C,,, generated by the Frobenigs The subgroups o€, are the
groupsCq, generated byd, for each divisod of n.

According to the fundamental theorem of Galois theory, there is a bijection between the sub-
groups of the Galois groups and the intermediate fields, sending a subgrtuis fixed field.
The order of the group equals the degree of the big field over the fixed field. So in ouCgase,
corresponds to a fiell so that[Fpn : F] = d, which means thaE hasp™® elements. Finite fields
are unigue up to isomorphism, Bomust bern/d.

So the subfields dfy are the fieldd=, for all divisorsd of n.

5. LetF be a field and lep(x) be an irreducible polynomial iR[x]. LetK be the splitting field
of p(x). Show that the Galois group = Gal(K/F) acts transitively on the roots @fx). (For full
credit, do this without using the fundamental theorem of Galois theory.)

Solution Letay, ..., a, be the roots ofp(x). SinceG fixes the fieldF, G fixes the coefficients
of p(x), and so for any elememnt of G, o permutes the roots gf(x). (For any element of F,
o(p(c)) = p(o(c)). Soif p(c) =0, thena(p(c)) =0, sop(a(c)) =0. That is, ifcis a root, so is
(c).)

Q



LetB1=a1, B2, ...,Bm be the distinct Galois conjugatesa{f. Then I claim that

h(x) = (x=B1) (X=B2) -~ (x—Bm)

is fixed by the action oG: for anyi, 3 = oja4 for someag; € G, so for anyt € G,
T(Bi) = (107)a1 = ojag = Bj

for somej. SoG acts onh(x) by permuting the factors, and $9x) is fixed by G. Thush(x) €
F[x], and it hasa; as a root. Note also thdi(x) divides p(x), since the roots oh(x) form a
subset of the roots gf(x). On the other handy(x) has coefficients ifr and hasx; as a root, and
p(X) is irreducible; thugp(x) must be the minimal polynomial fax;. By uniqueness of minimal
polynomials, p(x) must divideh(x). Sincep(x) andh(x) divide each other, they must be scalar
multiples of each other, and so all of the rootg0%) are actually roots dfi(x): everya; is a Galois
conjugate ofx;.

6. LetK/F be a field extension, and fexe K. Show that~(a) is algebraic oveF if and only
if [F(a) : F] is finite. Use this to prove that sums, differences, products, and quotients of algebraic
elements are algebraic.

Solution If F(a)/F is algebraic, then the elemeats algebraic ovef, and so it satisfies some
polynomial
g(x) = X"+ by 1X" 1+ bix+bg € F[X.

Thusa" can be written in terms of smaller powersafand by induction, for anyn > n, a™ can
be written in terms of 1, ...a" 1. Thus the element$al : 0 < j < n— 1} spanF(a), and so
[F(a) : F] < n. (Alternatively, if we assume thafx) is the minimal polynomial fos, thenF (a) =
F[x]/(9(x)), which is ann-dimensional vector space over)

Conversely, suppose that(a) : F] is finite. For anyo € F (a), the elements,b,b?, b3, ... cannot
be linearly independent — there must be some numlagid some elements € F so that

cnb”+cno1b™ 4+ cib4+co=0

Thusb is a root of the polynomiaf (x) = cax" + - - + ¢o € F[x], which means thab is algebraic.
This holds for anyo € F (a), and thug=(a) is algebraic oveF.

Now given an extensioK /F and two elementa andb of K which are algebraic ove¥, then
| claim that[F (a,b) : F]| is finite. First note thaF (a,b) = F(a)(b). b satisfies a polynomial with
coefficients inF, and | can view the same polynomial as having coefficients(), and thus is
algebraic oveF (a), so[F(a)(b) : F(a)] is finite. a is algebraic oveF, so[F(a) : F] is finite. By
multiplicativity of degrees of field extension§,(a,b) : F| = [F (a,b) : F(a)][F (a) : F] is finite. Thus
every element irF(a,b) is algebraic oveF: for anyc € F(a,b), [F(c) : F] divides[F(a,b) : F],
hence is finite, and henaris algebraic. The fieldr(a,b) containsa+ b, a—b, ab, and (ifb is
nonzeroyab ! = a/b; and so all of these elements are algebraic.




7. Suppose that(x) is a degree 4 polynomial with coefficients in a fiéld and letK be the
splitting field of f (x). What are the possible values fét: F]? Give examples for as many of those
values as you can. (You should be able to do more than half of the possibilities; | will be impressed
if you can find examples for all of them.)

Solution [K : F] must divide 4!= 24, so the possible values are 1, 2, 3, 4, 6, 8, 12, and 24. Here are
examples:

1. For any fieldF, x* splits overF, and soK = F and[K : F] = 1.

2. LetF = Q. Thenx?(x? — 2) does not split completely ovéd (because,/2 ¢ Q), but it does
split overQ(v/2). ThuskK = Q(+/2), and[K : F] = 2.

3. LetF = R, for a change of pace. The polynomialx) = x® +x+ 1 € R[X is irreducible,
sox(x3 4 x4 1) does not split oveF,. p(x) does have a root ifg = F>[x]/(p(X)), and since
Fg/F. is Galois, once an irreducible polynomial has one rodgint splits completely there.
So the splitting field igg, which has degree 3 ovés.

4. LetF = Q. Then the splitting field ofx? — 2)(x* — 3) is Q(v/2,+/3). The biquadratic exten-
sionQ(v/2,1/3)/Q has degree 4.

24. LetL be afield, leK = L(xg,%2,X3,X4), and letF = L(s1,%,S3,%), Wheres is theith elemen-
tary symmetric polynomial ix, ..., x4. Then

(X=X1) (X =X2) (X = X3) (X— X4)
lies inF[x], and its splitting field i¥<. The degree oK overF is 4! = 24.
| thought of those examples first. Here are some other ones:

6. One easy way to do this: find an irreducible degree 3 polynomial with Galois §papd
multiply it by x. For example, | could imitate the degree 24 case and lookxat ;) (X —
X2)(X — X3) in L(s1,,53)[x]. Alternatively, | could explain why — 2 € Q[x] has Galois
group$Ss (its splitting field isQ(v/2,) where is a primitive cube root of unity), and look at
X(x3—2).

8. We did one like this in class: I&t= Q and look aix* — 2. Then its splitting field i€ (21/4,i),
which has degree 8 ov€).

12. For this one, | need a polynomial whose Galois group is isomorptig.td his is harder to
come up with off the top of my head. | guess a cheap way to do it would be to modify the
degree 24 case: l&tbe a field, letK = L(xg,X2,%3,X4), and letF = L(s1,S,S3,%), Wheres
is theith elementary symmetric polynomial iq, ..., Xs. ThenK/F is Galois with Galois
group<, so letk be the fixed field of the subgroufy < &4. Then[K : E] = |A4] = 12, andK
is the splitting field of the polynomial

(X=X1) (X=X2) (X = X3) (X = Xa),

which | can view as lying irE[x]. (I could have done lots of these examples this way, |
suppose...)



