Sample Problems for MIDTERM EXAM I, Ma 553

- 1. Does the symmetric group S_5 have a subgroup of order 10? Justify your answer.
- 2. Describe the Sylow *p*-subgroups in A_4 , S_4 , A_5 , S_5 and find their number.
- 3. Let G be a subgroup generated by 5-sycle in S_5 . Find the order of $N_{S_5}(G)$.
- 4. (a) List representatives for each conjugacy class in the symmetric group S_4 and state the number of elements in each conjugacy class.
 - (b) List representatives for each conjugacy class in the alternating group A_4 and state the number of elements in each conjugacy class.
 - (c) Determine the number of elements of order 2 in the symmetric group S_5 .
 - (d) Determine the number of elements of order 2 in the symmetric group A_5 .
 - (e) Find the number of 2-subgroups in A_4 .
- 5. Show that for any element σ of order 2 in the alternating group A_n . there exists $\tau \in S_n$ such that $\tau^2 = \sigma$.
- 6. Let G be a group having order 2k, where k is an odd integer. Prove that G has a subgroup of order k.
- 7. (a) What is the order of the group $GL_3(F_3)$ of 3×3 invertible matrices with entries in F_3 ?
 - (b) What is the order of the group $GL_3(F_3)$ of 3×3 invertible upper triangular matrices with entries in F_3 ?
 - (c) Does there exist a nonabelian group of order 27 ? Justify your answer.

- 8. Prove that the order of the automorphism group of $(Z/3)^4$ is $80 \times 78 \times 72 \times 54$. Describe an example of a group of order 405 which is not the direct product of Z_5 with a group of order 81. Justify your answer.
- 9. Let G be a group of order p^3 , where p is prime, and suppose H is a subgroup of G with |H| = p. Prove or disprove that there must exist a subgroup K of G such that $H \subseteq K$ and $|K| = p^2$.
- 10. Let G be a finite group, p > 0 a prime number, and H a normal subgroup of G. Prove the following assertions.
 - (a) Any Sylow p-subgroup of H is the intersection $P \cap H$ of a Sylow p-subgroup P of G and subgroup H.
 - (b) Any Sylow p-subgroup of G/H is the is the quotient PH/H, where P is a Sylow p-subgroup of G.
- 11. Let H be a normal subgroup of a finite group G, and let $N \subset H$ be a normal Sylow subgroup of H. Prove that N is a normal subgroup of G.
- 12. Prove that there is no simple group of order $5^3 \cdot k$ which has a subgroup of index 8.
- 13. Let G be a group of order 105.
 - (a) Show that G has a normal subgroup of order 5 or 7.
 - (b) Show that G has a cyclic normal subgroup of order 35.
 - (c) Show that the Sylow 5- and 7-subgroups of G are both normal.
 - (d) Classify groups of order 105.
- 14. Let G be a group of order 66.
 - (a) Show that G has a unique subgroup of order 11.
 - (b) Show that G has a cyclic subgroup-call it H-of order 33.
 - (c) Show that G has a unique subgroup of order 3.
 - (d) How many elements of order ≤ 2 does the automorphism group of H have? (Justify your answer.)

- (e) Any group of order 66 is isomorphic to one and only one of $Z_{66}, S_3 \times Z_{11}$, $Z_3 \times D_{22}$, or D_{66} ,
- 15. Show that a simple group which has a subgroup of index n > 2 is isomorphic to a subgroup of the alternating group A_n .
- 16. Let G be a finite group, let p be a prime divisor of the order |G|, and let P be a Sylow p-subgroup of G. Let $N_G(P)$ be the normalizer of P, and $C_G(P) \subset N_G(P)$ the centralizer of P.
 - (a) Show that the index $[N_G(P) : C_G(P)]$ is the order of a subgroup of the automorphism group of P.
 - (b) Show that p divides $[N_G(P) : C_G(P)]$ if, and only if, P is non-abelian. (Hint: P is abelian iff $C_G(P) \supset P$.)
 - (c) Show that if P is cyclic and the gcd(|G|, p-1) = 1 then $C_G(P) = N_G(P)$. (Hint: Consider conjugation morphism $N_G(P) \to Aut(P)$)
- 17. Show that any group G of order 80 is solvable.
- 18. Assume G contains a normal Sylow 2-subgroup P which is a cyclic group, and such that G/P is cyclic.
 - (a) Show that the action of G by conjugation on P its trivial.(10 points) (Hint: consider the induced action of G/P on P.)
 - (b) Show that G is abelian.
- 19. Show that P is abelian whenever Aut(P) is cyclic. (Hint: A subgroup of cyclic group is cyclic)
- 20. (1) Find all (up to isomorphism) abelian groups of order 40 (10 points).(2) Find the number of elements of order 2 in each of them (10 points).