
NOTES ON CONVERGENT SEQUENCES AND ON SUBSEQUENCES

Definition 2.7. A sequence in a set X is a function P : N → X. We denote it by {P (n)} or,
more commonly, by {pn}.
Let {pn}∞n=1 be a sequence in a metric space. A subsequence of {pn}

∞
n=1 is a sequence of the form{

pn(i)
}∞
i=1
, where n (1) < n (2) < n (3) < · · · . We typically write {pni}

∞
i=1, that is, we replace n (i) by

the notation ni.

Remark. In {pn}, n is represents a positive integer, i.e., n = 1, 2, 3, . . . . Whereas, in
{
pn(i)

}
, n

represents an increasing function n : N→ N and i = 1, 2, 3, . . . .
Exercise. Convince yourself that a subsequence of a sequence P : N → X is simply a function

P ◦ n : N→ X, where n : N→ N is increasing. Hint: The subsequence is {P ◦ n (i)} , which may be
rewritten as

{
pn(i)

}
.

Definition 3.1. A sequence {pn} in X is said to converge to p ∈ X if for every ε > 0 there
exists N ∈ N such that n ≥ N implies that d (pn, p) < ε.

Example. Consider the sequence {pn}∞n=1 , where pn = (−1)n . Then {p2i}∞i=1 is a subsequence
(where we define n (i) = 2i). Here, the original sequence is {−1, 1,−1, 1, . . .} and the subsequence is
{1, 1, 1, 1, . . .} . The original sequence diverges, whereas the subsequence converges.
Lemma. Suppose that {an} is a sequence of positive numbers with limn→∞ an = 0. If p ∈ X and

{pn} is a sequence in X such that d (pn, p) ≤ an for each n ∈ N, then {pn} converges to p.
Proof. Let ε > 0. Since limn→∞ an = 0, there exists N ∈ N such that an < ε for n ≥ N . This

implies that
d (pn, p) ≤ an < ε

for n ≥ N . �
Theorem 3.7. The set of all subsequential limits of a sequence {pn} in a metric space X is a

closed subset of X.

Proof. Let E be the set of all p ∈ X with the property that there exists a subsequence of {pn}
which converges to p. Let q ∈ E ′. We need to show that q ∈ E.
Let n1 = 1. Let k ≥ 2 and suppose that we have chosen positive integers n1 < n2 < · · · < nk−1.

Since q ∈ E ′, there exists qk ∈ E such that d (qk, q) < 1
k
. Since qk ∈ E, there exists a subsequence of

{pn} which converges to qk. This implies there exists an integer nk > nk−1 such that d (pnk , qk) < 1
k
.

Then
d (pnk , q) ≤ d (pnk , qk) + d (qk, q) <

2

k
.

(We have defined the increasing sequence of positive integers {nk}∞k=1 by induction.) Since the subse-
quence {pnk}

∞
k=1 has the property that d (pnk , q) <

2
k
for k ≥ 2 and since limk→∞

2
k
= 0, we conclude

by the lemma that {pnk}
∞
k=1 converges to q. Hence q ∈ E. �
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