
Solution Outlines for Chapter 7

# 1: Let H = {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of H in A4

(using table 5.1).

There are three cosets:
H = {(1), (12)(34), (13)(24), (14)(23)} = {α1, α2, α3, α4}
(123)H = {(123), (134), (243), (142)} = {α5, α6, α7, α8}
(132)H = {(132), (143), (234), (124)} = {α9, α10, α11, α12}

# 2: Let H be as in Exercise 1. How many left cosets of H in S4 are there?
(Determine this without listing them.)

Using Corollary 1 of Lagrange’s theorem, there are
|S4|
|H|

=
4!

4
= 6 left cosets. (Note: this

makes sense given that there are three in A4 and S4 is twice as large.)

# 3: Let H = {0,±3,±6,±9, . . .}. Find all the left cosets of H in Z.

There are 3: H, 1 +H, and 2 +H. (Note: By the division algorithm, we know there are
no other cosets.)

# 5: Let H be as in Exercise 3. Decide whether or not the following cosets of
H are the same.

To do this, we use that aH = bH iff a−1b ∈ H, which in additive notation is (−a)+b ∈ H.

a. 11 +H and 17 +H: −11 + 17 = 6, and 6 ∈ H so yes, they are the same.

b. −1 +H and 5 +H: −(−1) + 5 = 6, which is still in H so yes, they are the same.

c. 7 +H and 23 +H: −7 + 23 = 16 but 16 is not a multiple of 3 so it is not in H. Hence
these are different cosets.

# 8: Suppose that a has order 15. Find all of the left cosets of < a5 > in < a >.

Notice that 15
3

= 5, so we will have five left cosets. They are: < a5 >= {a5, a10, e},
a < a5 >= {a6, a11, a}, a2 < a5 >= {a7, a12, a2}, a3 < a5 >= {a8, a13, a3}, and a4 < a5 >=
{a9, a14, a4}.

# 14: Let C∗ be the group of nonzero complex numbers under multiplication and
let H = {a + bi ∈ C∗|a2 + b2 = 1}. Give a geometric description of the coset
(3 + 4i)H. Give a geometric description of the coset (c+ di)H.

First, notice that geometrically H is a circle of radius 1 with center (0, 0). Now, the coset
(3 + 4i)H is a circle with center (0,0) as well. However, the (3 + 4i) scales the equation so
that 1 becomes 32 + 42 = 25. To see this, notice that (3 + 4i)(a+ bi) = (3a− 4b) + (3b+ 4a)i
so the action of (3+4i) sends the point (a, b) to the point (3a−4b, 3b+4a). Now, this makes
the equation (3a− 4b)2 + (3b+ 4a)2 = 9a2− 24ab+ 16b2 + 9b2 + 24ab+ 16a2 = 25a2 + 25b2 =



25(a2 + b2) = 25.

In general, the coset (c+di)H, by similar computation, is the circle centered at the origin
with radius

√
c2 + d2.

# 15: Let G be a group of order 60. What are the possible orders for the sub-
groups of G?

The possible orders are the divisors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

# 16: Suppose that K is a proper subgroup of H and H is a proper subgroup of
G. If |K| = 42 and |G| = 420, what are the possible orders of H?

By Lagrange’s theorem we know that K a subgroup of H implies that 42
∣∣|H|, Similarly,

H a subgroup of G implies |H|
∣∣420. Thus the possible orders of H are 42, 84, 210, and 420.

However, we also know that these subgroups are all proper and so H can not have order 42
(else H = K) nor can it have order 420 (else H = G). Hence, the possible orders are 84 and
210.

# 17: Let G be a group with |G| = pq, where p and q are prime. Prove that every
proper subgroup of G is cyclic.

Proof. Let G be a group with |G| = pq where p, q are prime. Let H be a proper subgroup
of G. By Lagrange’s theorem, the order of H is either 1, p, or q (It can not be pq since H
is proper). If |H| = 1, H = {e} =< e >, and hence it is cyclic. If H is not trivial, then
the order of H is either p or q, which are both prime. Hence, H is cyclic (by corollary of
Lagrange’s theorem).

# 20: Use Corollary 2 of Lagrange’s Theorem to prove that the order of U(n) is
even when n > 2.

Proof. Notice that n− 1 ∈ U(n) for all n. Further, (n− 1)2 = n2 − 2n+ 1 = 1 so the order
of n− 1 is 2. Thus we know that 2

∣∣|U(n)| so its order must be even.

# 21: Suppose G is a finite group of order n, and m is relatively prime to n. If
g ∈ G and gm = e, prove that g = e.

Proof. Notice that the order of an element has to divide the order of the group, so the order
of g can not be m. We also know that g|G| = gn = e. So the order of g divides both m and
n. However, gcd(m,n) = 1 so the order of g is actually 1. Hence, g = e.

# 26: Suppose that G is a group with more than one element and G has no
proper, nontrivial subgroups. Prove that |G| is prime.

Proof. Let G be a group with more than element and no proper, nontrivial subgroups. First,
suppose |G| is infinite. If G is cyclic, it is generated by some element in G, say x. Then
< x2 > is a proper, nontrivial subgroup of G, which is a contradiction. Suppose instead that
G is not cyclic. Then let x be any non-identity element of G. The group < x > is now a



proper, nontrivial subgroup of G and we again have a contradiction.

Hence, we may now assume |G| is finite. Let x be a non-identity element in G. Since G
has no proper, non-trivial subgroups and < x >⊆ G, it must be that G =< x >. Now, by
the fundamental theorem of cyclic groups, we know that any divisor of the order of G will
result in a corresponding cyclic subgroup. Since there are none, the order of G has to be
prime.

# 27: Let |G| = 15. If G has only one subgroup of order 3 and only one of order
5, prove that G is cyclic. Generalize to |G| = pq, where p and q are prime.

Proof. Let G have order 15 and be as described above. Since 3 and 5 are prime, the two
subgroups are cyclic. Call their generators a and b respectively so | < a > | = 3 and
| < b > | = 5. Since the intersection of these two groups is just {e}, | < a > ∪ < b > | = 7.
Therefore G has some elements not in < a > ∪ < b >. Choose one, say d. Then the order of
d is either 3, 5, or 15. Since d 6∈< a >, the order of d can not be 3 (otherwise < d > would
be a new subgroup of order 3). Similarly, the order of d can not be 5. Hence, the order of d
is 15 and G =< d >.

The proof generalizes to any group of order pq where p and q are prime. In this case
|H ∪K| = p+ q − 1 < pq. Just as above, any element not in H ∪K would necessarily have
order pq, making it a generator of G.

# 28: Let G be a group of order 25. Prove that G is cyclic or g5 = e for all g in
G. Generalize to any group of order p2 where p is prime. Does your proof
work for this generalization?

Proof. Let G be a group of order 25. Assume G is not cyclic. Hence no element of G has
order 25. But |g| must divide |G| = 25 for all g ∈ G, so the order of g must be 5 for all
elements. Hence, g5 = e for all g ∈ G.

# 30: Let |G| = 8. Show that G must have an element of order 2.

Let |G| = 8. Let g be any non-identity element of G. Its order is 2, 4 or 8 (consequence
of Lagrange’s theorem). If g has order 2, we are done. Assume g has order 4. Then (g2)2 = e
and g2 6= e. So g2 is an element of order 2. Now, assume g has order 8, making G is cyclic.
Then (g4)2 = e so the element g4 has order 2.

# 33: Let H and K be subgroups of a finite group G with H ⊆ K ⊆ G. Prove
that |G : H| = |G : K||K : H|.

Viewing K as a subgroup of G, we see
|G|
|K|

= |G : K|. Next, we can view H as

a subgroup of K so
|K|
|H|

= |K : H|. Finally, we can view H as a subgroup of G so

|G : H| = |G|
|H|

=
|G|
|K|
|K|
|H|

= |G : K||K : H|.



# 44: Prove that every subgroup of Dn of odd order is cyclic.

Let G be a subgroup of Dn with odd order. Then G can not contain any flips since the
order of an element has to divide the order of a group. Thus G ⊆< r >, which is cyclic.
We already know from the fundamental theorem of cyclic groups that all subgroups of cyclic
groups are cyclic so G must be cyclic.

# 45: Let G = {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23), (24)(56)}.

a. Find the stabilizer of 1 and the orbit of 1.
stabG(1) = {(1), (24)(56)} and orbG(1) = {1, 2, 3, 4}

b. Find the stabilizer of 3 and the orbit of 3.
stabG(3) = {(1), (24)(56)} and orbG(3) = {3, 4, 1, 2}

c. Find the stabilizer of 5 and the orbit of 5.
stabG(5) = {(1), (12)(34), (13)(24), (14)(23)} and orbG(5) = {5, 6}

# 58: Let G be the group of rotations of a plane about a point P in the plane.
Thinking of G as a group of permutations of the plane, describe the orbit
of a point Q in the plane. (This is the motivation for the name “orbit”.)

The orbit of Q is a circle passing through Q with center P .

# 60: The group D4 acts as a group of permutations of the square regions shown
on page 159. For each square region, locate the points in the orbit of the
indicated point under D4. In each case, determine the stabilizer of the
indicated point.

The black dot below is the original (and included in the orbit), and the blue dots are the
rest of the orbit.



Left to right, top to bottom, the stabilizers oars {id, h}, {id, d2}, {id, h}, {id}, {id},
{id} where id is the identity symmetry, h is the flip across the horizontal line and d2 is the
diagonal from the upper right corner to the bottom left corner.

# 65: If G is a finite group with fewer than 100 elements and G has subgroups
of orders 10 and 25, what is the order of G?

Let G be as above. Since G has subgroups of orders 10 and 25, the order of G is divisible
by both 10 and 25. Hence the order of G is 50.


