MATHEMATICAL TRIVIUM

Legend:
Θ : hardworking, i.e. long exercise
9 : hard exercise
\&: creative exercise

LINEAR ALGEBRA

1. Describe the figures that can be obtained as intersection of the cone $z^{2}=x^{2}+y^{2}$ with the plane $z-a x=1,0<a<\infty$, in \mathbb{R}^{3}.
2. Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right]$.
(a) Find $A^{T}, A^{2}, A^{3}, A^{-1}, \operatorname{Tr} A, \operatorname{det} A$.
(b) Find the eigenvalues and the eigenvectors of A.
(c) Write the transformation that reduces A to diagonal form.
3. Find if the vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{c}5 \\ 13 \\ 15\end{array}\right]$ are linear independent or not.
4. Let A be a non-degenerate matrix, and B is obtained from A by interchange two of its lines. How are $\operatorname{det} A$ and $\operatorname{det} B$ related?
5. Let A and B be non-degenerate $n \times n$ matrices, $c \in \mathbb{C}$. Write the relations between their determinants, if
(a) $B=A^{T}$,
(b) $B=A^{-1}$,
(c) $B=c \cdot A$.
6. \mathcal{E}^{2} Let A be a non-degenerate matrix. Show that $\log \operatorname{det} A=\operatorname{Tr} \log A$.
7. Let $A=E+\epsilon B$, where E is the identity matrix and $\epsilon \ll 1$. Expand $\operatorname{det} A$ to the first order in ϵ.
8. Let A, B, C, D be non-degenerate matrices of the same dimension. Show that

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right]=\operatorname{det}\left(A D-B D^{-1} C D\right)
$$

9. Calculate $\operatorname{det} A$, if

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \tag{2}\\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right] .
$$

10. Calculate the eigenvalues and the eigenvectors of the matrix

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 1 \tag{3}\\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

11. Consider the Vandermonde matrix

$$
V\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \tag{4}\\
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right] .
$$

(a) Calculate $\operatorname{det} V\left(x_{1}, \ldots, x_{n}\right)$.
(b) Show that $\operatorname{det} V\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{i}=x_{j}$ for some $i \neq j$.
12. Consider the Wronskian

$$
W_{x}\left(y_{1}, \ldots, y_{n}\right)=\operatorname{det}\left[\begin{array}{ccccc}
y_{1} & y_{2} & y_{3} & \ldots & y_{n} \tag{5}\\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & \ldots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & \ldots & y_{n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & y_{3}^{(n-1)} & \ldots & y_{n}^{(n-1)}
\end{array}\right]
$$

where y_{1}, \ldots, y_{n} are C^{n-1} functions of x.
(a) Let y_{1} and y_{2} be two solutions of the differential equation $y^{\prime \prime}-a y^{\prime}-b y=0$, where a and b are some known functions of x. Find an expression for the Wronskian $W_{x}\left(y_{1}, y_{2}\right)$ depending on a and b. Then, show that if one of the solutions, say, y_{1}, is known, then another can be found from the first order equation $y_{1}^{\prime}-\frac{y_{2}^{\prime}}{y_{2}} y_{1}+\frac{W_{x}\left(y_{1}, y_{2}\right)}{y_{2}}=0$.
(b) Show that under change of variable $x \rightarrow t(x)$ the Wronskian transforms as follows,

$$
\begin{equation*}
W_{x}\left(y_{1}, \ldots, y_{n}\right)=\left(\frac{d t}{d x}\right)^{\frac{n(n-1)}{2}} W_{t}\left(y_{1}, \ldots, y_{n}\right) \tag{6}
\end{equation*}
$$

(c) Show that $W_{x}\left(y y_{1}, \ldots, y y_{n}\right)=y^{n} W_{x}\left(y_{1}, \ldots, y_{n}\right)$, where y is some C^{n-1} function.
13. Consider the matrices $A=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right], B=\left[\begin{array}{cc}\cos \phi & \sin \phi \\ \sin \phi & -\cos \phi\end{array}\right]$.
(a) Calculate A^{-1}, B^{-1}.
(b) Give a geometrical interpretation of the action of A and B on vectors in \mathbb{R}^{2}.
(c) What can one say about the eigenvectors of A and B ?
14. Let A be a real matrix with $(\operatorname{det} A)^{2}=1$. Give a conclusion about orthogonality of A.
15. Let A be $n \times n$ real orthogonal matrix. Calculate the number of independent elements of A.
16. Construct the matrix that performs a reflection in \mathbb{R}^{3}
(a) across the origin O,
(b) across the axis $O z$,
(c) across the plane $x O y$.
17. Consider the reflection maps in \mathbb{R}^{n}. The reflection across the origin transforms every vector $\vec{x} \in \mathbb{R}^{n}$ to $-\vec{x}$. The reflection across one of the basis axis $O i$ inverts all coordinates of \vec{x} except x_{i}. Similarly, one can define the reflections across the planes in \mathbb{R}^{3} and higher dimensional hyperplanes in $\mathbb{R}^{n}, n>3$. Some of these reflections are equivalent to rotations around the origin O, others are not.
(a) Observe that in \mathbb{R}^{2} the central reflection is equivalent to the rotation by an angle π around O. Show that no reflections across a line crossing O can be achieved by any rotation.
(b) In \mathbb{R}^{3}, find if one can achieve by some rotation around O 1) the reflection across $O, 2$) the reflection across an arbitrary line crossing $O, 3$) the reflection across an arbitrary plane crossing O.
(c) In \mathbb{R}^{n}, formulate and prove a general statement about the existence of rotations that perform the reflection across a given m-dimensional plane, $m=0,1, \ldots, n-1$, crossing the origin (where $m=1$ corresponds to the line, and $m=0-$ to the point).
18. Θ Consider the rotation by angle θ around a line determined by a unit radius-vector \vec{n} with components n_{x}, n_{y}, n_{z}.
(a) Deduce the rotation matrix that performs this rotation.
(b) Relate the trace of this matrix to the angle θ.
19. Consider the Pauli matrices, $\sigma_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \sigma_{2}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], \sigma_{3}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
(a) Calculate $\sigma_{i}^{\dagger}, i=1,2,3$.
(b) Decompose a matrix $A=\left[\begin{array}{cc}a & b+i c \\ b-i c & -a\end{array}\right], a, b, c \in \mathbb{R}$, into a sum of σ_{i}.
(c) Prove that $\sigma_{i}, i=1,2,3$, constitute a basis in the space of 2×2 hermitian matrices with zero trace.
(d) Prove that $\left\{\sigma_{i}, i=1,2,3 ; 1\right\}$ constitute a basis in the space of 2×2 hermitian matrices.
(e) Calculate the eigenvalues and the eigenvectors of $\sigma_{i}, i=1,2,3$.
20. Let $\sigma_{i}, i=1,2,3$ be the Pauli matrices.
(a) Calculate $\left[\sigma_{i}, \sigma_{j}\right] \equiv \sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i}, i, j=1,2,3$.
(b) Calculate $\left\{\sigma_{i}, \sigma_{j}\right\} \equiv \sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}, i, j=1,2,3$.
(c) Calculate $\left[\sigma_{i},\left[\sigma_{j}, \sigma_{k}\right]\right]+\left[\sigma_{j},\left[\sigma_{k}, \sigma_{i}\right]\right]+\left[\sigma_{k},\left[\sigma_{i}, \sigma_{j}\right]\right]$.
21. EConsider the linear transformations A, B of the vector space \mathbb{R}^{n}. Prove that $[A, B] \neq c E$, where E is the identity matrix, $c \in \mathbb{R}$.
22. Consider the transformations A, B of the vector space \mathbb{R}^{n} sharing the same eigenvectors. Is this sufficient for their commutator to be zero? Is this necessary for their commutator to be zero?
23. Consider the basis $\vec{e}_{i}, i=1,2,3$, in the vector space \mathbb{R}^{3}. In this basis, write the matrix of the transformation that
(a) stretches all directions by a factor of λ.
(b) stretches each direction along \vec{e}_{i} by a factor of $\lambda_{i}, i=1,2,3$.
(c) stretches the direction determined by a unit vector \vec{n} with components n_{x}, n_{y}, n_{z} by a factor of λ.

Find the eigenvectors of these transformations.
24. Show that the translation $\vec{x} \rightarrow \vec{x}+\vec{a}$, where $\vec{x}, \vec{a} \in \mathbb{R}^{n}$, is not a linear transformation in \mathbb{R}^{n}.
25. A linear transformation A writes in some basis in \mathbb{R}^{n} as follows, $A=\left[\begin{array}{lll}0 & 2 & 1 \\ 2 & 8 & 2 \\ 1 & 2 & 0\end{array}\right]$.
(a) Write the transition matrix to the basis composed of the eigenvectors of A.
(b) Write the transformation A in this basis.
(c) Determine the invariant subspaces of A.
26. Describe the linear transformations whose invariant subspaces are
(a) 3-dimensional sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=R^{2}$ in \mathbb{R}^{3},
(b) 4-dimensional cone $x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=0$ in \mathbb{R}^{4},
(c) n -dimensional hyperboloid $x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{n}^{2}=R^{2}$ in \mathbb{R}^{n}.
27. For the vectors $A=\left[\begin{array}{c}1 \\ \sqrt{2} \\ \sqrt{3}\end{array}\right], B=\left[\begin{array}{c}0 \\ \sqrt{2} \\ 2\end{array}\right]$ find an orthogonal transformation that maps A to B.
28. Consider the vectors \vec{a}_{1} and \vec{a}_{2} in \mathbb{R}^{2} with the lengths $\left|\vec{a}_{1}\right|=2,\left|\vec{a}_{2}\right|=6$ and the angle between them $\phi=\frac{\pi}{6}$. Construct the orthonormal basis \vec{e}_{1}, \vec{e}_{2} such that $\vec{e}_{1} \| \vec{a}_{1}$, and write the components of \vec{a}_{1}, \vec{a}_{2} in this basis.
29. Consider the infinite dimensional vector space with the orthonormal basis \vec{e}_{i}, $i=1,2, \ldots$. Construct the continuous family of linear transformations $U(\lambda)$, $0 \leqslant \lambda \leqslant 1$, acting in this space such that $U(1)=E$ and $U(0) \vec{e}_{i}=\vec{e}_{i+1}, i=1,2, \ldots$.
30. Let U be $n \times n$ unitary matrix. Calculate the number of independent elements of U.
31. Define the matrix exponential e^{A} of a matrix A as follows: $e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}$. Consider the following matrices

$$
M_{x}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{7}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \quad M_{y}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \quad M_{z}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

(a) Write $\operatorname{Tr} M_{i}, M_{i}^{T}, i=x, y, z$.
(b) Calculate $e^{\theta M_{x}}, e^{\theta M_{y}}, e^{\theta M_{z}}$, where $\theta \in[0,2 \pi)$.
(c) Give a geometrical interpretation of the transformations $e^{\theta M_{i}}, i=x, y, z$, acting on the vectors in \mathbb{R}^{3}.
32. Consider the matrices A, B such that $[A, B]=0$. Show that in this case $e^{A} e^{B}=e^{B} e^{A}=e^{A+B}$.
33. Prove that $e^{A}=\left(e^{A / N}\right)^{N}, N \in \mathbb{R}$.
34. Consider the matrices A, B and let $\lambda \ll 1$ be a small parameter. Expand the expression $e^{-\lambda B} A e^{\lambda B}$
(a) to the first order in λ.
(b) to any order in λ.
35. A linear transformation is given by the matrix e^{A} in some basis in \mathbb{R}^{n}. Consider the change of the basis determined by the transition matrix U. Find the matrix of the transformation in the new basis.
36. \&"" Trotter product formula". Consider $n \times n$ complex matrices A, B. Prove that $e^{A+B}=\lim _{N \rightarrow \infty}\left(e^{A / N} e^{B / N}\right)^{N}, N \in \mathbb{R}$.
37. Write the following matrix A as a product $A=S O$ of a symmetric matrix S and an orthogonal matrix O.
(a) $A=\left[\begin{array}{ll}5 & 0 \\ 4 & 3\end{array}\right]$,
(b) $A=\left[\begin{array}{cc}0 & 0 \\ 4 & -3\end{array}\right]$.

In which case is such decomposition unique?
38. Consider the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a, b, c, d \in \mathbb{R}, \operatorname{det} A=1$. It transforms the basis vectors $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ into $\vec{g}_{1}=\left[\begin{array}{l}a \\ c\end{array}\right], \vec{g}_{2}=\left[\begin{array}{l}b \\ d\end{array}\right]$. One can obtain a useful decomposition of A by making an inverse transformation in three steps.
(a) Construct the rotation matrix R^{-1} that sends \vec{g}_{1} to $R^{-1}\left(\vec{g}_{1}\right) \| \vec{e}_{1}$. How does it act on \vec{g}_{2} ?
(b) Construct the diagonal matrix P^{-1} such that $\operatorname{det} P^{-1}=1$ and $P^{-1}\left(R^{-1}\left(\vec{g}_{1}\right)\right)=$ \vec{e}_{1}. Show that the components of $P^{-1}\left(R^{-1}\left(\vec{g}_{2}\right)\right)$ are $\left[\begin{array}{l}x \\ 1\end{array}\right], x \in \mathbb{R}$.
(c) Apply a shear transformation T^{-1} that leaves \vec{e}_{1} invariant and sends $P^{-1}\left(R^{-1}\left(\vec{g}_{2}\right)\right)$ to \vec{e}_{2}. Then, we have $T^{-1} P^{-1} R^{-1} A=E$, or $A=R P T$.
(d) Show that this decomposition is unique.
39. Solve the system of linear equations

$$
\left\{\begin{array}{l}
y+3 z=-1 \tag{8}\\
2 x+3 y+5 z=3 \\
3 x+5 y+7 z=6
\end{array}\right.
$$

40. Solve the following systems of linear equations
(a) $\left\{\begin{array}{l}x+y+z=0 \\ x+2 y+3 z=0 \\ 2 x+3 y+4 z=0\end{array}\right.$
(b) $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}-x_{4}=0 \\ 3 x_{1}+2 x_{2}+x_{3}-x_{5}=0\end{array}\right.$
41. Check if the system of linear equations has a solution and solve

$$
\left\{\begin{array}{l}
x+2 y+3 z=-4 \tag{9}\\
2 x+3 y+4 z=1 \\
3 x+4 y+5 z=6
\end{array}\right.
$$

42. Check if the following points belong to the same plane: $(6,1,2),(2,3,1),(3,4,1)$, $(6,2,2)$.
43. Consider two lines formed by intersection of the planes,

$$
l_{1}=\left\{\begin{array}{l}
3 x+2 y+5 z-1=0 \tag{10}\\
-x+2 y+3 z-1=0
\end{array} \quad, \quad l_{2}=\left\{\begin{array}{l}
4 x-6 y+7 z+2=0 \\
5 x+3 y-8 z-3=0 .
\end{array}\right.\right.
$$

Find out if these lines are
(a) parallel to each other,
(b) crossing each other at some point.
44. Consider the quadratic form $f(\vec{x})=2 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}+4 x_{2} x_{3}+5 x_{3}^{2}$, where $x_{i}, i=1,2,3$ are components of \vec{x} in \mathbb{R}^{3}.
(a) Reduce $f(\vec{x})$ to the canonical form. Calculate its rang and signature.
(b) Write the transition matrix to the basis where $f(\vec{x})$ has the canonical form.
45. Find if the quadratic form $f(\vec{x})=9 x_{1}^{2}+6 x_{1} x_{2}+6 x_{2}^{2}+8 x_{2} x_{3}+4 x_{3}^{2}$ is positive definite or not.
46. Reduce the following quadratic forms to the canonical form and determine the rank and the signature:
(a) $x_{1}^{2}+2 \sum_{i=2}^{n} x_{i}^{2}-2 \sum_{i=1}^{n-1} x_{i} x_{i+1}$,
(b) $\sum_{i=1}^{n} x_{i}^{2}+\sum_{1 \leqslant i<j \leqslant n} x_{i} x_{j}$,
(c) $\sum_{1 \leqslant i<j \leqslant n} x_{i} x_{j}$.
47. Consider the quadratic forms $f(\vec{x})=x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}$ and $g(\vec{x})=4 x_{1}^{2}+16 x_{1} x_{2}+$ $6 x_{2}^{2}$ in \mathbb{R}^{2}.
(a) Check if at least one of these forms is sign definite.

Figure 1: Pitch, yaw and roll of the ship

(b) Find the change of coordinates that reduces $f(\vec{x})$ and $g(\vec{x})$ to the diagonal form.
48. ${ }^{4}$ You are a spaceship pilot carrying a lonely watch in front of the main display while the rest of the crew sleep in anabiosis. You can operate the spaceship by sending commands to the main computer. You can rotate the ship by typing the commands pitch angle ψ, yaw angle θ and roll angle ϕ as shown on Fig.1. Besides, you can type the command boost time T, which turns the main engine on and accelerates the ship with the constant acceleration g during the time T. On the display, you see three bright stars around the point O that depicts the longitudinal axis of the ship, see Fig.2. Give a series of commands that arrange them into a perfect triangle with the center O and the side d.

Figure 2: Positions of the stars

REAL ANALYSIS

1. Find $f^{\prime}(x)$, if $f(x)=\log \frac{a}{x}, \cos \arcsin x, \frac{x^{2}+1}{x^{3}+1}$.
2. Find $f^{\prime}(x)$, if $f(x)=x^{x}$.
3. Find $f^{(n)}(0)$, if $f(x)=e^{-\frac{1}{x^{2}}}, x \in \mathbb{R}, n>0$.
4. Find $f^{(100)}(0)$, if $f(x)=\left(x^{100}+x\right) e^{100 x}$.
5. Θ Find $\sin ^{100} 0.1$ with 10% accuracy.
6. Find $\left.\frac{d}{d x} f(g(x))\right|_{x=0}$, where $f(u)=\cosh u, g(u)=\sqrt{1-u^{2}}$.
7. Find the minimal value of the function $f(x)=\frac{\lambda}{4}\left(x^{2}-v^{2}\right)^{2}-\epsilon x, \lambda, \epsilon>0$, to the leading order in $\epsilon \ll 1$.
8. Find local minima and local maxima of the function $f(x, y)=x y \log \left(x^{2}+y^{2}\right)$, $(x, y) \neq(0,0)$.
9. Find local minima and local maxima of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ on a surface defined by equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,0<a<b<c$.
10. Consider the implicit function of three arguments, $f(x, y, z)=0$. Show that $\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \cdot \frac{\partial x}{\partial z}=-1$. Give an analogue of this statement for the implicit function of n arguments, $f\left(x_{1}, \ldots, x_{n}\right)=0$.
11. \&'"Huygens problem". Consider the ball with mass M moving with velocity V towards another ball with mass m that stays at rest. After the central collision, the second ball acquires the velocity

$$
\begin{equation*}
v=\frac{2 M}{m+M} V \tag{11}
\end{equation*}
$$

This expression can be obtained using the momentum and energy conservation laws for the two-body system. One can observe that $V \leqslant v \leqslant 2 V$ as far as $0 \leqslant m \leqslant M$. One may ask under what conditions the limit $v \leqslant 2 V$ can be broken to make v arbitrary large. A possible solution is to insert a chain of balls staying at rest with intermediate masses m_{1}, \ldots, m_{n} such that $m<m_{1}<\ldots<m_{n}<M$ between the two original bodies, and to transfer the kinetic energy of the moving ball to the ball with mass m through a sequence of intermediate central collisions.
(a) Applying Eq.(11) to the sequence of central collisions between the balls, deduce how one should choose the masses m_{1}, \ldots, m_{n} to yield the maximal velocity of the ball with mass m.
(b) Assuming $m \ll M$, investigate the limit $n \rightarrow \infty$.
12. Find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
13. Δ Find $\lim _{x \rightarrow 0} \frac{\sin \tan x-\tan \sin x}{\arcsin \arctan x-\arctan \arcsin x}$.
14. \&Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, where $f(x, y)=\left\{\begin{array}{l}x+y \sin \frac{1}{x}, x \neq 0, \\ 0, x=0 .\end{array}\right.$. Do the limits $\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right)$ and $\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)$ exist?
15. Calculate $\int \frac{d x}{\tan x}$.
16. Calculate $\int \log x d x$.
17. Calculate $\int \frac{x^{5}+2}{x^{2}-1} d x$.
18. Calculate $\int e^{2 x} \sin x d x$.
19. Calculate $\int \frac{d x}{\sin x}$.
20. Find $\int_{0}^{\infty} x^{n} e^{-x} d x, n \in \mathbb{Z}, n>0$.
21. Find $\int_{0}^{\infty} e^{-x^{2}} d x$.
22. Find $\int_{0}^{\pi^{2}} \cos \sqrt{x} d x$.
23. Find $\int_{0}^{x_{0}} \sqrt{1-\frac{x^{2}}{x_{0}^{2}}} d x$.
24. Find $\int_{-\infty}^{\infty} e^{-x^{-4}-x^{4}} \sin ^{5} x d x$.
25. Find $\int_{\sqrt{2}}^{\infty} \frac{d x}{x+x^{\sqrt{2}}}$.
26. Show that $\int_{0}^{1} \frac{d x}{(a x+b(1-x))^{2}}=\frac{1}{a b}, a, b \in \mathbb{R}$.
27. For what values of α the following integrals are convergent?
(a) $\int_{0}^{1} \frac{d x}{x^{\alpha}}$,
(b) $\int_{1}^{\infty} \frac{d x}{x^{\alpha}}$.
28. For what values of α and β the following integrals are convergent?
(a) $\int_{0}^{1} \frac{d x}{x^{\alpha} \log ^{\beta} x}$,
(b) $\int_{1}^{\infty} \frac{d x}{x^{\alpha} \log ^{\beta} x}$.
29. Is the integral $\int_{0}^{\phi} \frac{d \psi}{\sqrt{\sin ^{2} \frac{\phi_{0}}{2}-\sin ^{2} \frac{\psi}{2}}}$ convergent as $\phi \rightarrow \phi_{0}$?
30. Show that the cosine integral $\mathrm{Ci} x \equiv-\int_{x}^{\infty} \frac{\cos t}{t} d t$ for large enough x can be approximated as $\mathrm{Ci} x \approx \frac{\sin x}{x}$. Find the region of x for which the relative error of this approximation is less than 10^{-4}.
31. Calculate $J(y)=\int_{0}^{\infty} e^{-a x} \frac{\sin x y}{x} d x, a>0$.
32. A body moves in (xy)-plane along the trajectory $y=\log \cos x$. Find the path length of the body when $x \in\left[0, \frac{\pi}{6}\right]$.
33. A helix is written in a parametric form as follows,

$$
\begin{equation*}
x=r \cos \phi, \quad y=r \sin \phi, \quad z=a \phi \tag{12}
\end{equation*}
$$

where $r, a>0$ are constants and ϕ varies from 0 to ∞. Find the length of the helix as a function of ϕ.
34. A hyperbolic spiral is written in a parametric form as follows: $x=\frac{\alpha}{t} \cos t$, $y=\frac{\alpha}{t} \sin t$, where $\alpha>0$ is a constant and t varies from 0 to ∞. Write the equation of this spiral in a polar coordinate system in the form $r=r(\theta)$. Draw it schematically. Investigate the limit of x, y and r as $\theta \rightarrow 0$.
35. Find Jacobi matrix and Jacobian for the change of coordinates in \mathbb{R}^{3} from Cartesian coordinates to
(a) spherical coordinates,
(b) cylindrical coordinates.

In what regions of \mathbb{R}^{3} are these coordinate changes regular?
36. Find the surface area of
(a) the two-dimensional sphere S^{2} of radius R.
(b) the two-dimensional torus T^{2} formed by rotation of the center of a circle of radius R_{1} along a circle of radius $R_{2}, R_{2}>R_{1}$.
37. Find the surface area of a body formed by rotation of a curve $y=\sin x$ around x-axis in $\mathbb{R}^{3}, x \in[0, \pi]$.
38. Find the volume of the three-dimensional ball B^{3}.
39. Find the volume of a body formed by rotation of the curve $y=\arcsin x$ around x-axis in $\mathbb{R}^{3}, x \in[0,1]$.
40. \&": 20 -dimensional watermelon"
(a) Find the surface area of the unit n-dimensional sphere S^{n}.

Indication: Use the notion of Gamma function $\Gamma(a) \equiv \int_{0}^{\dot{\infty}} e^{-x} x^{a-1} d x$.
(b) Find the volume V_{n} of the unit n-dimensional ball B^{n}.
(c) Denote by $V_{n, a}$ the volume of a layer of depth a adjacent to the surface of $B^{n}, 0<a<1$. Compute the ratio $\frac{V_{n, a}}{V_{n}}$ and investigate the limit $n \rightarrow \infty$.
(d) Assuming the watermelon rind has a thickness 0.1 of its radius, find what fraction of the total volume of the 20 -dimensional watermelon would be occupied by its rind.
41. Consider the vector field $\vec{A}=\vec{\nabla} \log \frac{1}{r}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Write the components of this field
(a) in Cartesian coordinates (x, y, z),
(b) in cylindrical coordinates (r, ϕ, z),
(c) in spherical coordinates (r, θ, ϕ).
42. Consider the vector field $\vec{A}=\vec{\nabla} \frac{1}{r}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
(a) Find $\operatorname{div} \vec{A}, \triangle \vec{A}, \operatorname{curl} \vec{A}$.
(b) How do the values of $\operatorname{div} \vec{A}$ and $\triangle \vec{A}$ depend on the choice of coordinate system?
43. Show that the flux of the vector field $\vec{A}=q \frac{\vec{r}}{r^{3}}, q=$ Const, through the sphere containing the origin equals $4 \pi q$.
44. The electric field \vec{E} created by a point charge q at a certain distance from it r in vacuum is given by $\vec{E}=k_{e} q \frac{\vec{r}}{r^{3}}$, where k_{e} is a constant.
(a) Consider the charged ring of radius R with the linear charge density $\frac{d q}{d l} \equiv \rho$. Find the total magnitude of the electric field created by this ring at a distance d from its center along the axis orthogonal to it.
(b) Consider the charged disk of radius R with surface charge density $\frac{d q}{d A} \equiv \sigma$. Find the total magnitude of the electric field created by this disk at a distance d from its center along the axis orthogonal to it. Investigate the limit $R \rightarrow \infty$.
45. Calculate the Fourier image $\tilde{f}(k)$ of the function $f(x)$, if $f(x)$ is given by
(a) $f(x)=\left\{\begin{array}{l}f_{0},|x| \leqslant x_{0}, \\ 0,|x|>x_{0}\end{array}\right.$
(b) $f(x)=\left\{\begin{array}{l}e^{-a x}, x \geqslant 0, a>0, \\ 0, x<0\end{array}\right.$
46. Calculate the inverse Fourier image $f(x)$ of the function $\tilde{f}(k)=-\frac{1}{\pi} \frac{k}{a^{2}+k^{2}}$.
47. Find a function $f(x)$ such that its Fourier image $\tilde{f}(p)=c f(p)$, where c is a constant.
48. (a) The functions $f(x)$ and $g(x)$ are related by $f(x)=g(a x)$. How are their Fourier images related?
(b) The functions $f(x)$ and $g(x)$ are related by $f(x)=g\left(x-x_{0}\right)$. How are their Fourier images related?
49. Calculate the Fourier image $\tilde{f}(\vec{k})$ of the function $f(\vec{r})=\alpha \frac{e^{-\mu r}}{r}$, where $r=|\vec{r}|$, $\vec{r} \in \mathbb{R}^{3}$, and α and μ are constants.
50. Calculate the Fourier image $\tilde{f}(\vec{k})$ of the function $f(\vec{r})=\left\{\begin{array}{l}f_{0}, r \leqslant r_{0}, \\ 0, r>r_{0}\end{array}\right.$ in \mathbb{R}^{3}.
51. Calculate the Fourier image $\tilde{f}(\vec{k})$ of the function $f(\vec{r})=f_{0}\left(\frac{1}{r}+\frac{1}{a}\right) e^{-\frac{2 r}{a}}$ in \mathbb{R}^{3}.
52. For what values of α the series $\sum_{n=1}^{N} \frac{1}{n^{\alpha}}$ diverges as $N \rightarrow \infty$?
53. Compute the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.
54. Compute the sum $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n(n+1)}$ for all possible values of x.
55. Consider the function $J(a)=\sum_{n=0}^{\infty} n e^{-a n}$ defined for positive a.
(a) Write an explicit expression for $J(a)$.
(b) Expand $J(a)$ around the point $a=0$ up to $O\left(a^{0}\right)$.
56. Compute the series $J(a)=\sum_{n=-\infty}^{\infty}|2 n+1| e^{-a|2 n+1|}$ for $a>0$.
57. Compute the following series:
(a) $\sum_{k=0}^{n} r^{k} e^{i k \phi}$,
(b) $\sum_{k=0}^{n} r^{k} \cos k \phi$,
(c) $\sum_{k=0}^{n} r^{k} \sin k \phi$.
58. ${ }^{8}$ Consider the rubber cord with one end attached to a tree and another - to a car moving away from the tree with the velocity $V=10 \mathrm{~m} / \mathrm{s}$. At some point an ant appears on the fixed end of the cord and starts running along it with the velocity $v=10 \mathrm{~cm} / \mathrm{s}$. Will it reach the car? Assume the cord can be stretched up to arbitrary length.
59. Find all differentiable solutions of the equation $f(x) f(y)=f(x+y)$. Find all continuous solutions of the same equation.
60. $\mathscr{B}^{\circ} \dot{\Delta}$ Give an example of the $C^{\infty}(\mathbb{R})$ function $f(x)$ with the following properties:

$$
\begin{align*}
& \text { 1) } f^{(n)}(0)=1 \text { for some } n \geqslant 0, \\
& \text { 2) } f^{(i)}(0)=0, \quad i \geqslant 0, \quad i \neq n, \tag{13}\\
& \text { 3) } \int_{0}^{\infty}|f(x)| d x<\infty .
\end{align*}
$$

61. \& Show that $\int_{0}^{\pi} \log \left(1-2 a \cos x+a^{2}\right) d x=0$ for $|a|<1$.
62. 8 Consider the integral

$$
I_{n}=\int_{-\infty}^{\infty} \frac{d x}{x} \sin (x) \prod_{k=1}^{n} \cos \left(\frac{x}{2 k+1}\right)
$$

Show that $I_{n}=\pi$ for $n=1,2,3,4,5,6$. Compute I_{7}.

COMPLEX ANALYSIS

1. Write the following complex numbers in polar form:

$$
3 i, \quad 1-i, \quad 2+i, \quad-4, \quad 2-i \sqrt{3}, \quad \frac{2-i}{1+4 i}, \quad|3+i| .
$$

2. Write the following complex numbers in cartesian form

$$
e^{i \theta}, \quad 3 e^{i \pi / 4}, \quad \frac{1}{2} e^{i \pi}, \quad 2 e^{2 i \pi / 3}, \quad e^{-3 i \pi / 4}
$$

3. Find the (possibly complex) roots of these polynomials

$$
z^{2}+3 z+12=0, \quad z^{4}+5 z^{2}+4=0, \quad z^{6}=1, \quad z^{3}=-1 .
$$

4. Compute the Laurent series of $f(z)=\frac{e^{z}}{(z-1)^{2}}$ around $z_{0}=1$; give the region of convergence.
5. Θ Compute the Laurent series of $f(z)=\frac{1}{(z-3)^{3}}$ around $z_{0}=i$; give the region of convergence.
6. Compute the Laurent series of $f(z)=\frac{z}{(z+1)(z-1)}$ around $z_{0}=1$; give the region of convergence.
7. Compute the Laurent series of $f(z)=\sin \frac{z}{1-z}$ around $z_{0}=1$; give the region of convergence.
8. Θ Find the Laurent series of $f(z)=\frac{1}{(z+1)(z+2)}$ such that it converges in the regions
(a) $|z|<1$;
(b) $1<|z|<2$;
(c) $|z|>2$;
(d) $0<|z+1|<1$.
9. Find an analytic map that sends the unit disk $(|z|<1)$ onto the left half plane $(\operatorname{Re}(z)<0)$
10. Take a disk of radius R with a branch cut on the negative real axis; what does $\log z$ map this onto? Where is the origin mapped onto?
11. What is the image of $\{z \mid \operatorname{Re}(z)>\operatorname{Im}(z)>0\}$ under the mapping $e^{z^{2}}$?
12. Compute $\int_{0}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x$;
13. Compute $\int_{-\infty}^{\infty} \frac{1}{1+x^{6}} \mathrm{~d} x$;

Figure 3: Contour for problem 20
14. Compute $\int_{-\infty}^{\infty} \frac{e^{i \alpha x}}{x^{2}+m^{2}} \mathrm{~d} x$ with $\alpha, m \in \mathbb{R}$ (hint: consider the two cases of positive or negative α separately);
15. Compute $\int_{-\infty}^{\infty} \frac{e^{i \alpha x}}{(3-i x)(1+i x)} \mathrm{d} x$;
16. Compute $\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x$;
17. Compute $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}-2 x^{2} \cos 2 \theta+1} \mathrm{~d} x$;
18. Compute $\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta} \mathrm{~d} x$ with $|a|<1$;
19. Compute $\int_{0}^{\pi}(\cos \theta)^{2 n} \mathrm{~d} \theta$;
20. (a) Compute the integral $I_{1}=\int_{C} \frac{\mathrm{~d} z}{(z+i) \sqrt{z}}$, where the contour C is shown in figure 3, $C=L_{+} \cup C_{R} \cup L_{-} \cup \gamma_{\epsilon}$, and we send the radius of γ_{ϵ} to zero and the radius of C_{R} to infinity. Note that, because of the square root, $z=0$ is a branch point. We choose to have a branch cut on the positive real axis.
(b) Find a relation between the integral I_{1} and $I_{2}=\int_{0}^{\infty} \frac{1}{(x+i) \sqrt{x}} \mathrm{~d} x$, then use the result from the previous point to find the value of I_{2}.
21. Repeat exercise 20 this time with $I_{1}=\int_{C} \frac{z^{p}}{z^{2}+1} \mathrm{~d} z$ and $I_{2}=\int_{0}^{\infty} \frac{x^{p}}{x^{2}+1} \mathrm{~d} x$ with $0<p<1$; the contour is the same as before.
22. A_{Δ}^{*} Compute $\int_{0}^{1} \frac{1}{\left(x^{2}-x^{3}\right)^{1 / 3}}$ (hint: use the contour in figure 4);

Figure 4: Integration contour for exercise 22.
23. Θ Compute $\int_{0}^{\infty} \frac{\log x}{1+x^{\alpha}} \mathrm{d} x$ for $\alpha \in \mathbb{N}, \alpha>1$ (hint: solve problem 34 first. Now, as a contour, use a circular wegde of the complex plane that makes a $2 \pi / \alpha$ angle with the positive real axis);
24. Θ Compute $\int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} \mathrm{~d} x$ (hint: solve problem 23 first. Use the function $\frac{\log ^{3} x}{1+x^{2}}$ integrated over some smart choice of contour);
25. (a) Matsubara summation: in statistical mechanics, one often has to carry out summations over Matsubara frequencies. These frequencies appear when the system is put at finite temperature, and the summation can be tedious to carry out. We will consider the expectation value of the number of particles of a bosonic non-interacting gas. Consider the function $h\left(\omega_{n}\right)=-\frac{T}{i \omega_{n}-\xi}$. Here ω_{n} are called Matsubara frequencies. In this case (the bosonic one) they are given by $\omega_{n}=2 \pi n T$.
What we want to compute is $S \equiv \sum_{n} h\left(\omega_{n}\right)$. To do so, we introduce an auxiliary function $g(z)=\frac{\beta}{e^{\beta z}-1}\left(\right.$ setting $\left.k_{B}=1, \beta=T^{-1}\right)$.

- Where are the poles of h ? Where are those of g ?
- Consider now the function $g(z) h(-i z)$. Find a contour for which

$$
\frac{1}{2 \pi i} \oint \mathrm{~d} z g(z) h(-i z)=S
$$

This contour encompasses an infinite number of poles.

- Since for large z the function decays fast enough the residue at infinity vanishes; inflate the contour and flip its orientation, so that it includes only a finite number of poles, in this case only one.
- Carry out the integration. You should find $-T \sum_{n} \frac{1}{i \omega_{n}-\xi}=\frac{1}{e^{\beta \xi}-1}$; as expected, this is the Bose distribution.
(b) Redo the previous exercise for fermions: the frequencies are $\omega_{n}=(2 n+1) \pi T$.

It's convenient to pick $g(z)=\frac{\beta}{e^{\beta z}+1}$. You should find

$$
T \sum_{n} \frac{1}{i \omega_{n}-\xi}=\frac{1}{e^{\beta \xi}+1}
$$

26. Use the saddle point method to approximate $f(t)=\int_{-\infty}^{\infty} \frac{e^{-t\left(z^{2}-1 / 4\right)} \cos t z}{1+z^{2}} \mathrm{~d} z$ for $t \gg 1$.
27. The modified Bessel function of the second kind has the following integral representation: $K_{\nu}(x)=\frac{1}{2} \int_{0}^{\infty} \exp \left(-\frac{x}{2}\left(s+\frac{1}{s}\right)\right) \frac{\mathrm{d} s}{s^{1-\nu}}$. Find the asymptotic expansion for $x \gg 1$.
28. \mathbf{a}° The Henkel function of the first kind has the following integral representation: $H_{\nu}^{(1)}(x)=\frac{1}{\pi i} \int_{0+i \epsilon}^{-\infty+i \epsilon} \exp \left[\frac{x}{2}\left(z-\frac{1}{z}\right)\right] \frac{\mathrm{d} z}{z^{\nu+1}}$. The $i \epsilon$ factor is present since we have a branch cut along the negative real axis. Find the asymptotic behavior as $x \gg 1$.
29. Find Stirling's approximation: consider $n!=\Gamma(n+1)=\int_{0}^{\infty} x^{n} e^{-x} d x$ for $n \gg 1$.
30. Using Stirling's approximation, find the leading behavior of:
(a) $\binom{2 N}{N}$ for large N.
(b) $S=\log Z(N, m)$ with $Z=\frac{N!}{(N-m)!m!}$ for large N.
31. Find an analytic continuation $g(z)$ of the function $f(z)=\int_{0}^{\infty} t e^{-z t} d t . f(z)$ is defined only for $z>0$. What is the domain of $g(z)$?
32. Θ Riemann's zeta function is defined as $\zeta(z)=\sum_{n=1}^{\infty} n^{-z}$.

- For which values of z does this converge?
- Show that the zeta function admits the integral representation

$$
\zeta(z)=\frac{1}{\Gamma(z)} \int_{0}^{\infty} \frac{t^{z-1}}{e^{t}-1} \mathrm{~d} t
$$

hint: the relation $\sum_{m=1}^{\infty} e^{-m t}=\frac{e^{-t}}{1-e^{-t}}$ might prove useful.

- Now we take the contour of figure 5 . Since we want to allow non integer values of z, there is a branch cut along the positive real axis. What is $\frac{1}{\Gamma(z)} \int_{0}^{\infty} \frac{t^{z-1}}{e^{t-1}} \mathrm{~d} t$ along this contour?
- For $z<0$ we can deform the contour by sending the radius of the circle D to infinity; the price to pay is that, to compute I, we have to evaluate an infinite number of poles, but this can be done. By comparing this result to what you did in the previous step, you should find that

$$
\zeta(z)=\zeta(1-z) \frac{e^{3 \pi i z / 2}-e^{\pi i z / 2}}{e^{2 \pi i z}-1} \frac{(2 \pi)^{z}}{\Gamma(z)} .
$$

Figure 5: Contour for problem 32

- Using the formula you just found, show that $\zeta(-1)=-\frac{1}{12}$. Notice that this doesn't mean that $1+2+3+4+\ldots=-\frac{1}{12}$, since that $\zeta(z)=\sum_{n=1}^{\infty} n^{-z}$ is valid only for $z>1$. On a side note, this is the reason why string theory (without supersymmetry) needs 26 spacetime dimensions.

33. \&The Gamma function $\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} \mathrm{~d} x$ is originally defined only for $t>0$; it can however be analytically continued to negative values of z. Show that, as $z \rightarrow-n$, where $n \in \mathbb{N}_{0}, \Gamma(z)$ has poles; compute the order and the residue of these poles.
34. Solve the integral $\int_{0}^{\infty} \frac{1}{1+x^{\alpha}} d x$ for $\alpha \in \mathbb{N}, \alpha>1$ by integrating the function $\frac{\log z}{1+z^{\alpha}}$ along the contour of figure 3 .

VARIATIONAL PRINCIPLE

1. «:" Fubini instanton" Consider the functional $S[f]=2 \pi^{2} \int_{0}^{\infty} d x x^{3}\left(\frac{1}{2} f^{\prime 2}+V(f)\right)$, where $V(f)=-\frac{\lambda}{4} f^{4}$, and $f \in C^{2}[0, \infty]$.
(a) Write the differential equation on f, whose solution is an extremum of $S[f]$.
(b) Find all solutions to this equation satisfying the boundary conditions $f(\infty)=$ $f^{\prime}(\infty)=0$.
(c) Compute the value of $S[f]$ on these solutions.
2. Find an extremum of the functional $J[f]=\int_{0}^{\pi / 2} d x\left(f^{\prime 2}-f^{2}\right)$ in a class of functions $f \in C^{2}[0, \pi / 2]$ satisfying the boundary conditions $f(0)=0, f(\pi / 2)=$ 1.
3. "Brachistochrone curve" On a vertical plane $x O y$ consider the two points A and B. Find a curve $y=y(x)$ connecting these points and such that an ideal pointlike body, that starts at rest at the point A and moves along this curve without friction under constant gravity, reaches the point B within the shortest time.
4. Θ Consider the points A and B lying on the plane $x O y$. Find a curve $y=y(x)$ connecting these points and such that rotation of $y(x)$ around the axis $O x$ gives a surface in \mathbb{R}^{3} with a minimal area.
5. Find an extremum of the functional $J[f]=\int_{0}^{1} d x\left(360 x^{2} f-f^{\prime \prime 2}\right)$ in a class of functions $f \in C^{3}[0,1]$ satisfying the boundary conditions $f(0)=0, f^{\prime}(0)=1$, $f(1)=0, f^{\prime}(1)=2.5$.
6. Consider the functional $S[x, y, z]=\int_{t_{1}}^{t_{2}} d t L\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)$, where

$$
\begin{equation*}
L=\frac{m}{2}\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)-U(x, y, z) \tag{14}
\end{equation*}
$$

and U is a C^{1} function of x, y, z. Write the system of equations on $x(t), y(t), z(t)$ whose solution is an extremum of $S[x, y, z]$ in a class of $C^{2}\left(\left[t_{1}, t_{2}\right]\right)$ functions with fixed boundary conditions.
7. Consider the functional $J[f]=\iint_{D} d x d y\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right]$, where D is a domain in ($x y$)-plane with the boundary ∂D. Write the equation for f, whose solution in a class of functions $f \in C^{2}(\bar{D})$, satisfying the boundary condition $\left.f(x, y)\right|_{\partial D}=f_{0}(x, y)$, is an extremum of $J[f]$.
8. Consider the functional $J[f]=\iint_{D} d x d y\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+2 f g\right]$, where D is a domain in $(x y)$-plane with the boundary ∂D, and $g=g(x, y)$ is a continuous function in \bar{D}. Write the equation on f, whose solution In a class of functions $f \in$ $C^{2}(\bar{D})$, satisfying the boundary condition $\left.f(x, y)\right|_{\partial D}=f_{0}(x, y)$, is an extremum of $J[f]$.
9. Consider the biharmonic equation

$$
\begin{equation*}
\frac{\partial^{4} f}{\partial x^{4}}+2 \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} f}{\partial y^{4}}=0 \tag{15}
\end{equation*}
$$

Find a functional $J[f]$ whose extrema in a class of $C^{4}(\bar{D})$ functions $f=f(x, y)$ with fixed boundary conditions, $\left.f(x, y)\right|_{\partial D}=f_{0}(x, y)$, satisfy this equation.
10. Consider the following problem

$$
\left\{\begin{array}{l}
F_{f}-\frac{\partial}{\partial x} F_{f_{x}}-\frac{\partial}{\partial y} F_{f_{y}}=0, \quad(x, y) \in D \tag{16}\\
F_{f_{x}} n_{x}+F_{f_{y}} n_{y}+=g(s), \quad x \in \partial D
\end{array}\right.
$$

where $f=f(x, y) \in C^{2}(\bar{D}), F=F\left[f, f_{x}, f_{y}\right](x, y) \in C^{2}\left(\mathbb{R}^{3} \times \bar{D}\right), g \in C^{1}(\partial D)$, $\partial / \partial n$ denotes a normal derivative on $\partial D, f_{x} \equiv \frac{\partial f}{\partial x}$ and $F_{f} \equiv \frac{\partial F}{\partial f}$.
(a) Show that the solutions to this equation are given by extrema of the functional

$$
\begin{equation*}
J[f]=\iint_{D} d x d y F-\int_{\partial D} d s f g \tag{17}
\end{equation*}
$$

(b) How must the functional above be modified to give the mixed boundary conditions on the function f :

$$
\begin{equation*}
F_{f_{x}} n_{x}+F_{f_{y}} n_{y}+h(s) f=g(s), \quad h \in C^{1}(\partial D) \tag{18}
\end{equation*}
$$

11. Let $f \in C^{2}(\bar{D})$ be an extremum of the functional $S[f]=\int_{D} d x L\left(f, f^{\prime}\right)$ in a class of functions satisfying the boundary condition $\left.f\right|_{\partial D}=f_{0}$. What additional condition must be imposed on f to make it an extremum of $S[f]$ in a class of $C^{2}(\bar{D})$ functions with all possible boundary conditions?
12. Construct the functional $S\left[\psi, \psi^{\dagger}\right]$ whose variation with respect to $\psi=\psi(\vec{r}, t)$ and $\psi^{\dagger}=\psi^{\dagger}(\vec{r}, t)$ gives
(a) the Schrodinger equation $i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi$ and its conjugated,
(b) the stationary Schrodinger equation $\hat{H} \psi=E \psi$ and its conjugated.

Here \hat{H} is some hermitian operator.
13. Consider the functional $S\left[\psi, \psi^{\dagger}\right]=\int_{-\infty}^{\infty} d x \psi^{\dagger}(E-\hat{H}) \psi$, where

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{m \omega^{2} x^{2}}{2} \tag{19}
\end{equation*}
$$

(a) Find an extremum of $S\left[\psi, \psi^{\dagger}\right]$ in a class of $C^{1}(\mathbb{R})$ functions of the form $\psi(x)=\sqrt{\pi \sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$.
(b) Find an eigenvalue of \hat{H} corresponding to this extremum.
14. Consider the functional $S\left[\phi, \phi^{*}\right]=4 \pi \int_{-\infty}^{\infty} d t \int_{0}^{\infty} d r r^{2}\left(\dot{\phi} \dot{\phi}^{*}-\phi^{\prime} \phi^{\prime *}-U\left(\phi \phi^{*}\right)\right)$, where $U \in C^{1}(\mathbb{R})$ and ϕ is a $C^{2}(\mathbb{R} \times[0, \infty))$ complex-valued function of t and x.
(a) Varying with respect to ϕ and ϕ^{*}, obtain the Euler-Lagrange equation and its conjugated. Substituting the ansatz $\phi(r, t)=f(r) e^{i \omega t}$, rewrite them as an equation on a function f of a single variable r.
(b) Substitute the ansatz $\phi(r, t)=f(r) e^{i \omega t}$ into the functional $S\left[\phi, \phi^{*}\right]$ first, and, varying with respect to f, obtain the Euler-Lagrange equation on f. Compare with the result of the previous point.
15. "Derrick's theorem" Consider the functional

$$
\begin{equation*}
E[\phi]=\int d^{d} x\left(\frac{1}{2} K_{a b}(\phi) \sum_{i=1}^{d} \partial_{i} \phi^{a} \partial_{i} \phi^{b}+V(\phi)\right), \tag{20}
\end{equation*}
$$

where $\phi=\phi\left(x_{1}, \ldots, x_{d}\right) \in C^{2}\left(\mathbb{R}^{d}\right), K_{a b}(\phi)$ is a positive-definite matrix for any ϕ, i.e.,

$$
\begin{equation*}
K_{a b}(\phi) \partial_{i} \phi^{a} \partial_{j} \phi^{b} \geqslant 0, \tag{21}
\end{equation*}
$$

where the equality implies $\phi=0$, and $V(\phi) \geqslant 0, V(\phi)=0 \Rightarrow \phi=0$.
Suppose $\phi_{0}(x)$ is a non-zero extremum of $E[\phi]$. Consider the configurations of the form $\phi_{\lambda}(x)=\phi_{0}(\lambda x)$, obtaining from $\phi_{0}(x)$ by stretching the coordinates by a factor of λ.
(a) Show that $E(\lambda) \equiv E\left[\phi_{\lambda}\right]$ must satisfy

$$
\begin{equation*}
\left.\frac{d E}{d \lambda}\right|_{\lambda=1}=0 \tag{22}
\end{equation*}
$$

(b) Using the notations

$$
\begin{equation*}
\Gamma=\int d^{d} x \frac{1}{2} K_{a b}\left(\phi_{0}\right) \sum_{i=1}^{d} \partial_{i} \phi_{0}^{a} \partial_{i} \phi_{0}^{b}, \quad \Pi=\int d^{d} x V\left(\phi_{0}\right), \tag{23}
\end{equation*}
$$

show that the above relation implies

$$
\begin{equation*}
(2-d) \Gamma-d \Pi=0 . \tag{24}
\end{equation*}
$$

(c) Give a conclusion about the existence of ϕ_{0}, if
(a) $d>2$
(b) $d=2$
(c) $d=1$

DIFFERENTIAL EQUATIONS

1. Solve $y^{\prime}(x)=x e^{x^{2}-2 \log y(x)}$
2. Solve $\left\{\begin{array}{l}x^{\prime}(t)=-x(t)+6 y(t) \\ y^{\prime}(t)=2 x(t)+3 y(t)\end{array}\right.$
3. Solve $(x+1) \frac{d y}{d x}=2 y+(x+1)^{5 / 2}$ with $y(0)=3$
4. \&Solve $y^{\prime}(x)=f(x) y(x)+g(x) y^{n}(x)$
5. Solve $y^{\prime \prime}-y^{\prime}-2 y=0$
6. Solve $y^{\prime \prime}-6 y^{\prime}+9 y=0$ with $y(1)=1$ and $y^{\prime}(3)=0$
7. Solve $y^{\prime \prime \prime}-3 y^{\prime}+2 y=0$
8. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=\sin x$
9. Solve $y^{\prime \prime}+3 y^{\prime}+2 y=\tanh x$
10. Find $C(t)$ when

$$
C^{\prime}(t)=\alpha(a-C(t))(b-C(t))
$$

if
(a) $a \neq b$
(b) $a=b$
and with $C(0)=0$.
11. Solve

$$
\left(x y^{2}-y\right) \mathrm{d} x+x \mathrm{~d} y=0
$$

12. Solve $y^{\prime}-y=e^{3 t}$ with $y(0)=2$.
13. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 t}$ with $y(0)=1, y^{\prime}(0)=0$
14. Θ Solve $y^{\prime \prime}-6 y^{\prime}+15 y=2 \sin 3 t$ with $y(0)=-1$ and $y^{\prime}(0)=4$
15. Solve $y^{\prime}+2 y=e^{-t} \theta(t)$, where θ is the Heaviside function, $\theta(x)=0$ if $x<0$ and $\theta(x)=1$ if $x>0$.
16. Solve $y^{\prime \prime}+16 y=\theta(\pi-t)$ with $y(0)=y^{\prime}(0)=0$ and where θ is the Heaviside function, $\theta(x)=0$ if $x<0$ and $\theta(x)=1$ if $x>0$.
17. Consider a forced damped harmonic oscillator:

$$
\begin{equation*}
\ddot{y}(t)+2 k \dot{y}(t)+\Omega^{2} y(t)=f(t) \tag{25}
\end{equation*}
$$

the Green function $G(t)$ is defined such that

$$
\begin{equation*}
y(t)=\int d t^{\prime} G\left(t-t^{\prime}\right) f\left(t^{\prime}\right) \tag{26}
\end{equation*}
$$

Find $G(t)$ when
(a) $\Omega>k>0$ (oscillating system)
(b) $\Omega=k$ (critical damping)
(c) $k>\Omega>0$ (overdamped system)
18. Find the charge distribution that gives the electrostatic potential

$$
\begin{equation*}
\varphi(x, y, z)=\frac{Z}{4 \pi \varepsilon_{0}} \frac{e^{-a r}}{r} \tag{27}
\end{equation*}
$$

19. Θ Find the general solution of the equation:

$$
\begin{equation*}
x(2-x) \frac{d^{2} y}{d x^{2}}+3(1-x) \frac{d y}{d x}-y=0 \tag{28}
\end{equation*}
$$

as a power series about $x=1$.
20. Given the differential equation

$$
\begin{equation*}
\frac{d}{d \xi}\left(\xi \frac{d u}{d \xi}\right)+\left(\frac{1}{2} E \xi+\alpha-\frac{m^{2}}{4 \xi}-\frac{1}{4} F \xi^{2}\right) u=0 \tag{29}
\end{equation*}
$$

Find the first three terms of a series solution around $\xi=0$ by using the largest solution of the indicial equation.
21. Θ Consider Schrodinger equation for a quantum harmonic oscillator with small quartic perturbation

$$
\begin{equation*}
\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{x^{2}}{2}+\frac{g x^{4}}{4}\right) \psi(x)=E_{0}(g) \psi(x) \tag{30}
\end{equation*}
$$

and make the ansatz

$$
\begin{gather*}
\psi(x)=e^{-x^{2} / 2} \sum_{n=0}^{\infty}\left(\frac{g}{4}\right)^{n} B_{n}(x) \quad \text { with } \quad B_{0}(x)=1 \tag{31}\\
E_{0}(g)=\sum_{k=0}^{\infty} a_{k}\left(\frac{g}{4}\right)^{k} . \tag{32}
\end{gather*}
$$

We already know that $a_{0}=\frac{1}{2}$ from the unperturbed oscillator. We want to find the first two corrections a_{1} and a_{2}.
(a) Find a recurrence relation for $B_{k}(x)$ and a_{k}
(b) Solve the relation by assuming $B_{i}(x)=\sum_{j=1}^{2 i} x^{2 j}(-1)^{i} B_{i, j}$.
(c) Considering different powers of x, find the following relations

$$
\begin{gather*}
a_{n}=(-1)^{n+1} B_{n, 1} \tag{33}\\
2 j B_{n, j}=(j+1)(2 j+1) B_{n, j+1}+B_{n-1, j-2}-\sum_{k=1}^{n-1} B_{n-k, 1} B_{k, j} \tag{34}
\end{gather*}
$$

(d) Find a_{1} and a_{2}. You can check that your result agrees with the usual perturbation theory.
22. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)+P(x) y^{\prime}(x)+Q(x) y(x)=0 \tag{35}
\end{equation*}
$$

and show that if y_{1} is a solution to this equation, then also $y_{2}=y_{1} \int^{x} d s \frac{e^{-\int^{s} d t P(t)}}{\left[y_{1}(s)\right]^{2}}$ is.
23. Verify that $\int_{1}^{\infty} \mathrm{d} t \frac{e^{-x t}}{\sqrt{t^{2}-1}}$ is a solution to the differential equation $y^{\prime \prime}+\frac{1}{x} y^{\prime}-y=$ 0.
24. Bessel equation of order p is

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \tag{36}
\end{equation*}
$$

Assuming $y=\sum_{m=0} a_{m} x^{r+m}$, find the two roots of the indicial equation (the two possible values of r). For both of them, solve the recurrence relation for the a_{i}. You should find, for the largest root, $J_{p}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+p+1)}\left(\frac{x}{2}\right)^{2 k+p}$, and for the smallest $J_{-p}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k-p+1)}\left(\frac{x}{2}\right)^{2 k-p}$ (for the normalization, assume that $\left.a_{0}=\frac{1}{2^{n}!!}\right)$. These are Bessel function of the first kind.
25. Prove the following properties of the Bessel functions of the first kind:
(a) $\frac{d}{d x}\left(x^{\nu} J_{\nu}(x)\right)=x^{\nu} J_{\nu-1}(x)$
(b) $\frac{d}{d x}\left(x^{-\nu} J_{\nu}(x)\right)=-x^{-\nu} J_{\nu+1}(x)$
(c) $\frac{d}{d x} J_{\nu}(x)=\frac{1}{2}\left(J_{\nu-1}(x)-J_{\nu+1}(x)\right)$
(d) $J_{\nu-1}(x)+J_{\nu+1}(x)=\frac{2 \nu}{x} J_{\nu}(x)$
26. ${ }^{*}$ The function $K_{\nu}(x)$ is the solution of the equation $x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+\nu^{2}\right) y=0$ that diverges when $x \rightarrow 0$. Find the asymptotic behavior for small x for $\nu \neq 0$. What happens for $\nu=0$? For the sake of completeness, $K_{\nu}(x)$ is called modified Bessel function of the second kind.
27. Given the eigenvalue problem $\mathcal{L}(x) \psi(x)=\lambda \psi(x)$ with $\mathcal{L}(x)=p_{0}(x) \frac{d^{2}}{d x^{2}}+$ $p_{1}(x) \frac{d}{d x}+p_{2}(x), \mathcal{L}$ is self-adjoint if $p_{0}^{\prime}=p_{1}$. Find a function $f(x)$ such that, by multiplying the following ODE, it makes them self adjoint:
(a) Laguerre's ODE: $x y^{\prime \prime}+(1-x) y^{\prime}+a y=0$
(b) Hermite's ODE: $y^{\prime \prime}-2 x y^{\prime}+2 \alpha y=0$
(c) Chabyshev's ODE: $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$
28. Θ Develop a series solution for Laguerre's ODE (given in problem 27).
29. Find the solutions of:

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0 \tag{37}
\end{equation*}
$$

with $y^{\prime}(0)=y^{\prime}(\pi)=0$;
30. Find the solutions of

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+\lambda y=0 \tag{38}
\end{equation*}
$$

with $x \in[1, e]$ such that $y(1)=y(e)=0$.
31. Find the non-zero solutions of

$$
\begin{equation*}
\left(x u^{\prime}(x)\right)^{\prime}=-\lambda \frac{u(x)}{x} \tag{39}
\end{equation*}
$$

such that $u(1)=0$ and $u^{\prime}(e)=0$. What values of λ are allowed?
32. Show that $\delta(x)=\lim _{\epsilon \rightarrow 0} \operatorname{Im} \frac{1}{\pi} \frac{1}{x-i \epsilon}$
33. Show that $\delta(\alpha x)=\frac{1}{\alpha} \delta(x)$, and more generally, $\delta(f(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|}$ where x_{i} are the root of f, i.e. $f\left(x_{i}\right)=0$.
34. Compute $\int_{-\infty}^{\infty} \delta^{\prime \prime}(x-2) \frac{1}{1+x^{2}} \mathrm{~d} x$
35. Find the coefficients a, b, c so that

$$
\delta^{\prime \prime}\left(x-x_{0}\right) \frac{1}{\left(1+x-x_{0}\right)}=a \delta^{\prime \prime}\left(x-x_{0}\right)+b \delta^{\prime}\left(x-x_{0}\right)+c \delta\left(x-x_{0}\right) .
$$

36. Solve $y^{\prime \prime}(x)-3 y^{\prime}(x)+2 y(x)=\delta(x-1)$ with $y(0)=0$ and $y(1)=1$.
37. Solve $\left(-\frac{d^{2}}{d x^{2}}+m^{2}\right) G(x)=\delta(x)$
38. A. Show that $\frac{d}{d x} \log x=\frac{1}{x}-i \pi \delta(x)$
39. Find the most general solution of $\frac{\partial f}{\partial x}+a \frac{\partial f}{\partial y}+(x-2 y) f=0$
40. Find the most general solution of $x \frac{\partial f}{\partial x}-y \frac{\partial f}{\partial y}=0$
41. Find the most general solution of $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) f(x, y, z)=x-y$
42. Solve $\partial_{x}^{2} u+2 \partial_{x} \partial_{y} u+\partial_{y}^{2} u=0$ with the boundary conditions $u(x, 0)=\sin x$ and $u(0, y)=y^{2}$.
43. Solve

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) u(x, y, z)=0 \tag{40}
\end{equation*}
$$

so that $u=0$ whenever any of the coordinates is equal to 0 or L. What are the allowed values of k^{2} ?
44. A two dimensional rectangular slab (with the two sides of length a and b) has its edges fixed; at time $t=0$ it has the profile

$$
\begin{equation*}
u(x, y, 0)=\sin \frac{2 x \pi}{a} \sin \frac{3 y \pi}{b} \tag{41}
\end{equation*}
$$

find $u(x, y, t)$ knowing that it satisfies the wave equation with a velocity v.
45. Θ The surface of a sphere of radius R is kept at a constant temperature T_{U} for the upper hemisphere $(0 \leq \theta<\pi / 2)$ and T_{L} for the lower hempisphere $(\pi / 2 \leq \theta \leq \pi)$. Find the stationary temperature distribution inside the sphere, at a distance r from the center, in an expansion in terms of $\frac{r}{R}$. Compute terms up to third order.
46. Consider an semi-infinite $(x \geq 0)$ metal rod with conductivity κ. Find the heat distribution $u(x, t)$ if $u(x, 0)=u_{0} \delta(x)$
47. Θ Consider a metal rod of length L. One end is kept at temperature 0 , and the other at temperature T_{0}. Find the temperature $T(x, t)$, knowing that $T(x, 0)=0$.
48. 8 A string has endpoints which are fixed at $x=0$ and $x=L$. At $t=0$, the string is hit at $x=a$ so it starts vibrating:

$$
\begin{equation*}
y(x, 0)=0 \quad \partial_{t} y(x, 0)=L v_{0} \delta(x-a) \tag{42}
\end{equation*}
$$

where y is the amplitude of the oscillations (assume the amplitude to be small and the wave velocity to be v). Find $y(x, t)$.
49. $\Theta \stackrel{\leftrightarrow}{\wedge}$ Compute the stationary temperature distribution $u(\rho, \theta, z)$ of a semi-infinite cylinder of radius 1 when the curved surface is kept at temperature 0 if
(a) the flat surface is kept at a temperature u_{0}
(b) the flat surface is kept at a temperature $u_{0} \rho \sin \theta$
50. Consider a spherically symmetric potential satisfying the Laplace equation in d dimensions $(d \geq 3)$ and vanishing at infinity. Show that this potential can be written as $u(r)=\frac{a}{r^{b}}$, where a is a constant, and find the value of b.
51. A conducting sphere of radius a with zero total charge is exposed to a uniform electric field \vec{E} in the z direction. Find the electrostatic potential outside the sphere if we set the surface of the sphere to have potential zero.

PROBABILITY

1. A collection of stories in 5 volumes is placed on a bookshelf in a random order. What is the probability that the order is correct (direct or inverse)?
2. Find the least number of students in a group such that the probability that at least two students have the same birthday is not less than $\frac{1}{2}$.
3. What is more probable - to get at least one 1 in throwing four dice, or to get at least two 1 in 24 throws of two dice?
4. Among N tickets for N students there are n happy tickets. The students take the tickets one by one, each takes one random ticket. What is the probability that j 's student gets a happy ticket, $1 \leqslant j \leqslant N$?
5. 5 people decide to have a party with presents. Everyone prepares one present and brings it to the party, where the presents are mixed. Then everyone takes one random present. What is the probability that nobody gets his own present?
6. Three faces of a tetrahedron are painted red (R), green (G) and blue (B), while the forth face is painted in all three colors (see the figure). Denote by $P(A)$ the probability that it falls on a face containing the color $A, A=R, G, B$.

R

G

B

RGB

Figure 6: The faces of the tetrahedron
(a) Check if $P(A \cap B)=P(A) P(B)$ for all $A, B=R, G, B$.
(b) Check if $P(R \cap G \cap B)=P(R) P(G) P(B)$. Are the events R, G, B pairwise independent? Are they mutually independent?
7. Let a, b, c be three independent random variables distributed uniformly between 0 and 1. Find the probability that the roots of the equation $a x^{2}+b x+c=0$ are real.
8. Consider the circuit shown in figure. Each of its five relays is closed with the probability p independently of other relays.

Figure 7: The circuit
(a) Find the probability that a signal will pass through the circuit.
(b) Find the probability that the relay E is open if it is known that the signal has passed through the circuit.
9. Two persons agreed to meet at some place between 2 and 3 o'clock. Whoever arrives first, he waits 10 minutes, then leaves. What is the probability to fail the meeting? Assume that anyone can arrive at any time within the given interval.
10. "Buffon's needle" A needle of length l is thrown randomly on a plane lined with parallel lines with distance d between them, $l<d$. Find the probability that the needle will cross some line.
11. Consider the particle moving in a gas of other particles. Given that the last collision of the particle occurred at $t=0$, the probability that the next collision will occur between t and $t+\Delta t$ equals $\lambda \Delta t+o(\Delta t)$, when $\Delta t \rightarrow 0$. Find the probability $P(t)$ that the time between the nearest collisions will exceed t.
12. $0^{\circ} \&$ In nuclear physics, the intensity of a particle source is measured with Geiger-Muller counters. A particle entering the counter generates a discharge in it that lasts time τ, during which the counter does not record any particles entering the counter. Find the probability that the counter will count all particles entering it during time t if the following conditions are fulfilled:
(a) the particles enter the counter independently;
(b) the probability that during the time interval from t to $t+\Delta t, k$ particles entered the counter is given by

$$
\begin{equation*}
p_{k}(t, t+\Delta t)=\frac{(a \Delta t)^{k} e^{-a \Delta t}}{k!} \tag{43}
\end{equation*}
$$

where a is the rate.
13. "a\&\&" Random walk" Let A, B, x be integers, $A \leqslant x \leqslant B$. Consider the particle that starts moving from the point x at time $t=0$. At each step $\Delta t=1$ the particle can move left or right from its recent position with the probabilities p and $q=1-p$ correspondingly. If at some step it reaches the points A or B, it stays there forever (see example figure below).

Figure 8: One possible particle's trajectory. Here $A=-B=5, x=2$, and the particle reaches the point B after 7 steps.
(a) Assuming that the total number of steps approaches infinity, compute the probabilities $\alpha(x), \beta(x)$ to find the particle at the points A and B correspondingly, as functions of the initial position x of the particle.
(b) Find the mean time $m(x)$ of a random walk of the particle before it hits A or B. Assume that $m(x)<\infty$. Check that if $p=q=\frac{1}{2}$ and $A=-B$, then $m(0)=B^{2}$. Hence the mean time of random walk is given by a square of distance traveled.
14. \mathscr{E} Prove that the equation

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x(t) d t}{(y-t)^{2}+1}=e^{-y^{2}} \tag{44}
\end{equation*}
$$

has no nonnegative solutions $x(t)$.
15. \mathscr{E} Prove that if for some discrete random variable $\xi, \mathbf{E} \xi^{2}=\mathbf{E} \xi^{3}=\mathbf{E} \xi^{4}$, then ξ can only take values 0 or 1 .
16. Θ Consider two independent random variables ξ_{1} and ξ_{2} that are distributed according to the normal distribution with mean values a_{1}, a_{2} and variances σ_{1}^{2}, σ_{2}^{2} correspondingly. Find the distribution of a random variable $\xi_{1}+\xi_{2}$. Repeat the exercise in case if $\xi_{1,2}$ are distributed according to the Poisson distribution with parameters λ_{1} and λ_{2}.
17. Let ξ be a continuous random variable.
(a) Prove that if $\mathbf{E} e^{\lambda \xi}$ is finite then

$$
\begin{equation*}
P(\xi \geqslant x) \leqslant e^{-\lambda x} \mathbf{E} e^{\lambda \xi}, \quad \lambda>0 \tag{45}
\end{equation*}
$$

(b) Prove that if $\mathbf{E}|\xi|^{m}$ is finite then

$$
\begin{equation*}
P(|\xi| \geqslant x) \leqslant x^{-m} \mathbf{E}|\xi|^{m}, \quad x>0, \quad m>0 . \tag{46}
\end{equation*}
$$

18. Consider the series ω of n experiments whose results are given by independent variables $\xi_{i}, i=1, \ldots, n$, taking the values 1 (success) with the probability p, and 0 (fail) with the probability $q=1-p$. Compose the sum $S_{n}(\omega)=\xi_{1}+\ldots+\xi_{n}$. It is clear that for any typical series ω and for large $n, S_{n}(\omega) / n$ must be close enough to p. But what is the total amount of the typical series and how it behaves as n grows? Denote by $C(n, \epsilon)$ all typical series, or, more precisely,

$$
\begin{equation*}
C(n, \epsilon)=\left\{\left.\omega| | \frac{S_{n}(\omega)}{n}-p \right\rvert\, \leqslant \epsilon\right\}, \tag{47}
\end{equation*}
$$

with some small ϵ.
(a) Show that if $\omega \in C(n, \epsilon)$, then the probability $p(\omega)$ of such series to realize is enclosed withing the region

$$
\begin{equation*}
e^{-n(H+\tilde{\epsilon})} \leqslant p(\omega) \leqslant e^{-n(H-\tilde{\epsilon})}, \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\epsilon}=\max \{\epsilon, \quad \epsilon(-2 \log (p q))\}, \tag{49}
\end{equation*}
$$

and the quantity

$$
\begin{equation*}
H=-p \log p-q \log q \tag{50}
\end{equation*}
$$

is called entropy.
(b) Show that the total amount of the typical series lies in the region

$$
\begin{equation*}
e^{n(H-\tilde{\epsilon})} \leqslant N(C(n, \epsilon)) \leqslant e^{n(H+\tilde{\epsilon})} \tag{51}
\end{equation*}
$$

Hence the number of the typical series is exponentially large, while the probability of each of them is exponentially small.
19. Let ξ and η be two independent random variables taking values 1 and 0 with the probabilities p and $q=1-p$ correspondingly. Find
(a) $\mathbf{E}(\xi+\eta \mid \eta)$,
(b) $\mathbf{E}(\xi \mid \xi+\eta)$.
20. Let $\xi_{1}, \ldots, \xi_{n}, \tau$ be independent random variables, ξ_{1}, \ldots, ξ_{n} have the same distribution, τ takes the values $1, \ldots, n$. Consider the sum of a random number of the random variables $S_{\tau}=\xi_{1}+\ldots+\xi_{\tau}$. Show that
(a) $\mathbf{E} S_{\tau}=\mathbf{E} \tau \cdot \mathbf{E} \xi_{1}$,
(b) $\mathbf{E}\left(S_{\tau} \mid \tau\right)=\tau \mathbf{E} \xi_{1}$,
(c) $\mathbf{D} S_{\tau}=\mathbf{E} \tau \cdot \mathbf{D} \xi_{1}+\mathbf{D} \tau \cdot\left(\mathbf{E} \xi_{1}\right)^{2}$,
(d) $\mathbf{D}\left(S_{\tau} \mid \tau\right)=\tau \mathbf{D} \xi_{1}$.
21. $\Theta \boldsymbol{c}^{\circ}$ Find the expectation value of the area of the projection of a 3-dimensional randomly oriented cube with edge of length 1 onto a given plane.
22. A reasonable way to estimate the number of birds in a large flock is to mark some of them. Suppose M birds were selected, marked and then released. Long time after, in a sample of n randomly selected birds X had the marker. What is the most probable total amount of birds in the population? Assume the flock was not mixed with other groups of birds.
23. Consider the sum a of 10^{N} real numbers $a_{k}, a=\sum_{k=1}^{10^{N}} a_{k}$. Let \tilde{a}_{k} be an approximation of a_{k} with precision 10^{-m}. Assume that the round-off errors $\delta_{k}=a_{k}-\tilde{a}_{k}$ are distributed uniformly within the interval $\left(-0.5 \cdot 10^{-m}, 0.5 \cdot 10^{-m}\right)$. Compose the sum $\tilde{a}=\sum_{k=1}^{10^{N}} \tilde{a}_{k}$ and let $\delta=a-\tilde{a}$ be the total error of the approximation. For the given values of N and m find ϵ such that

$$
\begin{equation*}
P(|\delta|<\epsilon)>0.99 \tag{52}
\end{equation*}
$$

24. The dice is thrown 12000 times. Find the probability that the total number of 6 's lies between 1800 and 2100.
25. "Monte-Carlo method" Consider the function $f\left(x_{1}, \ldots, x_{n}\right)$ defined in $V=$ $\left\{-1 \leqslant x_{i} \leqslant 1, i=1, \ldots, n\right\}$ and bounded from below and above, $\left|f\left(x_{1}, \ldots, x_{n}\right)\right| \leqslant$ C. Define a random variable $\eta=f\left(\xi_{1}, \ldots, \xi_{n}\right)$, where ξ_{i} are distributed uniformly between -1 and 1 .
(a) Show that $\mathbf{E} \eta=I$, where $I=\int_{V} f\left(x_{1}, \ldots, x_{n}\right) d^{n} x$. Hence the random variables can be used to compute the high-dimensional integrals with a given precision.
(b) Consider the series of N random variables $\eta_{i}=f\left(\xi_{i 1}, \ldots \xi_{i n}\right), i=1, \ldots, N$ where all $\xi_{i j}$ are distributed uniformly in $[-1,1]$. Then the quantity $\tilde{I}=$ $\frac{1}{N}\left(\eta_{1}+\ldots+\eta_{N}\right)$ for large N approaches I with high enough probability. Estimate how large N should be to ensure that

$$
\begin{equation*}
P(|\tilde{I}-I|<\Delta) \geqslant 1-\alpha, \tag{53}
\end{equation*}
$$

where Δ and α are given small numbers.
26. From a collection of 500 goods 70 were investigated, and in 14 of them various defects were revealed. Find the interval in which the fraction of the defected goods in the whole group lies with the probability 96%.
27. Here is the data about wheat yield from 8 identical wheat fields in conventional units:

$$
\begin{array}{llllllll}
26.5 & 26.2 & 35.9 & 30.1 & 32.3 & 29.3 & 26.1 & 25.0
\end{array}
$$

There is a suspicion that the data about the third field is incorrect. Check if it should be dropped with 5% significance level.
28. In an experiment on the detection of cosmic rays a detector counts particles with different energies coming from different directions. The observed spectrum of the particles is shown in table below.

Energy, MeV	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
\# of p.	15	71	75	68	39	17	10	4	1

At the significance level 0.05 , test the hypothesis that the particle spectrum is distributed according to the Poisson distribution with parameter λ. Find the effective estimate for λ.
29. $\mathscr{A}^{\text {A dice is turned randomly from one face to one of four adjoined faces. Sup- }}$ pose it fell 6 at $t=0$. Find the probability $P_{n}, n \geqslant 1$, that after n such turns it will show 6 again. Find the limit $\lim _{n \rightarrow \infty} P_{n}$.
30. An electron can occupy one of a countable number of energy levels in atom. The transition probabilities from i 's to j 's level per second are given by

$$
\begin{equation*}
P_{i j}(t=1)=c_{i} e^{-\alpha|i-j|}, \tag{54}
\end{equation*}
$$

where $\alpha>0$ and c_{i} are some constants. Find
(a) $P_{i j}(t=2)$,
(b) c_{i}.
31. One may naively argue that in one toss of two coins the probability to have two heads or tails equals $2 / 3$. Indeed, if we use the scheme with three elementary events (it fell two heads, or two tails, or one head and one tail), the probability
that the coins fall equally may seem to be $2 / 3$. The correct scheme, however, must contain four different events (head-head, tail-tail, head-tail, tail-head) with the probabilities equally distributed among them, and it gives the correct answer $1 / 2$. An experiment can be conducted to overcome the doubts about which scheme is more reasonable. Let the first hypothesis claim that the correct value is $2 / 3$, and the second - that it is $1 / 2$. Find how many coins tosses one should make to eliminate the first hypothesis with type I error 0.05 (probability to reject the second hypothesis when it is true) and type II error 0.05 (probability to accept the first hypothesis when it is false).
32. \mathscr{E}^{1} It is known that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges while the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges. One may ask about the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{\xi_{n}}{n}$, where ξ_{n} are independent random variables taking the values +1 or -1 with the probabilities p and $q=1-p$ correspondingly.
(a) Show that if $p=q=\frac{1}{2}$, the series converges with the unit probability.
(b) Show that otherwise the series diverges with the unit probability.
33. Θ Normal numbers

Let $x \in[0,1)$. Consider the infinite decimal notation for x :

$$
\begin{equation*}
x=0 . a_{1} a_{2} \ldots, \quad a_{i}=0,1, \ldots, 9, \quad i \in \mathbb{N} \tag{55}
\end{equation*}
$$

where for the numbers with finite amount of decimal places we complete the records with infinite series of 0 s. Now select randomly one x. What can one say about the typical distribution of digits $0, \ldots, 9$ in x ? To answer the question, consider the following sequence of approximations:

$$
\begin{align*}
& x_{0}=0 \\
& x_{1}=0 . a_{1} \\
& \ldots \tag{56}\\
& x_{n}=0 . a_{1} \ldots a_{n}
\end{align*}
$$

(a) Show that

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} \frac{1}{n} I_{n}(i)=\frac{1}{10}\right)=1, \quad \forall i \tag{57}
\end{equation*}
$$

where $I_{n}(i)$ gives the number of i digit in x_{n}. The result implies that almost all numbers contain equal (and infinite) amount of all 10 digits. Such numbers are called normal.
(b) Check if the rational numbers are normal.
(c) Check if the following number is normal:

$$
\begin{equation*}
x=0,12345678910111213 \ldots \tag{58}
\end{equation*}
$$

(all integers are written in ascending order).

