Do the following exercises from Chapter 3 of the text (Pages 174–181): 8, 9, 17, 29, 43, 47

8. Show that \mathbb{Q} is a torsion-free \mathbb{Z} -module that is not free.

▶ Solution. \mathbb{Q} is torsion free as a \mathbb{Z} module since \mathbb{Q} is a field that contains \mathbb{Z} as a submodule. Specifically, if $m \neq 0 \in \mathbb{Z}$ and $r \in \mathbb{Q}$ with mr = 0, then $m \neq 0$ as an element of \mathbb{Q} and r = (1/m)(mr) = 0. Thus \mathbb{Q} is torsion-free as a \mathbb{Z} -module.

To see that \mathbb{Q} is not free as a \mathbb{Z} -module, simply note that if $S \subseteq \mathbb{Q}$ is any subset consisting of more than one element, then S is *not* \mathbb{Z} -linearly independent. To see this, suppose that r/s and t/u are two distinct elements of S. Then

$$(st)\frac{r}{s} - (ur)\frac{t}{u} = 0$$

is a nontrivial \mathbb{Z} -linear dependence relation between r/s and t/u, so S is not \mathbb{Z} -linearly independent if it contains at least 2 elements. If $S = \{r/s\}$ is a subset of \mathbb{Q} containing exactly one element, then S does not generate \mathbb{Q} as a \mathbb{Z} -module. To see this, observe that 1/2s cannot be written as an integer multiple of r/s, since, if this were possible then we would have 1/2s = m(r/s) for some $m \in \mathbb{Z}$ which would give the equation in integers 1 = 2mr, which is not possible.

9. (a) Let R be an integral domain, let M be a torsion R-module, and let N be a torsion-free R-module. Show that $\operatorname{Hom}_R(M, N) = \langle 0 \rangle$.

▶ Solution. Let $f \in \text{Hom}_R(M, N)$ and let $m \in M$. Since M is a torsion module, there is an $r \neq 0 \in R$ with rm = 0. Then 0 = f(0) = f(rm) = rf(m). Since $r \neq 0$ and N is torsion-free, this implies that f(m) = 0. Since $m \in M$ is arbitrary, this gives f = 0, as required.

(b) If n = km, then show that $\operatorname{Hom}_{\mathbb{Z}_n}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z}_m$.

▶ Solution. Define a map φ : $\operatorname{Hom}_{\mathbb{Z}_n}(\mathbb{Z}_m, \mathbb{Z}_n) \to \mathbb{Z}_n$ by $\varphi(f) = f(1)$. This is a \mathbb{Z}_n -module homomorphism from the definition of sum and scalar multiplication of functions. If f(1) = 0 then f(r) = rf(1) = 0 for all $r \in \mathbb{Z}_m$ so $\operatorname{Ker}(\varphi) = \langle 0 \rangle$. If $t \in \mathbb{Z}_n$ is in the image of φ , then t = f(1) for some $f \in \operatorname{Hom}_{\mathbb{Z}_n}(\mathbb{Z}_m, \mathbb{Z}_n)$. Then mt = mf(1) = f(m) = f(0) = 0, so the order of t divides m. Conversely, any element of \mathbb{Z}_n whose order divides m is f(1) for some $f \in \operatorname{Hom}_{\mathbb{Z}_n}(\mathbb{Z}_m, \mathbb{Z}_n)$. Thus, the image of φ consists of all elements of \mathbb{Z}_n whose order divides m, i.e., $\operatorname{Im}(\varphi) = \langle k \rangle \cong \mathbb{Z}_m$.

17. Give examples of short exact sequences of R-modules

 $0 \longrightarrow M_1 \xrightarrow{\phi} M \xrightarrow{\phi'} M_2 \longrightarrow 0$

and

$$0 \longrightarrow N_1 \xrightarrow{\psi} N \xrightarrow{\psi'} N_2 \longrightarrow 0$$

such that

(a) $M_1 \cong N_1, M \cong N, M_2 \not\cong N_2;$

▶ Solution. For $n \in \mathbb{N}$, consider the short exact sequence

$$(*_n) \qquad \qquad 0 \longrightarrow \mathbb{Z} \xrightarrow{\phi_n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_n \longrightarrow 0$$

where $\phi_n(x) = nx$ and π is the standard projection map. Then choosing any two natural numbers $n \neq m$ will give two short exact sequences $(*_n)$ and $(*_m)$ with the first two terms equal in each sequence, the third terms $\mathbb{Z}_n \ncong \mathbb{Z}_m$.

(b)
$$M_1 \cong N_1, M \not\cong N, M_2 \cong N_2;$$

▶ Solution. For this part, you can use the two short exact sequences from Example 3.8, Page 122:

$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{\phi} \mathbb{Z}_{pq} \xrightarrow{\psi} \mathbb{Z}_p \longrightarrow 0$$

and

$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{f} \mathbb{Z}_{p^2} \xrightarrow{g} \mathbb{Z}_p \longrightarrow 0;$$

where p and q are distinct primes, $\phi(m) = qm \in \mathbb{Z}_{pq}$, $f(m) = pm \in \mathbb{Z}_{p^2}$ and ψ and g are the canonical projection maps.

(c) $M_1 \not\cong N_1, M \cong N, M_2 \cong N_2.$

▶ Solution. Let M be the \mathbb{Z} -module consisting of sequences of elements from the field \mathbb{Z}_2 . That is,

$$M = \{ (a_0, a_1, a_2, \ldots) : a_j \in \mathbb{Z}_2 \}.$$

For each natural number $n \in \mathbb{N}$ define a map $\psi_n : M \to M$ by

$$\psi_n(a_0, a_1, a_2, \ldots) = (a_n, a_{n+1}, a_{n+2}, \ldots)$$

It is clear that ψ_n is a \mathbb{Z} -module homomorphism and that it is surjective. Moreover, if $n \ge 1$,

$$\operatorname{Ker}(\psi_n) = \{ (a_0, a_1, \dots, a_{n-1}, 0, \dots) : a_j \in \mathbb{Z}_2 \} \cong \mathbb{Z}_2^n.$$

Thus, for each $n \in \mathbb{N}$ there is a short exact sequence

$$(*_n) \qquad 0 \longrightarrow \mathbb{Z}_2^n \xrightarrow{\phi_n} M \xrightarrow{\psi_n} M \longrightarrow 0$$

where

$$\phi_n(a_0, \ldots, a_{n-1}) = (a_0, a_1, \ldots, a_{n-1}, 0, \ldots).$$

Since $\mathbb{Z}_2^n \not\cong \mathbb{Z}_2^m$ if $m \neq n$, the short exact sequences $(*_n)$ and $(*_m)$ for $m \neq n$ give the required example.

29. Let $R = \mathbb{Z}_{30}$ and let $A \in M_{2,3}(R)$ be the matrix

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix}.$$

Show that the two rows of A are linearly independent over R, but that any two of the three columns are linearly dependent over R.

 \blacktriangleright Solution. As far as the rows are concerned, suppose there is an R-linear dependence relation

 $r\begin{bmatrix}1 & 1 & -1\end{bmatrix} + s\begin{bmatrix}0 & 2 & 3\end{bmatrix} = \begin{bmatrix}0 & 0 & 0\end{bmatrix}.$

This implies that r = 0 which then says that 2s = 0 and 3s = 0 so that s = 3s - 2s = 0. Thus the rows are linearly independent over R. As for the columns, note that

$$15\begin{bmatrix}1\\0\end{bmatrix} + 15\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}; \quad 10\begin{bmatrix}1\\0\end{bmatrix} + 10\begin{bmatrix}-1\\3\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}; \text{ and } 6\begin{bmatrix}1\\2\end{bmatrix} + 6\begin{bmatrix}-1\\3\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}.$$

Thus, any two of the three columns are R-linearly dependent.

43. Suppose R is a PID and $M = R\langle x \rangle$ is a cyclic R-module with $\operatorname{Ann}(x) = \langle a \rangle \neq \langle 0 \rangle$. Show that if N is a submodule of M, then N is cylic with $\operatorname{Ann} N = \langle b \rangle$ where b is a divisor of a. Conversely, show that M has a unique submodule N with annihilator $\langle b \rangle$ for each divisor b of a.

▶ Solution. Define an *R*-module homomorphism $\varphi : R \to M$ by $\varphi(r) = rx$. Since *M* is cyclic with generator x, φ is surjective and $\operatorname{Ker}(\varphi) = \operatorname{Ann}(x) = \langle a \rangle$. By the first isomorphism theorem for *R*-modules, there is an isomorphism $\overline{\varphi} : R/\langle a \rangle \to M$, and by the correspondence theorem, φ provides a one-to-one correspondence between the submodules of *M* and the submodules of *R* containing $\langle a \rangle$, with the submodule *N* corresponding to $\varphi^{-1}(N)$. But *R* is a PID so *R*-submodules of *R* are just principal ideals. Thus $\varphi^{-1}(N) = \langle c \rangle \supseteq \langle a \rangle$, so that $N = \varphi(\langle c \rangle) = \{r(cx) : r \in R\}$. Then the annihilator of *N* is

$$\operatorname{Ann}(N) = \{r \in R : r(cx) = 0\} = \{r \in R : a | rc\} = \langle \frac{a}{c} \rangle.$$

Thus, the annihilator of N is generated by the divisor b = a/c of a. Conversely, if b is any divisor of a, then the submodule $N = \langle (a/b)x \rangle \subset M$ is a submodule with $\operatorname{Ann}(N) = \langle b \rangle$. Therefore, the pairing $b \longleftrightarrow \langle (a/b)x \rangle$ sets up a one-to-one correspondence between divisors of a and submodules of N.

- 47. Let $u = (a, b) \in \mathbb{Z}^2$.
 - (a) Show that there is a basis of \mathbb{Z}^2 containing u if and only if a and b are relatively prime.

▶ Solution. Suppose that v = (c, d) and that the two vectors u and v form a basis of \mathbb{Z}^2 . Then there are integers k, l, m and n such that

$$ku + lv = (1, 0)$$

mu + nv = (0, 1),

which gives the matrix equation

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} k & m \\ l & n \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Taking determinants then gives (ad - bc)(kn - ml) = 1. Since this is an equation in integers, it follows that $ad - bc = \pm 1$ so that a and b are relatively prime.

Conversely, if a and b are relatively prime, then we can write ra + sb = 1 and we claim that u = (a, b) and v = (-s, r) form a basis of \mathbb{Z}^2 . Consider the linear equation

$$xu + yv = (\alpha, \beta)$$

in integers. This is equivalent to the matrix equation

$$\begin{bmatrix} a & -s \\ b & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

Multiplying this equation on the left by the matrix $\begin{bmatrix} r & s \\ -b & a \end{bmatrix}$ gives

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r & s \\ -b & a \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} r\alpha + s\beta \\ -b\alpha + a\beta \end{bmatrix}.$$

This equation shows that u and v is a linearly independent generating set for \mathbb{Z}^2 , i.e., a basis.

(b) Suppose that u = (5, 12). Find a $v \in \mathbb{Z}^2$ such that $\{u, u\}$ is a basis of \mathbb{Z}^2 .

▶ Solution. Since $5 \cdot 5 + (-2) \cdot 12 = 1$, the calculation done in part (a) shows that we can take v = (2, 5).