A NOTE FOR REAL ANALYSIS QUALIFYING EXAM IN TAMU

XIN MA

ABSTRACT. This note contains solutions to the questions occurred in past Real
analysis qualifying exams from Jan 2009 to Jan 2017. I did most of them. The
rest are folklore. Typos and errors are inevitable. Comments and corrections

are welcome.

1. JANUARY 2017

Problem 1.1. Let (2,4, 1) be a measure space. Show that if for all n, u{x :
|fu(®)] > 1/n} <n=3/2 then f, — 0 a.e. (u).

Proof. Define M = (" ~_, Ur—, {z : [fu(z)| > 1/n}. Then p(U,—_, {z : |fn(z)] >
1/n}) <322 n~3/2 - 0asm — oo. Then u(M) = 0. Consider x € M¢ iff there
is a m such that for all n > m, |f,(z)| < 1/n, ie. f, — 0 a.e. O

Problem 1.2. Find all f € L*(1,2) such that for all n € N, ff 2 f =0.

Proof. We firstly extend f to be defined on [1,2] by setting f(1) = 0 and f(2) = 0.
We still denote this function f. Now, f € L[1,2] and we still have ff 2 f = 0.
Then, by Stone-Weirtrass theorem, we have for any continuous function g € C[1, 2],
ff gf = 0. Then use the same argument occurred in problem 2 in Jan 2016. We
can see f =0 a.e. (u). O

Problem 1.3.

Problem 1.4. We say a sequence {a,} in [0, 1] is equi-distributed if for all interval

distributed iff lim,, o0 [ fdu, = [ fdm for all f € C[0,1], where p, = 237 8,4,

Proof. By the definition, we see that {a,} is equi-distributed iff for all interval
[e,d) C [0,1], limp oo [ X[e,a)tn = [ X[c,a)dm.

Then if lim, o [ fdu, = [ fdm for all f € C[0,1]. For any interval [c,d],
define continuous functions 1 > f,, > 0 (n > N for some proper N) with f, =1 on
[c,d] and supp(f,) C [c—1/n,d+1/n] such that f,, | x[¢,q. Then for all € > 0, there
is a K such that whenever k > K, pugle,d] < [ fndpr < [ fadp+e < ple,d]+2/n+e.
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Note that this K depend on the interval [¢,d]. Use this argument for [¢ — 1/n, (|
and [d,d + 1/n], for the ¢, for each n, there is a K, such that whenever k >
Kn, [fn = Xiealdine < [ Xie—1/n.qdk + | Xja,a+1/n)dpe < 4/n + €. In addition,
J | fn = Xie,qgldm < 2/n also holds. Now, fix a n big enough such that 6/n < e
and | [ fudpr — [ fndm| < e. This implies that whenever k > Ky, | [ X{c,ajdpin —
I xte.aydm| < [ |fo=Xie.aldpr+| [ frdpr— [ fadm|+ [ |fo—Xe,qldm < 6/n42e <
3e. We are done.

In the converse, If for all interval [¢, d] C [0, 1], limy, o0 [ X{e,q1din = [ X[e,qdm.
Then this pass to all step functions. For any continuous function f € C10,1], we
can use step functions to approximate f under the norm || - ||~. say for every ¢ > 0,

thereisa 0 = o < 1 < ... < zy = 1 such that for alln < N, | max f(z)—

wnS$§$n+1

. N . .
_nin f(z)] < e Now, define g = >\ @nX(z, 2., Where a, is an arbitrary
TnSTSTn41

number between  min  f(z) and max  f(z). Thus ||g — f]lec < €. Now,
T <T<Tp41 T <T<Tp4

for the ¢, there is a K such that whenever k > K, | [ gdur, — [ gdm| < € and thus

| [ fdue — [ fdm| < [|fdpx — [ gduel + | [ gdps, — [ gdm| + [fdm — [ gdm| <
2\lf — glloo + € < 3e. We are done. O

Problem 1.5. Let S be a closed subspace of (C[0,1],|| - ||leo)- If S is also closed
under || - ||, then show S is finite-dimensional. (This is question 66 in Folland on

page 178, see also mathoverflow 52509 for other solutions.)

Proof. Consider the identity map id : (S, - |loo) = (S,|| - ||2) is bounded since
Ifll2 < ||f]loo in general (see problem 8 in Jan 2016). Then by open mapping
theorem. || - ||2 is equivalent to || - ||s on S, say for all f € S, |[f|lec < C| fll2.
Note that S is a Hilbert space. Let {f,}ner be an orthonormal basis of S. For all
f €S,z €0,1]. The evaluation map d,(f) = f(x) is bounded and linear w.r.t
I |2 Indeed, [65(f)] = |f(@)] < || flloc < C|fll2- Then, by Riesz’s lemma, there is
a function g, € C[0,1] such that f(z) = (f, gz) with ||g.|| < C

Thus, >, o/ 1f(@)? =X, [{f,92)1* = [|92]13 < C?. Then integration implies
that |I| < C?. O

Problem 1.6.
Problem 1.7.

Problem 1.8. (1) Construct a Lebesgue measurable set A C R so that for alla < b

0 <m(ANa,b]) < b—a.

(2) Suppose that a Lebesgue measurable set A C R so that for alla < b, m(A([a,b]) <
(b — a)/2. Prove that m(A) = 0.
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Proof. (1) Tt suffices to show the case A C [0, 1] since then B = J,,.; n + A works.
It also suffices to consider all intervals with rational endpoints by density of Q.
Now fix an enumeration of all this subintervals of [0, 1], say {I,, : n € N}. We define
sequences of generalized cantor set {C,} and {D,} such that (i) m(C,) > 0 and
m(Dy) > 0; (i) Cp | Dn C s (ii) (UZ:l Ck) m(U::l Dy) = 0.

We define these sequence by induction. If Ci,....,C, and Dq,...., D, are de-
fined. They are nowhere dense closed sets. Then J;_, Cix | Dy is also nowhere
dense closed set (Indeed, if F; and F» are nowhere dense. If there is an open set
O C FiUF,, then ) # ONFs = O Fs(F1 C Fy, which is a contradiction.).
Then I,,41\Uj_; Ck U Dy, is a nonempty open set which is a union of open intervals
and thus contains a generalized cantor set Cy, 11 of positive measure. Then, in the
same manner, we can also choose Dy, 11 C Int1 \ (Up—1(Ck U Dk) U Crt1), which
is of positive measure.

Now, define A = J,, C,,. By the construction, A works.

(2) We also restrict to [0,1]. Then for any subinterval I C [0,1], m(ANI) <
0.5m(I) implies that m(A°(I) > 0.5m(I). Then apply problem 1 in Jan 2016. O

Problem 1.9. Prove or disprove that the unit ball of L7(0,1) is closed in L(0, 1)

Proof. Tt is right. Indeed, By = {f : || f|l7 < 1}. Now, let f,, — f in L', where f,, €
B;. Then, f, — f in measure and thus there is a subsequence f,, — f a.e.(m).
Then |f,,|” — |f|” a.e.(m). Then, by Fatou’s lemma, [ |f|” < liminfy [ |f,,|” =
1. O

Problem 1.10. Let C' denote the Banach space of all convergent sequences under
the norm ||+ ||oo. Compute the extreme points of the unit ball B of C' and determined

that whether B is the closed convex hull of its extreme points.

Proof. Fix a a € B, if there is a m such that |a(m)| < 1. then there is a number
0 such that |a(m) —d] < 1 and |a(m) + | < 1. Now define by, by € B such that
b1(n) = a(n) whenever n # m and by (m) = a(m) + 6. In the same manner, define
ba(n) = a(n) whenever n # m and by (m) = a(m) — 6. Then a = (b + b2)/2. Thus
a is not an extreme point.

If for all n, |a,] = 1. Let a = (b1 + b2)/2. Since |bi(n)] < 1 for all n,
b1(n) = ba(n) = a(n), which implies that a is an extreme point. Thus Ext(B) =
{a:¥n, |a(n)]=1and IN,Vn > N a(n) =1 or a(n) = 1.}

(Not sure)I think conv(Ext(B)) # B. Let ey = (1,1,1,1,....), e, = (0,..0,1,0, ...)
for n > 1. It can be seen that e, € conv(Ext(B)) for all n > 0. Consider {e, :
n > 0} form a basis of C. Then conv(Ext(B)) = B iff Zﬁ:o apey € conv(Ext(B))
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for 1 > |a,| — 0. This may induce a contradiction of the convexity. Like consider

(1/n).
(]

Problem 1.11. Show that every continuous convex function f defined on the

closed unit ball of a reflexive Banach space X can achieve the minimum

Proof. At first, Since X is reflexive, then X is isomorphic to X**. By Alaoglu’s
theorem, The unit ball of X** is w*-compact, which implies that the unit ball of
X, B is weak compact. Then, we know that any function is lower semi-continuous
convex iff it is weak lower-semi continuous convex. (This is a classical result in
convex analysis. The epigraph is used in its proof or Mazur’s lemma?) Thus f
is weak-lower-semi-continuous. Thus it can achieve the minimum since B is weak

compact. (I

2. Aucust 2016

Problem 2.1. Let A be the set of all real valued functions on [0,1] for which
fO)=0and |f(t)— f(s)| < (t—s)2for 0 <s <t <1.

(1) Prove that A is a compact subset of C[0, 1].

(2) Prove that A is a compact subset of L1[0,1].

Proof. (1) At first, A is closed. Let f,, — f under || - ||oo. Then [f(t) — f(s)| <
If (&) = fun@®)]+ () = fu(s)|+|fn(s) — f(s)| implies that A is closed. It is also easy
to check that A is equicontinuous and pointwise bounded. Then by Arzela-Ascoli
theorem, A is compact in C0, 1].

(2) Consider the identity map id from C[0, 1] to L1[0, 1] is continuous by || f||1 =
J1fl < IIflloc- Then A is compact in L;[0,1] since any continuous image of a

compact set is also compact. ([

Problem 2.2. (1) Let f(z) be a real valued function on the real line that is differ-
entiable almost everywhere. Prove that f/(z) is a Lebesgue measurable function.
(2) If f is continuous real values function on the real line, then the set of points at

which f is differentiable is measurable.

Proof. f'(z) = lim,—eo n(f(z + 1/n) — f(x)) if the limit exists. Then Module a
null set, f' is measurable. Thus, it is measurable.

For the second part, By the similar argument, We know that DY f, D~ f, D, f
and D_ f are measurable. Then {z : f'(z) exsits} = {z : DT f(z) = D™ f(z) =
D, f(xz) = D_f(z)} is measurable. O
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Problem 2.3. (a) Let f be a real valued function on the unit interval [0, 1]. Prove
that the set of points at which f is discontinuous is a countable union of closed
subsets.

(b) Prove that there is no real valued function on [0,1] that is continuous at

all rational points but discontinuous at all irrational points.

Proof. Define oscy(x) = inf{sup, ¢y [f(2) — f(y)| : U is a nbhd of x}. It is not
hard to see oscy(x) is a continuous function and {x : f is continuous at } = {x :
oscf(z) = 0} = (o {z : oscs(z) < 1/n}, which is a Gs set. It implies that
{z : f is discontinuous at x} is a Fy, i.e. a countable union of closed subsets.

For the second part, suppose there is a one. Then {z : f is continuous at x} =
Q is a dense Gy set, say co-meager, which means that the set Ir of all irrationals
is meager. Since Q is also countable, thus meager, [0,1] = Q| | Ir is also a meager

set. A contradiction to the Baire category theorem. (|

Problem 2.4. Let (92, A, 1) be a finite measure space and (f,) be a sequence
of measurable functions on X that converges pointwise to zero. Prove that (f,)
converges in measure to zero. Show that the converse is false for [0, 1] with Lebesgue

measure.

Proof. Fix € >0, § > 0 and define A,, = {x : |f,(x)| > €}. For the §, By Egoroff’s
theorem, there is a measurable set E with u(E) < § and f,, — 0 on E° uniformly,
say, there is a N, whenever n > N, z € E°, |f,(z)| < e. It implies that A, C E
and thus u(A,) < d. It shows that u(A4,) — 0, which means f,, — 0 in measure.
For the second part. A counterexample is f, = X[j/2¢,(j+1)/2%] Where n = 2k 45
with 0 < j < 2¥ and k € N. O

Problem 2.5. If f is Lebesgue integrable on the real line, prove that limy,_.q fR |f(x+
h) — f(z)|dz = 0.

Proof. Tt suffices to show lim, o0 [5 |f(x + hyn) — f(2)|dz = 0 for every (hy,) — 0.
Suppose at first that f is continuous, then g, = |f(x + h,) — f(z)] — 0 and
gn < |f(x 4 hp)| + |f(z)] € L1(R). Then DCT implies that lim, o [p [f(z +
hn) — f(z)|de = 0. Then in general, since C.(R) is dense in L;(R), there is a
p € Cc(R) such that [ [f — p| < €/3. Then by the inequality |f(z + hy) — f(x)] <
|f(z+hy) —p(z+ he)|+ [p(x+ hyn) —p(x)| + | f(z) —p(z)], we can see that for the e
above, there is a N such that whenever n > N, [. |f(z + hy) — f(x)|dz < e. Then

we are done. O
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Problem 2.6. Prove or disprove that there is a sequence (P,,) of polynomials such
that (P, (t)) converges to one for every ¢ € [0, 1] but fol P, (t)dt converge to two as

n — oo

Proof. Tt is not hard to see there is a sequence of continuous functions (f,,) satisfying
the statement. Like f,, is defined to be =1 on [0,1 — 1/n] and f,, be the piecewise
linear function on [1—1/n, 1] which are two line pass points (1-1/n,1), (1-1/2n,2n+1)
and (1,1). It satisfies that f,(¢) — 1 for all ¢t € [0,1] but fol fa(t)dt = 2. Then
for each n, applying Stone-Weirstrass theorem, we can find a polynomial P, with
I/ — Pnlloo < 27™. It is not hard to check (P,) works. O

Problem 2.7. Let (f,) be a uniformly bounded sequence of continuous functions
on [0,1] that converges pointwise to zero. Prove that 0 is in the norm closure in
C10,1] of the convex hull of (fy).

Then, it suffice to verify that 0 € conv{( fn)}w Indeed, by Reisz’s representation
theorem, C[0,1]* = M[0,1]. Then for all € M[0,1], | [ fodp| < [ |fnld|u] — 0 by
DCT since (f,,) are uniform bounded and converges pointwise to 0. Then (f,) — 0

in the weak topology and we are done. ([

Problem 2.8. Assume that X is a reflexive Banach space and ¢ is a continuous
linear functional on X. Prove that there is a norm one vector z such that ¢(x) =

loll. Give an counterexample in the case X =1I;.

Proof. By problem 11 in Jan 2017, we see the Ball B of X is weak compact. It
is also easy to verify that ¢ is weak continuous since it is norm continuous and so

is |¢|. Then |¢| achieve the max value on B, say there is an element x such that

6(2)] = maxyen [0(3)] > supllo(w)] < Iyl < 1} = ¢ll. Thus p(x)] = [l¢] and
lz|| = 1 holds necessarily by |é¢(z)| < ||¢|||=||. Then we can choose a number e
such that ¢(e’?x) = |p(z)| = ||¢|| and ||e??z| = 1.

A counterexample: If = ly. Then let f = (1 —1/n), € l. Then for every
2= (an) € by of norm 1, | f(2)] = | £, (1=1/n)an] < Ty (1=1/n)|an] < 3, an] =
L=l U

Problem 2.9. Suppose that X is a non separable Banach space. Prove that there
is an uncountable subset A of the unit ball of X such that for all x # y € A,
[l —y|| > 0.9.

Proof. Well, if you are familiar with set theory, you can define A by transfinite

recursion by applying Reisz’s lemma, i.e. Problem 5 in Jan 2016.

n

Proof. By Geometrical version of Hahn-Banach theorem, convi{ (f,)} = conv{(fn)} .
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Indeed, we choose any norm one element xg to start. Assume we have defined
{z0, ..., 2}, where « is a countable ordinal i.e. o < wy such that zg # x., implies
that |lzg — y,| > 0.9. To define 441, Let Y = Q —span{zs : 0 < B < a} is a
proper Banach subspace of X since X is non separable. Then, by Problem 5(a)
in Jan 2016, we can choose a z4+1 of norm 1 such that ||xq4+1 — 2] > 0.9 for all
B <a.

Now, If we have defined {zq,...,23 : § < a} and @ < w; is a limit ordinal.
To define z,, in the same manner, firstly define Y = Q —span{xs : 0 < 8 < a},
which is a proper Banach subspace of X and we can pick up z, of norm 1 such
that ||zq — 25| > 0.9 for all 8 < .

Now let A = {z4 : @ < w1} works. O

Problem 2.10. If A is a Borel subset of the line. Then E = {(z,y) : x —y € A}
is a Borel subset of the plane. If m(A) = 0, then m x m(E) = 0.

Proof. f:R? — R by f(z,y) = x — y is continuous. Thus, E = f~1(A) is Borel.
EY={xeR:(z,y) € E} =y+ A which is a null set since m(y + A) = m(A4) = 0.
Thus m x m(E) = [ m(EY)dm(y) = 0. O

3. JANUARY 2016

Problem 3.1. Let E be a measurable subset of [0,1]. Suppose there exists a €
(0,1) such that m(E(J) > a - m(J) for all subintervals J of [0,1]. Prove that
m(E) = 1.

Proof. For any open subset U of [0,1], U = U2, J; for countable many open in-
tervals J;. It implies that m(ENU) = > m(J;NE) > a- >, m(J;) = m(U).
So if m(E) < 1, say, m(E®) = a > 0. For all ¢ > 0, Let U be open such that
mU —E°) =m({UNE) <e But e >mUNE)>am(U) > aa. A contradic-
tion. (]

Problem 3.2. let f,g € L'([0,1]). Suppose fol " f(x)dx = fol xz"g(x)dx for all
integers n > 0. Prove that f = g a.e.

Proof. Let h = f — g. By the assumption, fol p(z)h(z)dz = 0 for all polynomial
p(z) on [0,1]. Then, by Stone-Weirstrass theorem, for all continuous function « on
[0, 1], fol uh = 0. Now, suppose there is a measurable set F which is not a null
set, such that h # 0 on E. Without loss of generality, we may assume h > 0 on
E by replacing E with E* = {x € E: h > 0} or replacing h with —h and E with
E- ={x € E: h < 0}. We may also assume h is bounded on FE, say, h < m
for some m € N. Indeed, since h € L1, Ec = {x € E: h = oo} is null. Then
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consider E = |J°_ {z € E: h < m}|JE~. There is a m such that E,, is not
null and replace E by this E,,. It also implies that f gh > 0. Then, we know
E can be approximated by a finite union of open intervals, say, for every € > 0,
there is a A = | |, I; such that u(FAA) < e. Thus, we have [, h > 0 since
| Jgh—[4h] < [pash < mu(EAA) < me. Then, fix a continuous function u such
that « =1 on A. It implies that [, uh > [, h > 0. A contradiction. O

Problem 3.3. Let f,g

Problem 3.4. Let {g,} be a sequence of measurable functions on [0, 1] such that
(1) |gn(z)| < C for ae.x € [0,1] and (2) limp—o0 [y gn = 0 for every a € [0,1].
Prove that for each f € L'[0, 1], we have lim,, o fol fgn=0

Proof. By some standard approximation argument, we can see S = span{xg,q: 0 <
a < 1} is dense in C,([0, 1]) with respect to L1 —norm. Furthermore, since C.([0, 1])
is also dense in L;[0,1] with respect to L;—norm, S is also dense in L1[0,1] with
respect to Ly—norm. Then, for every f € Lq[0,1], there is a sequence h,, =
ZZK:"{ k§m)X[O,a,i] — f. Then, by (2), for every m, lim,, fol hmgn = 0. Then, for
every €, choose a m such that ||k, — f|l1 < e. Then for such m, there is a N such
that whenever n > N, |f01 hmgn| < €. It implies that | fol fanl < |f01(f — hin)gn| +
| fol hmgn| < Cllhm — fll1 + € < (C + 1)e. Then we are done. O

Problem 3.5. (a) Let X be a normed vector space and Y be a closed liner subspace
of X. Assume Y is a proper subspace, that is, Y # X. Show that, for arbitrary
€ € (0,1), there is an element & € X such that ||z|| =1 and inf ey ||z —y| > 1—€

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector

space, then the unit ball of X is not compact.

Proof. Foralle,andax ¢ Y, inf,cy ||[z—y|| = d > 0. Now, choose a § > 0 such that

ﬁ > 1—e. For this d, choose yg € Y such that ||x—yg|| < d+0. Define u =
. — +Y

Then fJul| =1 and [lu+ Y| = inf,ey | 220 —y|| = L2220

If X is infinite dimensional, we can choose a sequence {z,} by induction in the

T—Yo
llz—yoll -

d

unit ball. We begin with any element x; in the unit ball. Then If {z1, 29, ...,2p_1}
has been defined, then by (a), there is an element z,, of norm 1 such that ||z, +Y| >
1 where Y = span{z1,...,2,—1}. Then {,} witnesses that the unit ball is not

compact since |z, — x| > 3 for all n,m. O

Problem 3.6. Let {fi} be a sequence of increasing functions on [0, 1]. Suppose

> rey fr(z) converges for all x € [0,1]. Denote the limit function by f. Prove that
() =70 fr(x) ae. z €[0,1].
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Proof. n(f(x + 1/n) — f(z)) = n 3 (fulz + 1/n) — fulx)) > n S, [TV f =
n fjﬂ/n > [+ since each f is positive. Then, we know that lim,,_, s n ffﬂ/" S fh=
>k fr(x), which implies that f/'(x) > >, fi(z). In the converse, fix x € [0,1]. S-
ince fr and f are increasing, then the points that fi and f are not continuous
are countable. Now, choose h,, | 0 and define A = {2,z + h,,: n € N} on which
fr and f are continuous. A is closed and thus compact. Let g, (z) = Y7 fr(x).
W.L.O.G, we may assume fi > 0 by replacing fx with fx — fx(0). Then g,, > 0 and
gm T f on A. Define o(h,) = f(erhhij*f(I) and oy, (hy,) = %w, which
are defined on A — x = {0, h,: n € N}, which is also compact. It can be verified
that o and all o, are continuous on A —z and o, 1T 0 on A— x and thus uniformly
by Dini’s theorem. It implies that for every €, there is a M such that whenever
m > M and all n € N, o(h,,) < op(hy) + €. Take a limit with respect to n, we
have f/(z) < g, (x) +e=> 1 fi(x)+e <> fi(x)+e Thus, f'(x) <>, fi(2).

The following argument may be helpful to simplify the proof above but it lacks
some uniform bound of v(k, z) with respect to k now in order to apply DCT. f/(z)
is a good candidate but not good enough. See below.

Fix z € [0,1]. Define u(k z) = fr(z) and let § be the counting measure on
N. Then f(z) = Y, fr(x) = [yu(k,z)dd(k). Let h,, | 0. Also define v,(k,z) =
M. By deﬁmtlon vp(k,z) — f(x). Furthermore, %g_ﬂr) =
Iy Mdcs = [y vn(k, 2)dé(k). It implies that f'(z) = lim,, [y vn(k, 2)dé(k).
If we can apply DCT, then we are done. O

Problem 3.7. Suppose f,g: [0,1] — R are both continuous and of bounded vari-
ation. Show that the set {(f(¢),g(t)) € R?: t € [0,1]} cannot cover the entire unit
square [0, 1] x [0, 1].

Proof. Define r(t) = (f(t),g(t)). Then since on R?, [? norm is equivalent to I3
norm, r is a R2-valued function of BV, say whenever 0 = z¢p < 21 < ... < T, =
b, Sor_ i lr(z;) — r(ziz1)|l2 < oo. Suppose [0,1] x [0,1] can be covered. Divide
[0,1] x [0,1] into n? — 1 small squares, with center z;, in which the length of each
edge is 1/n. Then, we can choose t; such that r(¢;) = z; and reorder ¢; in increasing
order i.e. s1 < s3 < ... < Sp2. Then, Z;i;l l7(s;) = r(sj+1)ll2 > Z;i;l 1/n =
(n? —1)/n=n—1/n — co. A contradiction. O

Problem 3.8. (a) Suppose f is a measurable function on [0,1], then ||f||L=~ =

limy, [ f[| -
(b) If f, > 0 and f,, — f in measure, then [ f <liminf [ f,.

Proof. (a) By Hélder, assuming 1 < p < g < oo, we have [[f[|2 = [[f]? -1 <
APl - L e = [If11% - 1(0,1]) "=, which implies that || f]l, < [ flle- I g = oo
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b = JUfP < | flls - 1([0,1]). Thus, we see ||f], is increasing and bounded
by |fllec. for all €, let E = {z: |f(z)] > ||fllc —€}. Then, [IfIF > [5[fIP =
(Iflloe = €)u(E). Then, |[fll, > u(E)7(|flloc —€). Now, let p — oo, we have
m || fll, = [ fllc — €, which implies that limy, || f[l, = || f]lo

(b) For the liminf,, [ f,,, we can choose a sequence [ f,, such that limy, [ f,, =
liminfnffn. Since f, — f in measure, f,, — f in measure. Then there is a
subsequence f,, ~ converging to f a.e. This implies that [f = [lim, Jo, <
lim,,, ffnkm = liminf,, ffn by Fatou’s lemma. (Il

Problem 3.9. Suppose {f,,} is a sequence of functions in L?[0, 1] such that || f,,[|2 <
1. If f,, — f in measure, then

(a) f € 170, 1];

(b) fn — f weakly in L?;

(¢) fn — f wortnorm in LP for 1 <p <2

Proof. (a) Since f, — f in measure, there is a subsequence f,, converging to f
a.e. Then [ |f? <liminf [ |f,,|> < 1.

(b) fn — f in measure. Then, for all h € L?[0,1], foh — f,h in measure, thus
cauchy in measure. Let A, ,, = {z: | fn(2)h(z) — frm(2)h(z)| > €}. Then, fol | fnh—
fmh| = fAm,n |fah = fmh| + f[(),l]\Am,n |fah — fmh| < fAm,n | fuh] + fAm,n | fmh| +
([0, 1]\ Apn.n). Then, for all €, there is a § such that whenever u(A) < 8, [, |fuh] <
(Sulfal? - [4|02)2 < (f,|h]?)2. Now, choose N big enough, such that m,n > N
implies that p(A., ) < d. Thus, m,n > N also implies that fol |frh — fmh] < 3e.
Thus, f,h is cauchy in L'[0, 1], and thus converges to some g. Meanwhile, f,h — g
in measure, which implies that g = fh and thus | [ f,h— [ fa| < [|fuh— fh] — 0.
Thus, f, — f weakly in L2.

(c) Define E,, = {z: |fo(x) — f(x)] > €}. By the problem 1.8(a), ||fnll, <
Ml < 1 and [flp < Ifl2 < 0. Then, [ [fu = fIP + f. lfa = fIP <

22([g 1fulP + [
integrable(see the Hint in the original problem). Indeed, by Holder, [ ||f.[”?-xa <

2 2 .
I FnlPllz - lxall 2 = [fall5 - w(A)=7 < p(A)==, which shows that [[|fu|?|| are

uniformly integrable. |

fIP) + ew(ES). It remains to show that || f,||P are uniformly

Problem 3.10. Suppose F is a measurable subset of [0, 1] with Lebesgue measure
m(E) = 99/100. Show that there is a x € [0,1] such that for all » € (0,1),
m(EN(x—rax+r))>r/4

Proof. For any subset A C [0, 1], the Hardy-Littlewood Maximal function of x4 is
Myxa(z) = sup,~q 5= f;f: X4 = sup, =m(A\(x —r,z +r)). Now, suppose that

the conclusion is not right, for every = € [0,1], there is a r, such that m(E((z —
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rx,x + 7)) < /4 ie. Tm(E N(z — rzyx + rz)) < 1/2, which implies that
2m m(E°((z—ryg,z+7;)) > 1/2. Let f = xge. Then, for every z € [0,1], M f(x) >
1/2. However, m{z: M f(z) > 1/2} <6 [ xge = 3/50. A contradiction. O

4. August 2015

Problem 4.1. Let f: R — R be a Borel measurable function. For each ¢t € R,
define f;(z) = f(t+x). Prove f;(z) is a Borel measurable function for each fixed .

Proof. f'((—o00,a)) = {z: -+t € f~1((~00,a))} = f~1((—o0,a))—t is Borel. [

Problem 4.2. justify the statement that fol fol %dwdy f fo (@— yz)f;(xy

Proof. To apply the Fubini’s thm, it suffices to show fo fo |w|dxdy < 00.
We integrate this on the quarter of a disk of radius /2 in the first quadrant, which
contains [0, 1] x [0, 1]. We see that fog foﬁ |M|rdrd9 < 2f0% foﬁ drdf =
V2. O

Problem 4.3. Assume that {f,} is a sequence in C0, 1]. Show that:

(a) (fn) converges weakly to 0 iff (f,,) is bounded in C[0, 1] and lim,,_, o frn () =
0 for all ¢t € [0, 1].

(b) If (fn) converges weakly in C[0, 1], then it converges in norm in L, [0, 1] for
all 1 <p < oo.

Proof. Consider C10,1]* = M]0, 1].

(a) If f, — 0 weakly, then, for all u € M[0,1], [ fndp — 0. In particular,
=6, t €[0,1], implies that f,(¢t) — 0. If we view f,, € M|0,1]*, then f,(u) =
w(frn) = 0. Then sup,, |frn(u)| < oo, which sup,, || f»|| < co by Principle of uniform
boundedness theorem. In the converse, by DCT, | [ fndu| < [|fald|u] — 0.

(b) W.L.O.G, we may assume f, — 0 weakly, then by (a), |f»(¢)|? — 0 and
(|fn|?) is bounded. Then DCT implies that f,, — 0 in LP. O

Problem 4.4. Let A be a Lebesgue null set in R. Prove that B = {¢”: z € A} is

also a null set.

Proof. f(x) = e® is absolutely continuous on any interval [a, b] since f is differen-
tiable on [a,b] and |f(z) — f(y)| < M|z — y|, where M = €’ and =,y € [a,b]. At
first, assume that A C [a.b]. A C O, where O,, is a sequence of open sets such
that m(0,,) — 0. Let O, = | ;21 Iijn. Then f(A) C f(On) = ;2 f(Lin), which
implies that m(f(4)) < Yoo, m(f(Lin)) < MY 2, m(l;,) = M -m(0,) — 0.
Then m(f(A)) = 0. If A is not bounded. Define A, = A[n,n + 1) for all
ne€Z. A=|],A,. By the argument above m(f(A,)) = 0 and thus m(f(A)) =

> m(f(An)) = 0. U

dydz.
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Problem 4.5. (b) Show that if f and g are absolutely continuous on [a, ], then
so does f - g.
(c) Give an example to show that (b) is false if [a, b] is replaced by R.

Proof. (b) Since f, g are continuous on [a, b], thus bounded by M and N, respective-
ly. Then, for all € there is a § such that whenever Y " | |z; —y;| < &, >0y |f(zi) —
f(yi)l < e/2N and 370, |g(2:)—g(yi)| < €/2M. Thus 337, | f(w:)g(ws)—f(2:)g(ys)|
i [ (@)g(@i) = f(@a)g(ys) + f(xi)a(ys) — f@a)g(yi)| < M 3T |g9(x:) — gya)| +
N (@) = flyi) =

(¢) f(z) = g(x) = x are absolutely continuous on R. However, for all 6 > 0,
choose disjoint intervals I; = (m;,m; + ;) for i = 1,2,...,n such that ). d;, =,
m; < mip1 and myd > 1/2. then Y. |f(m; + 6;)g(mi + 6;) — f(mi)g(mi)| =
S mE 4 2md; + 07 —mZ| > 23" myd; > myd > 1/2 O

Problem 4.6. Let X,Y be Banach spacesand T: X — Y be a one-to-one, bounded
and linear operator for which the range T'(X) is closed in Y. Show that for each

continuous linear functional ¢ on X there is a continuous linear functional 1 on Y,
so that ¢ =¥ oT.

Proof. By open mapping theorem, ¢ o T~! is a well-defined linear bounded func-
tional on T'(X). Then, by Hahn-Banach Thm, it can be extent to some ¢ on Y,
say, y € T(X) implies that ¢ o T=1(y) = ¢ (y). It implies that (T (x)) = ¢(z) for
all z € X. O

Problem 4.7. Derive Open Mapping Theorem from the Closed Graph Theorem.

Proof. Let T: X — Y surjective, continuous linear. Define the quotient map
T: X/ker(T) = Y by T'(z+ker(T)) = T(x). We show that 7" is an isomorphism.
At first. || T"(x + ker(T))|| = [|T(x + y)|| < [|T[/|lz + y|| for all y € ker(T'), which
implies that ||7”|| < ||T||. In the converse, consider T~!. Let T'(z,) — T(z) and
xn+ker(T) — y+ker(T), say, ||z, —y+ker(T)| — 0. For all n, choose z, € ker(T)
St || 2n+ 20—yl =27 < ||@n —y+ker(T)|| = 0. Thus T(x,) = T(zn+2,) — T(y).
Then T(z,,) — T(x) implies that T(x) = T(y) and thus = + ker(T) = y + ker(T).
By Closed Graph theorem, T’ is an isomorphism, and T" = T'P, where P is the
projection from X to X/ker(T), which is an open map. Then, T(O) = T'(P(0O))
is open for all open subset of X. ([

Problem 4.8. Let Y be a closed subspace of a Banach space X, with norm || - |.
Let ||| be a norm on Y which is equivalent to || - ||, meaning that there is a C' > 1
so that for all y € Y:

1
2yl < 1yl < Cliyll.
Syl < Nyl < Cliyll
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Let S be the set of all linear functionals ¢»: X — R, so that
[¥(y)] < [yl for all y € ¥ and
l(2)] < |lz|| for all z € X.

Prove the following statements:

(1) llalll: = sup,es [¥(x)| defines a norm on X.
2) gl = llyll for y € Y.
(3) The norm |||-|| and || - || are equivalent on X.

Proof. (1) easy to verify.
(2) For y € Y, by definition of |I1 I, Iyl < llsll
In the converse, choose a ¢ € (Y, ||-|1)*, s.t. ¢(y) = ||y|| and norm of ¢ is 1. Thus
forally € Y, |¢(y)| < lyll < Cllyl|. Then, ¢ can be extent to whole X with the
same norm, say for all € X, |¢(z)| < C||lz|. Then ¢ € S and thus |[ly|ll > Ilvlll-
(3) By def of [Ill, Mzl < Cllz||. In the converse, for all z € X, by Hahn-
Banach theorem, there is a ¢ s.t. ¢(z) = |z|, and [¢|| = 1. Define ¢ = %o,
which implies that ¢ (z) = & ||| and [[¢(2)]| < &|lz]| < C||z| for all z € X while
[b@W)Il < &yl < llyll for all y € Y. Thus ¢ € S and thus ||| > &|l].- O

Problem 4.9. Let f be increasing on [0, 1] and let

g(z) = hr;?jgp flz+ h)2—hf(as - h))

Prove that if A = {z € (0,1): g(z) > 1}, then f(1) — f(0) > m*(A).

€ (0,1).

Proof. For all x € A, for all 6 > 0, there is a hs s.t. |hs| < 6 and %{M >
1. Now, we consider closed intervals I’ centered at x of radius hs, then {I%: x €
A, 6> 0} form a Vitali cover of A. By Vitali’s Lemma. For € > 0, there is {13},

such that Y1 | I[(I3) > m*(A) — € and I ﬂI% = @. Then

>Z (@i +hs,) = flai — hs,)) =D 2hs, =D UI) >m*(A) ¢,
i=1 i=1
which implies that f(1) — f(0) > m*(A). O

Problem 4.10. Let A be a uniformly dense subspace of C[0,1] and let B =
{F(x) f t)dt,0 < x < 1,f € A}. Prove B is uniformly dense in
Co|0, 1] = {g e CJo, } g(0) = 0}. And prove that the span of {sin(nz): n € N} is
dense in Cy|0, 1].

Proof. Let B' = {F(x) = [y f(t)dt,0 <z <1 f € C[O 1]}. Flrstly, B is
dense in B’. Indeed, Let F e B and G € B. F(x) = [i(f (t))dt
implies that |F' — G|loo < fo [F@&) —g@®)|dt < |If — glloo- Thon, since A is dcnsc in
C10,1], B is dense in B’.
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B’ is an algebra Let F,G € B', say, F(z) = [ f(t)dt and G(z) = [ g(
Then, F(z = [y (F )+ G()f(t ))dt € B B’ also separate points since
T = fo ldt € B'. Then, by Stone—Welrstrass theorem, B’ is dense in Cy[0,1] and
thus so does B

sin(nz) = [ ncos(nt)dt. Then by the argument above, it suffices to show that
A = span{n cos(nt)} = span{cos(nt)} is dense in C[0, 1]. Indeed, cos(mt) cos(nt) =
(cos(|m — n|t) + cos((m + n)t)) € A and 1 = cos(0-t) € A separates points on
[0,1]. Then Stone-Weirstrass thm implies that A is dense in C[0, 1]. O

5. JANUARY 2015

Problem 5.1. Let f € LY(R). If f: f(z)dzr = 0 for all rational numbers a < b,
prove that f =0 a.e. in R.

Proof. For all ¢ < d € R, let a, | ¢ and b, 1 d, where a,,b, € Q. Define
Jn = Xan,ba]» then fo — f - X(c,q In addition, |f,| < [f| € L'. Then, DCT
implies that f[an,bn] f— f[c,d] f =0. Then, if u({z: f(z) # 0}) > 0, we may assume
p{z: fH(x) #0}) >0by f=f" or f=—f" whenever f # 0. Then, there is a
n € Nsuch that F,, = {z: f*(z) > 1/n} is of positive measure s > 0. For ¢ = s/3n,
there is a 01 such that if 4(A) < 61, | [, fdu| < e. Let 6 = min{s/3,6:}, then there
is an open set A = | ||" I; such that pu(4 A E,) < § and thusuAﬂE ) > s—94.
Then, [, fdu = fAmE fr du—i—fA\E fdp > L(s—6)—e> 3= > 0. A contradiction
to [ f =0 [, fdu=0. O

Problem 5.2. Let {g,} and g be L}(R) and satisfy lim, , ||gn — g|l1 = 0. Prove

that there is a subsequence of g, that converges pointwise to g a.e.

Proof. Let E.p = {z: |gn(z) — g(x)| > €}. Then eu(E. ) < fEm lgn —g] — 0.
Then for any € > 0, for all § > 0, there is a N such that Whénever n > N,
#(Eepn) < 6. Then, we choose {n,,} by induction such that p(F,,) < 2=, where
Fo, ={x: |gn,, (x) —g(z)] > 27™}. Now, define Dy = Jy-_, Fin and D = (72, Dy,
Since p(Dy) < >, 27™ — 0, u(D) = 0. Now, x € D¢ iff there is a k € N,
whenever m > k, |gn,, (z) — g(x)| < 27™. Then we are done. O

Problem 5.3. Let (X, M, u) be a measure space with pu(X) < oo. Let N ¢ M
be a o-algebra. If f > 0 is M-measurable and p-integrable then prove that there

exists an A-measurable and p-integrable function g > 0 so that

/gdu:/fdp, EcN.
E E

Proof. Define v(E) = [, fdu is a measure on M. Then v <« p. Then v|y <
pla- Then there is a g, which is NM-measurable, such that v(F) = fE gdv by
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Radon-Nikodym Theorem. In addition, v(X) = [, fdu < oo implies that g is
p-integrable. a

Problem 5.4. If H is a Hilbert space and T' € L(H) satisfying that (Tx,y) =
(x,Ty) for all x,y € H, then prove that T is bounded.

Proof. Let x,, — x and Tx, — y, we show that Tz = y. Indeed, for all u € H.
(@, Tuy — (x, Tu)| = {x, — 2z, Tu)| < ||z, —z||||Tu|]| = 0 and (Tz,,u) — (y,u) by
the same argument. Thus (T'z,u) = (y,u) for alluw € H. Then (Tx—y, Tx—y) =0,
by replacing u by Tz — y, which implies that Tz = y. Then Closed Graph Thm
implies that T is bounded. O

Problem 5.5. Let f,g € L'(R). Prove that h € L'(R), where h(z) = [, f(

y)dy whenever this integral is finite.

Proof. |h(x |<fR\f )||g(z—y)|dy. Then, by Tonelli, fR|h |d:17<fR fR|f )N|g(z—
y)ldy)de = [o(f [FW)llg(x — y)lde)dy = [g 19l - [z |f] < o0 O

Problem 5.6. Let f,g € C[0,1] with f(z) < g(z) for all z € [0,1].
(1) Prove there is a polynomial p(z) so that

flz) <p(z) <g(x), z€l0,1].

(2) Prove that there is an increasing sequence of polynomials {p,(x)} so that

f(x) <pn(z) <g(z), xe€][0,1]

and p, — ¢ uniformly on [0, 1].

Proof. g — f € C[0,1] and thus define k& = mingcp,1)(g(x) — f(x)) > 0. Then,
by Stone-Weirstrass Thm, there is a polynomial h such that ||f — hlle < k/2,
which implies that for all z € [0,1], f(x) < h(z) + k/2 and g(z) — h(z) = g(z) —
f(z)+ f(z) — h(z) > k/2, which implies that f(z) < h(z)+ k/2 < g(x) and define
p(z) = h(x) + /2.

For (2), define by induction, choose p; such that f(z) < p1(z) < g(z) and if
f(x) < g(z) — 35 < pa(2) < g(z). Choose a pny1 such that g(x) > pnya(z) >
max{g(z) — garr, pa(2)} O

Problem 5.7. If f € L?(R), g € L3(R) and h € L°(R), then prove that fgh €
L (R)

Proof. | f(z)g(x)h(z)] < 31f(2)] + 3lg(x)h(z)]*, while [g(x)h(x)]* < (§lg(=)]* +
3lh(x )\"') This implies that | f(z)g(x)h(z)| < 3| f()* +3]9(x)[> + §|h(x)[°. Then,
[1f(z) (z)|dz < L [1f(2)]2de + % [|g(x)Pda + L [ |h(z)|Cdz < . 0
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Problem 5.8. (1) Y is metric space. Prove y € Y is isolated iff the complement
{y}¢ is not dense in Y’
(2) Let X be a countable nonempty complete metric space. Prove that the set

of isolated points is dense in X.

Proof. If {y} is open, then {y} (N{y}° = 0, which implies that {y}¢ is not dense. In
the converse, {y}° being not dense implies that there is an open set O such that
{y}*N O = 0. Then {y} = O and thus y is an isolated point.

For (2), If not, there is an open set O such that O ({y € X : yis isolated} = 0.
It is not hard to see since X is complete, O itself is a Baire space, say, given a
sequence O,, C O, in which memebers O,, are open and dense in O, then (), O,, is
also dense in O (consider U,, = O, U@c). Then, for all y € O, y is not isolated.
It implies that O \ {y} is dense in O. Then by Baire category theorem, () =
Nyeo(O\{y}) is also dense in O. A contradiction. O

Problem 5.9. Suppose f € LP(R) for all p € (1,2) and that sup,e ;9 || fll, < oc.
Prove that f € L?(R) and that lim, ,o- |||, = [|f]l2-

Proof. ||f|I5 = [ |fIP + [z |f[P, where E¢ = {z: |f(z)| < 1}. Now, for all in-
creasing sequence {p, > 1} 1 2. On E, |f(z)|P" | |f(z)|®>. In addition, on E°,
|f(@)[P» 1 |f(z)|>. Then, MCT implies that [, [f[’" + [,.|f[P» — [g |f|?, which
implies that ||f||;% — [|fll2- Now, since M = sup ¢ (1 9 || fllp < oo, then ||f||1%_1 <
M*3 =1 — 1, which implies that Hf||,% —Ifllp,. — 0 and thus || f|lp, = || fll2-
Since {py} is arbitrary, lim,_,o- || f|l, = | f||2 holds and || f||2 < oo since M =
SUP,e(1,2) IIf1lp < o0 O

Problem 5.10. This problem is same with Problem 8 in Aug 2015

6. Aucust 2014

Problem 6.1. For n € N, let f,,: [0,1] — R be continuous, and for every z € [0, 1]
the sequence (f,(z)) is decreasing. Suppose that f, — f pointwise. Show the

convergence is uniform.

Proof. This is Dini’s theorem. Given an e > 0.Consider open sets U, = {z: | fm(x)—
flz)| <€} ={z: Vo > M,|fn(z)— f(z)| < €} since f,, is monotone. Since f,, — f

pointwise, [0,1] = [J;°_; U,,. Then by the compactness of [0, 1], [0,1] = ngl Un,, -
Now, let M = max{mi,...,my}. Then whenever n > M, for all x € [0,1],
[fm(z) = f2)] <e O

Problem 6.2. Let f € L*(0,00). For z > 0, define g(z) = [~ f(t)e~'"dt. Prove

that g(z) is differentiable for z > 0 with derivative ¢'(z) = [° —tf(t)e~"*dt



A NOTE FOR REAL ANALYSIS QUALIFYING EXAM IN TAMU 17

Proof. Define h(z) = fo IS —tf(t)e~dtdy. Then [ [[°| — tf(t)e"|dtdy =
ISy e vdy) - )]dt = 7| —tf(t)]- (- %e*t"“r%)dt:fooo—|f(t)|e*“”dt+
I 1f@))dt < 2||fH1 Thus, by Fubini, h(z) = fooo Jo e dy) - (—tf(t ))

S (—tf@)-(—te =+ 1ydt = [ f(t)e t=dt— fo t)dt. Then, g = h+ [~ f(t)dt.
We are done. O

Problem 6.3. This problem is same with Problem 1 in Jan 2015.

Problem 6.4. Let f be Lebesgue measurable on [0, 1] with f > 0 a.e. Suppose Fj,
is a sequence of measurable sets in [0, 1] with the property that |, g, f(x)dz — 0 as
k — oo. Prove that u(Ey) — 0 as k — oo.

Proof. Define F,, = {: f(z) > 1/n}. Lu(F,NEy) < e < Jg [ 0as
k — oo. Since F, are increasing to the whole space, u(Ey) = lim,— oo u(Ex () Fr)
uniformly. Indeed, given an €, there is a N such that whenever n > N, for all k,
lw(Ex N Fn) — p(Br)| < p(FS) < €/2. For such N, there is a K, whenever k > K
u(FN N Ex) < N [ f < €/2, which implies pi(Ey) < e. Thus, limyec p(Ex) =
0. (I

Problem 6.5. Let (f,) be a sequence of continuous functions on [0, 1] such that
for each x € [0,1] there is an N, so that f,,(z) > 0 for all n > N,. Show that there
is an open nonempty set U C [0,1] and an N € N, so that f,(xz) >0 for all n > N
and all z € U.

Proof. If not, for all open set U, integer N, thereisan > N and a point € U, such
that f,(x) < 0. Consider open sets E, = {z: Im > n, f(x) < 0} are dense since
E,NU # 0. However, (N, E,, = 0. A contradiction to Baire category theorem. [

Problem 6.6. Let X be an infinite dimensional Banach space. What is the w*-
closure of Sx- = {z*: ||2*|| = 1}. (The best exercise to use Hahn-Banach and

Krein-Milman theorem I have ever seen)

Proof. We claim that Sx- in the w* topology is Ballx~. Indeed, at first, if ||z*|| > 1,
then there is a € X such that ||z|| = 1 and |z*(z)| > 1. Then, there is an € such
that the nbhd of z*, A = {y*: |x*(z) — y*(x)| < €} does not intersect with Ballx«.
To see this, for all y* € A, |y*(z)] > 1 and thus ||y*| > 1.

Then, fix a z* with ||2*|] < 1. Consider a general nbhd of z*, say O =
Mo {y*: |z (2;) — y*(z;)| < €}. Let M = span{z;: i = 1,...,n}. To simplify the
notation, we denote ¢ for 2*. Let Hy = {f € X*: f|um = ¢}. We claim that Hy, is
weak*-closed, convex and nonempty set.

Indeed, any Hahn-Banach extension of ¢, say, f with ||f|| = ||| < 1 implies
that Hy is nonempty. For all fi, fo € Hy, 0 < A <1, Afi + (1 = X) folm = ¢ and



18 XIN MA

[Afi+ (1 = A) f2|| < 1. Thus, Hy is convex. Now, let f,(z) — f(z) for all z € X,
where f,, € Hy. Then since fu|p = &, flm = ¢. In addition, for all z is of norm
1, [fu(z)] < |Ifullllz]l < 1. This implies that |f(z)| < 1 and thus ||f]| < 1, which
implies that Hy is w*-closed.

Then, by Krein-Milman theorem, Ext(H,) # 0. Let f € Ext(H,), we claim
I/l = 1. Indeed, suppose ||f]| < 1. Let g be a linear functional, such that g|p; =0
but ||g|| = 1. Then define f1 = f+(1—|f])g and f1 = f —(1—||f||)g. Then, it can
be verified that || f1]| < 1, || f2]] < 1 and fi|a = f2|ar = ¢. However, f = (f1+f2)/2.
This contradicts to f € Ext(Hy). Thus, f € Sx« () O. We are done. O

Problem 6.7. Let p be a finite measure on the measurable space (£2,%). Prove
the following part of the proof of the above Theorem: If F' € Ly(u), then there
exists an h € Li(p) so that F(xa) = [, hdp for all A e 3.

Proof. F(xa) is a measure on (2,%) such that F(xa) < p. Indeed, F(xy) =
F(0)=0. Let A= ]2, A,. xa =0, Xxa, implies that > | x4, — x4 in
LP(p). Then since F € LP(p)*, F(X" xa,) = >on—y F(xa,) = F(xa), which
implies that F(xa) = > .o, F(xa,). Thus, F(xa) is a measure. If p(A) = 0,
|F(xa)l < K|lxallp = Kp(A)P = 0. Then, Radon-Nikodym theorem applies. O

Problem 6.8. Assume that (z,) is a weakly converging sequence in a Hilbert space
H. Show that there is a subsequence (y,) of (z,) so that %Z?:I y; converges in

norim.

Proof. (x,) is bounded. W.L.O.G, we may assume (z,,) — 0 by subtract its’ limit.
It allows to choose y; by induction such that |(y;, i;ll yr)| < 277. Now, for n > m,
||%271yj—12j 1Yl = < Ej 1Y — 12?1%7%2?:1%_%2?:19”:
<(%—l)2 =19 — gzyzmﬂyw(;,—l)z =19 — 72? m+1y]> (%)

Let € > 0, by the choice of y;, there is a m € N, whenever n > m, |(% —

l) ZT 1Y% ZJ =m+1 yy>| < €. Then (x) < (o : —l)zll Z;nzl yj||2+252+%u Z;’L:m—i-l yj||2 <

(S w1 +2) + 52 (i 195117 +2) + 262 < s (m- sup e llys11* +2) +
#(n sup;en [[y51® +2) +2¢? O

Problem 6.9. Show that a linear functional ¢ on a Banach space X is continuous
iff {x: ¢(22) = 3} is norm closed.

Proof. = is trivial. In the converse. {x: ¢(2z) = 3} = 3/2+ker(¢). Since the shift
by 3/2 is a homeomorphism, then {z: ¢(2x) = 3} is closed iff ker(¢) is closed. Define
¢ X/ker(¢p) — C by ¢'(xz + ker(¢p)) = ¢(z), which is an isomorphism. Indeed,
fix a point 29 € X, s.t. ¢(xg) = r # 0. Then for all w € C, ¢'(¥zo + ker(d)) =

w. Injectivity follows from the definition of the quotient map ¢’. Thus, ¢’ is an
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isomorphism since dim(C) = 1. Thus, ¢ = ¢’ o P is continuous since projection P

is also continuous. O

Problem 6.10. Define T : C1[0,1] — C[0,1] by Tf = f’. Show that T has closed
graph and that T is not bounded.

Proof. Let f(z) = [; f/(t)dt+ M and f(x) = [y fi(t)dt + M,. Let f, — f and

f’ — g under || “|loo- Since f,(0) — f(0), M — M. Then, f; — g implies that
= [y fL(t)dt + M, — [ g(t)dt + M under || - ||o. Thus, g = f.

On the other hand, let f,,(z) = 2™. || falloo = 1 while ||f}||cc = n. Thus, T is

unbounded and 4]0, 1] is not a Banach space under the uniform norm. (]

7. JANUARY 2014

Problem 7.1. Let (X, M, i) be a non atomic measure space with p(X) > 0. Show
that there is a measurable f : X — [0, 00), for which fX fdp = co.

Proof. p is called atomic if there isa A € M such that p(A) > 0 such that whenever
B C A with u(B) < p(A), p(B) = 0. Then, if x4 is not atomic, we can define a
decreasing sequence X = E1 D E3 D .... such that pu(Ey) > p(E2) > p(Es) > ... >
0. Thus define f(x) = m >0ifx e B, \ Eppq and f(z) =0ifz €, En.

Then [ fdu = co. O

Problem 7.2. Assume that p is a finite measure on R™. Prove that there is a
closed set A C R™ with the property that for each closed B & A it follows that

u(A\ B) # 0.

Proof. u is Radon since it is finite. Now, let M = {U : U is open and p(U) = 0}
and O = |J{U : U € M}. For any compact set K C O, there is a subcover i.e.
K c U;_, Ui, where all U; € M. It implies that u(K) = 0 and thus p(O) = 0 by
the regularity of a Radon measure. Define A = R™\ O. Then for all closed set
B ¢ A, B¢ is open and u(B¢) > 0 by definition of A. Then (A \ B) = u(B¢) >0
since p(O \ B) = 0. O

Problem 7.3. For a nonnegative function f € L1[0, 1], prove that lim,, fol Y f(x)dx =
m{z: f(z) > 0}.

Proof. WLOG, We may assume f > 0 everywhere. Let F' = {z : f(z) > 1}.
fol f@)V/rde = [, f(x)"dx + [, f(x)/"dx. On F, f(z)/™ | 1. Similarly, On
Fe, f(z)Y™ 1 1. Then [, f(z)Y/"dz — m(F) and [,. f(z)/"dx — m(F°) by
MCT and thus fo z)Y/"dx — m{x : f(z) > 0}. O
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Problem 7.4. Let f be Lebesgue integrable on (0,1). For 0 < x < 1 define g(z) =
le t=1f(t)dt. Prove that g is Lebesgue integrable on (0,1) and that fo x)dr =

Iy flz)dz

1 11y, 1 t,_
Proof. [ |g(x)|de < [; [ 1t71 f(t)|dtdx = [ fo [t=Lf(t)|dx)dt = fo |f(#)]dt < oo
by Tonelli. Then Fubini is applied here to see fo x)dx = fo x)dx with the same
calculation. Note that the integration area is the upper triangle of the unit square

of z-t axis. i.e. the triangle constructed by lines z =¢, z =1 and ¢t = 0. O

Problem 7.5. Assume that v and p are two finite measures on a measurable space
(X, M). Prove that v < p iff lim,, oo (v — nu)* = 0.

Proof. (<): If u(E) = 0. Then (v — nu)(E) = v(F) and then lim, (v —
nu)t(E) = v(E) = 0, which implies that v < p.

(=): If v < p holds, then v(E) = fE fdu for some positive p-integrable
function f. Then (v —nu)(E) = [,(f —n)dp, which implies that (v —nu)*(E) =
Jp(f —n)tdu. Since (f(x) —n)t | 0 for all z € X. Then MCT implies that
lim, oo (v — npu)™ = 0. O

Problem 7.6. Let (p,) be a sequence of polynomials which converges uniformly
on [0,1] to some function f, and assume that f is not a polynomial. Prove that

lim,, o deg(p,) = oo.

Proof. If not, say, suppose max{deg(p,)} =m. X = {p: pis a polynomial and deg(p) <

m} is a finite dimensional liner subspace of C]0, 1], thus closed, which implies that

f € X is a polynomial. A contradiction. ([

Problem 7.7. Let (f,) be sequence of non zero bounded linear functionals on a
Banach space X. Show that there is an z € X so that f,,(x) # 0 for all n € N.

Proof. For each n, ker(f,) is nowhere dense. Indeed, suppose there is a B(z,€) C
ker(f,,). Then the open Ball of radius €, Ball(e) C ker(f,), which implies that f,, =
0. Thus, if the statement does not hold, X = |J,, ker(f,), which is a contradiction

to Baire category theorem. [

Problem 7.8. Assume that T : l; — [ is bounded, linear and one-to-one. Prove
that T'(11) is not closed in ls.

Proof. If T(l1) is closed, then it is a Hilbert space and thus [; is also a Hilbert space

by open mapping theorem, say T is in fact an isomorphism. A contradiction. [J

Problem 7.9. This is same to Problem 3 in Angust 2015.
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Problem 7.10. Assume that f is a measurable and non negative function on

[0,1]> and that 1 < r < p < oco. Show that (fol(fol f7(x, y)dy)P/mdx)t/P <
1,01

(Jo (o [P (@, y)da) /Pdy)/.

Proof. Define F(x) = fol f"(x,y)dy is a non negative function, s = p/r and s’ be the
conjugate of s. Then for h € Ly[0,1] with |||y =1, Fh € L1[0,1] by Hélder. By
Tonelli’s theorem, fol fol lf™(z, y)h(x)|dydx = fol fol 1" (z,y)|h(z)|dydz = fol

(x)|dz <

cc. Then | [ F(x)h(z)dz| = \fo (Jo [ (@ y)dy)h(x)dz] = | [ ([} f7(z,y)h(z)dr)dy| <

fo LGyl ||hH§’dy = fo fo fp x,y)dz)"/Pdy by Fubini and Hoélder.
Then, [[F||s = sup{|f0 z)h(z)dz| : ||h]ls = 1} < fo fo FP (2, y)dz)" /P dy.
Then we are done since | F||s = (fol (fol I (z,y)dy)P/mdx)"/P. 0

8. Aucust 2013

Problem 8.1. Let 1 < p < oo and f € LP(R). For t € R, let fi(z) = f(x —t)
and consider the mapping G : R — LP(R) given by G(t) = f;. The space LP(R) is
equipped with the usual norm topology. (a) Show that G is continuousif 1 < p < co.
(b) Find an f for which the mapping G is not continuous when p = oo. (c) Let
1 < p,g < oo be conjugate exponents(i.e 1/p + 1/q = 1) Let f € LP(R) and
f € LY(R). Show that h = f % g is continuous, where h(t) = [ f(t)g(t — z)dzx.

Proof. The continuity of G when 1 < p < oo share a same proof of Problem 5 in
August 2016. If p = oo, Consider f = x[o,1). Then for any ¢, — 0, [|X[0,1),t, —
Xpo,nll = 1.

For the last statement, define g;(x) = f(t —x). |h(t) — h(tn)| < [ |f(2)[|g(t —
x) — g(tn, — x)|dx < || fllpllgr, — gtllq by Holder. By the same argument of the first
part, if ¢, — ¢, then ||g;,, — ¢/l — 0. O

Problem 8.2. (a) For f € Cg[0,1], show that f > 0 iff |A — fllec < A for all
Azl

(b) Suppose E C Cg[0,1] is a closed subspace containing the constant function
1. For ¢ € E*, show ¢ > 0 iff ||¢]] = &(1).

(c) If ¢ € E* and ¢ > 0, show that there is a bounded linear functional ¥ on
CRr0,1] so that ¢ > 0 and the restriction of ¢ to F is ¢.

Proof. (a) (=) suppose that f > 0 and A > || f|lco, then 0 < A — f < A, whence
A= flloo < A (<) If there is a « € [0,1] such that f(z) < 0, which entails that
A — f(x) > X and thus |A — f]les > A.

(b)(=) |f| < 1 implies that 1 + f > 0 and thus ¢(1 £ f) > 0 since ¢ > 0.
Thus [6(f)] < 6(1), whence 6(1) > ¢]] and thus 6(1) = ¢]. (<) fix a f > 0.
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O flloe - 1= F) < oWl flloe = fIl < ¢ flloc = &(l[flloc) by part (a). Thus
o(f) =0

(c)By Hahn-Banach thm, there is an extension ¢ of ¢ with the same norm,
which implies that ||¢|| = ||¢|| = ¢(1) = ¢(1). Thus ¢ > 0 by part (b). O

Problem 8.3. (a) Let p and A be mutually singular complex measures defined on
the same measurable space (X, M) and let v = p+ A. Show that |v| = |u| + |Al.
(b) Construct a nonzero atomless Borel measure on [0, 1] that this mutually

singular with respect to Lebesgue measure m.

Proof. (a) Let F is null for A while E is null for u, with E| |F = X. Let P,|J Ny =
F be a Hahn decomposition for A while P3| J N3 = E be a Hahn decomposition
for u. Then P = Py|J P, with Ny = No|J N3 is a Hahn decomposition for v.
Then v+(A) = v(ANP) + v(ANPs) = (AN P2) + M(A P3) and similarly,
v (A) = v(ANN2) + v(ANN3) = (AN Nz2) + M(A( N3), which implies that
vl = Jul + .

(b) Let f be the cantor function and consider the Borel measure py, which is

the Lebesgue-Stieltjes measure associated to f. It can be checked that py works. [

Problem 8.4. Let (f,,) be a sequence of continuous functions on [0, 1] and suppose
that for all « € [0,1], fn(z) is eventually nonnegative. Show that there is an open
interval I C [0, 1] such that for all n large enough, f,, is nonnegative everywhere on
1.

Proof. Define E,, = {x : Ym > n f,,(z) > 0}. Suppose the conclusion is not right.
For all subinterval I C [0,1], [ Q FE,, which entails that F,, is an nowhere dense

closed set. However, [0,1] = {J,, Ey, which is a contradiction. O

Problem 8.5. Let x be a nonatomic signed measure on a measurable space (X, ),
with u(X) = 1. Show that there is a measurable subset £ C X with u(F) = 1/2.

Proof. At first, assume g is a positive measure. We show that there is a function
S :[0,1] — Q such that for all 0 < ¢ <t <1, pu(S(t)) =t and S(t) C S(') (i.e.
increasing function).

Let K ={S:D—Q:DC]I0,1],S is increasing, Vt € D, u(S(t)) =t}. Order
K by S < & if graph(S) C graph(S’). At first, K # () since S : {1} — Q by
S(1) = X. Let {So} be a chain in K. Define S : D, — Q by S(t) = S, (¢) if
t € Dg,. Then S € K. Now, Zorn’s lemma entails that there is a maximal element
So € K. We claim that Dg, = [0,1]. Suppose not, let v = inf{z : ¢ Dg,}, if
u = 0, we extend Sy by defineSp(0) = 0. If u > 0, there is a sequence (u,) C
Dg, 1 u. Then we extend Sy by define So(u) = |J So(un). It is compatible with the
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original Sg. Indeed, since Sy is increasing, pu(So(w)) = p(J So(uy)) = lim, u, = u.
A contradiction to the maximality of Sy. Then S(1/2) is the set we want.
Now, if p is a signed measure. Consider a Hahn decomposition X = P|JN.

& is positive on P with p(P) > 1. By the argument above, there is a E such that
w(E) =1/2. O

Problem 8.6. Compute lim;, o [ %dm

Proof. At first, sin(xz/n) < x/n implies that % < 1+ ——, which is an integrable

”s(i{lf;/zg) 1+z2, DCT implies that lim,, _, o foo %‘%@dm =

o0
Jo 1 = —L_dz =some number. O

function on RT. Then since

_>

Problem 8.7. Prove or disprove: for every real-valued continuous function f on
[0,1] such that f(0) = 0 and every e > 0, there is a real polynomial p having only

odd powers of z, i.e. p= Y1 | agip12* ! such that sup,c(o 4 |f(z) — p(z)| < e

Proof. At first, consider A = {zf(x) : f € C[0,1]} is a subalgebra which separates
points by g(z) = z. It implies that A = {f € C[0,1] : f(0) = 0} by Stone-
Weirstrass theorem. Then similar argument shows that B = {p : p(z) = Y. a;z*'}
is dense in C[0, 1] under ||||oo. Then for every f € C[0,1] with f(0) = 0, there is an
element g € C[0, 1] such that sup,c 1) | f(2) —2g(z)| < €/2 since zg(z) € A. For g,
there is a p € B such that ||g — pllcc < € and thus sup,¢jo 47 |zg(z) — zp(x)] < €/2.
Combine them, we have sup,c( 1) |f() — 2p(z)| < €, where zp(z) is a polynomial

having only odd powers of x. (]
Problem 8.8.

Problem 8.9. Let X be a separable Banach space, let {x,, : n > 1} be a countable,
dense subset of the unit ball of X and let B be the closed unit ball in the dual Banach
space X* of X. For ¢,¢ € B, let d(¢,¢) = > 0", 27"|¢p(xn) — ¢(x,)|. Show that
d is a metric on B whose topology agrees with the weak*-topology of X* restricted
to B.

Proof. Tt suffices to show open sets in two topologies coincide. Let Pps ., = {y*
ly*(z) — 2*(x)| < €} and D = {z,} is dense subset of X. if * € (%) Porc2,.
At first, By the density of D, there is a ¢ and {z,, : k = 1,2,...,m} so that
z* € VL) Pt b, Ciey Per.e.z- Then, there is a r so that d(z*,y*) < r implies
that |z*(z,,) — y* (2, )| < ¢ for k= 1,2,...,m. This implies that * € By(z*,7) C
i1 Po: 520, C© Niey Pot e,

In the converse, for all ¢,v € B, |p(xy,) — ¥(x,)| < ||@]] + |[¥|| < 2, and thus
d(g, ) = 300 27" d(zn) — ()| < 30”27 which implies that for every
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€ > 0, there is a m € N such that for all ¢,¢» € B, -7 1 27"[¢(zn) — ¢(zn)| <
€/2. Now, for all y* € By(z*,¢), .02 27" z* (xn) — y*(@n)] < €/2. Then

n=m-+1
z* € (pey Per e o, C Ba(z*,€). Then we are done. O

Problem 8.10. Let T : X — Y be a linear map between Banach spaces that is
surjective and satisfies ||Tx|| > €||z| for some € > 0 and all z € X. Show that T is
bounded.

Proof. Let x,, — x and Tx,, — y. Since T is surjective, there is a z € X such that
Tz =vy. Then ||Tx, — Tz|| > €|z, — 2| entails that x,, — z and thus z = z and
Tx = y. By closed graph theorem, 7' is bounded. (I

9. JANUARY 2013

Problem 9.1. This problem is same with Problem 4 in Jan 2014.
Problem 9.2. This problem is same with Problem 3 in Aug 2015.
Problem 9.3. This problem is same with Problem 8 in Jan 2016.

Problem 9.4. (a) Is there a signed Borel measure p on [0,1] such that p’(0) =
fol p(x)du(x) for all real polynomials p of degree at most 19.
(b) Is there a signed Borel measure p on [0, 1] such that p'(0) = fol p(z)dp(x)

for all real polynomials p.

Proof. (a) Let X = span{z®:0 < i < 19} C C[0,1] is a finite-dimensional subspace.
Then define F : X — R by F(p) = p’(0) is a linear map and thus continuous
since dim(X) = 20. Then by Hahn-Banach theorem, we can extend F to some
bounded linear map G on C[0, 1]. Then there is a Radon Borel measure such that
G(f) = fol fdu. Restrict G to X, we have p/(0) = fol p(x)du(z).

(b) Suppose it is true. Consider f(z) = az, where a > 0. Then by Stone-
Weirstrass theorem, there is a sequence of polynomials p, () = >_"% a(i,n)x% = f
under ||+||oo- Then | fol pndu—fol fdu] < ||pn—1f|loo —- However, by the assumption,
p,,(0) = 0 and thus a = f01 dp = 0. A contradiction. O

Problem 9.5. Let F be the set of all real valued functions on [0,1] of the form
flit)= m for natural numbers n and for real numbers ¢; ¢ [0,1]. Prove or
disprove: for all continuous real-valued functions g and h on [0, 1] such that g(t) <
h(t) for all t € [0, 1], there is a function a € span F such that g(t) < a(t) < h(t) for
all t € [0,1].

Proof. Tt can be seen that A = span F is an algebra and separates points. Then by
Stone-Weirstrass theorem A = C[0, 1]. Let k = min{h(¢) — g(t)}. Now, choose a; €
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A such that ||a; —gllc < k/3, whence g(t) < a1(t)+k/3 and also a;(t) < g(t)+k/3.
Then we need to find a ag such that k/3 < ax(t) < 2k/3. Indeed, for u = k/2,
there is an as € A so that ||ag — ullec < € < k/6, whence k/3 < as(t) < 2k/3. Now,
let @ = a1 + az. Then g(t) < a(t) < g(t) + k/3 + 2k/3 < h(t) O

Problem 9.6. Let k : [0,1] x [0,1] — R be continuous and let 1 < p < oco. For
f € LP[0,1], let T'f be the function on [0, 1] defined by (T'f)(z fo y)dy.
Show that T'f is a continuous function on [0, 1] and that the image under T of the

unit ball in L?[0, 1] has compact closure in C[0, 1].

Proof. |(Tf)(z) — (Tf)(z")] < fol |k(x,y) — k(z',y)||f(y)|dy. Since k is uniformly
continuous, if |2/ — x| < §, then for all y, |k(z,y) — k(z',y)| < e. Then |(Tf)(x) —
(TF)(z")] <e€l|fll1- Then T'f is continuous. It entails that F = {T'(f) : ||fll, < 1} is
equicontinuous by [(T'f)(x) — (Tf)(z")| < €| fll1 < €| fll, < € whenever |2/ —z| < §.
Now, since [E(z,)| < M on 0,1 [T(H)@) < Ji b llfm)] < MIfl <
M| fll, < M if ||f|l, < M. Then Ascoli-Arzela theorem applies there. O

Problem 9.7. Suppose f : [0,1] — R is absolutely continuous and define g €
C[0,1] by g(z fo (zy)dy. Show that g is absolutely continuous.

Proof. For all €, there is a §, such that > ., |a; — b;| < & implies >, |f(a;) —
f(bi)] <e Forally e[0,1], Y20 |agy —biy| < 37 |a; —bi|d, then 37 [ f(aiy) —

Jie zy)| < €, which implies that >, [g(a;) —g(b:)| < >oi, fol |f(aiy) — f(biy)|dy =
Jo Sy f aiy) = foay)ldy < [y edy = c. O

Problem 9.8. Suppose that we have v; < p; for i = 1,2. Show that 11 X s K
d(v1 Xv v 12
o ;;;) (2,y) = 92-(2) $2 (y)

Proof. p1 X pa(E) = [ po(Ey)dpi(z) = 0 implies that pi{z : po(Ey) # 0} = 0.
Then since v; < p; for i = 1,2, firstly {z : 1a(Ey) # 0} C {z : p2(E;) #
0} and then p{z : vo(F,;) # 0} = 0 implies v1{z : r(E;) # 0} = 0. Thus

w1 X po and

v Xvo(E f vo(E,)dvi(xz) = 0 which implies that vy X v < p1 X p2. In addition,
i xv2(EB) = [y xE(@,y)d(vi xv2) = fx Iy XE x y)f2( )dpa(y)) fr(x)dp (z) =
Jx Uy XE(w,y)fl(w)fz(y)duz( Ddp(x) =[5 fi(2) f2(y)d(u1 % p2). We are done.

[l

Problem 9.9. (a) Let E be a nonzero Banach space and show that for every x € E
there is ¢ € E* such that ||¢]| = 1 and |¢(x)| = ||z||.

(b) Let E and F be Banach spaces, Let 7 : E — F be a bounded linear map
and let 7* : F* — E* be the induced map on dual spaces. Show that ||7*|| = ||=]|.

Proof. (a) A standard application of Hahn-Banach theorem.
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(b) 7*(f) = fom. Then ||7*|| = supy sz |7 ()| = supy =1 juj=1 |f (7 (2))]-
|f(m(2))] < IflI7|l|z| for all f € F*,x € E, whence ||7*|| < ||7||. In the converse,
by part (a), for every z € E, there is a f; € F* such that |f,(7(z))| = ||7(2)]|
and || fz[| = 1. Thus, [|[7*[| = sup| p=1,jz)=1 | f(7(2))] = supjzy=1 [fz(7(2))] = [I7]|.
Then we are done. 0

Problem 9.10. Let X be a real Banach space and suppose C is a closed subset of
X such that
(1) 1 + z2 € C for all z1,25 € C,
(2) Mz e Cforall z € C and A > 0,
(3) for all z € X there exist x1,22 € C such that x = z1 — 5.

Prove that for some M > 0, the unit ball of X is contained in the closure of
Ay ={z1 — 221 x; € C,|las|| < M, (i = 1,2)}. Deduce that every z € X can be
written x = x1 — 29, with 2; € C and ||z;|| < 2M||z||, (i =1,2).

Proof. Suppose that there is a € > 0,n € N so that B.(0) C 4,,, then there is a m
such that Bx C A,,. Indeed, for all z € By, ||ez| < ¢, then there is a sequence

(z% — 2%) € A, so that (¥ — 25) — ex, which implies that %(x’f —25) — 2. Now,

define y¥ = 2% and choose m such that [|y|| < n/e < m.

So suppose the assumption does not hold, say, for all €,n, B.(0) Q A,,, then
A,, is nowhere dense for all n. If not, say there is a y + B.(0) C A,,. Then for all
x € B(0), there is a sequence (2" — zJ') — y + x. For a sequence (y}' — y%) — v,
(27 +y3) — (25 +y2)) — z, which implies that 2 € Ay, and thus B.(0) C Ay,. A
contradiction. However, X = J? | A,,, which is a contradiction to Baire category
theorem. Thus, there is a M such that Bx C Ajy.

Now, fixz € X, z/||z|| € Bx C Aps, then there are yy, 21 such that [y |, || 21| <
M]|z], so that ||z — (y1 — 20)| < (1/2)[}«[|. Then |52 < 1. Then there
are yo, 2o € Apf..... We can do this process by induction to obtain y,, 2, with

[znll, lynll < 27" F M ||zl and ||lo — 357, (yi — 2)|] < 27"||2|, which implies that
T= Y — Y % O
10. August 2012

Problem 10.1. Let (X, M, 1) be a measure space. Prove that L; (X, p) is com-
plete.

Proof. You can find a proof in any real analysis textbook. O

Problem 10.2. Fix two measure spaces (X, M, ) and (Y, NV, v) with u(X),v(Y) >
0. Let f: X — C, and g : X — C be measurable. Suppose f(x) = g(y) (u X v)-a.e.
Show that there is a constant a € C such that f(z) = a p-a.e. and g(y) = a v-a.e.
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Proof. E = {(z,y) : f(z) # g(y)} is null. Then [v(E,)du(z) = 0, which implies
that v(E;) = 0 p-a.e. Now, define K = {z : v(E;) = 0}. Suppose the statement
is not true, say, for all a € C, either pu{z : f(z) # a} > 0 or v{y : g(y) # a} > 0.
Now, fix ¢y € K and let a = f(zp). Then, by definition, E,, = {y : g(y) # a} and
thus v({y : g(y) # a}) = 0. Thus, u({z : f(x) # a}) > 0 by the assumption. Since
V(Bay) = 0, v({y : gy) = a}) = v(Y \ Ey,) > 0. Now, {z: f(z) # a} x {y : g(y) =
a} C E is of positive measure. A contradiction. O

Problem 10.3. Let R?> — R be a Borel measurable function. Suppose for every
ball B, f is integrable on B and fB f =0. What can you deduce about f.

Proof. Since f is locally integrable, then lim,_,¢ m fB(T’I) f(y)dy = f(z) for
a.e. x, which implies that f(x) =0 a.e.

We can also use the proof of Problem 1 in Jan 2015 to solve this. Indeed, we
can still define E,,. By regularity of lebesgue measure. We can shrink F,, to some
compact subset K of positive measure s and obtain a finite cover of K with finite
balls, say K C O = J!_, B, with u(O\ K) < 4. Then replace E,, with K, I,, with

B,, to do the same process. We are done. (]

Problem 10.4. Let X be a locally compact Hausdorff space. Show that C.(X) is
dense in Cy(X).

Proof. C.(X) is an algebra. by Usysohn’s lemma, for all z # y € X, there is a
g € C.(X) so that g(x) # g(y) and for all x € X, there is a function f in C.(X)
such that f(x) = 1. Then by Stone-Weirstrass theorem for the LCH space, C.(X)
is dense in Cy(X). O

Problem 10.5. Give an example of each of the following. justify your answers
(1) A nowhere dense subset of R of positive Lebesgue measure.
(2) A closed, convex subset of a Banach space with multiple points of minimal

norm.

Proof. (1) A first example is any generalized cantor set with positive measure.

We provide another example with more descriptive set theory flavor. Let {r,}

o5} 1 1
nzl(rn I TS e i

7t =) which is dense and (Op,) < 1/m. Then A = (\>_, Oy, is a dense Gs set
with p(A) = 0. Then A° =,, OF, is of positive measure. Then there is a m such

enumerate all rational numbers in R, then define O,, = |J

that Of, is of positive measure and Of, is nowhere dense by definition.
(2) Let X = L1[0,1] and C = {f € X : f[o 1 f(¢)dt = 1}. The minimal norm
of functions in C' is 1. Then {axji 2,1 + (2 — a)X[o,1/21} : 0 > a > 2} C C have

norm 1. O
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Problem 10.6. Let S = {f € L>®(R) : |f(z)| < ﬁa.e.}. Which of the following

statements are true?
(1) The closure of S is compact in the norm topology.
(2) S is closed in the norm topology.

(3) The closure of S is compact in the weak-* topology.

Proof. (1) No. Consider a sequence If S is compact, then there is a sub-

_1

14+nx2"*

1 S 1 .

Tn_o= converges in S under || - [|. Then 17— — 0 uniformly a.e. ,

which is a contradiction since ﬁ does not uniformly converge to 0 on any set
™

sequence

of infinite measure.

(2) For all f, — f under || - ||. Define E, be the null set such that on Ef,
| fn(2)] < H-% Since f,, — f, there is a null set E such on E°, f, — f uniformly.
Then on (|J,, E.UE)°, |f(z)] < ﬁ7 where p((U,, EnUE)) =0

(3) For all f € S, |f(z)] < ﬁ a.e. which implies that || f]lcc < 1. Thus

S C Bx+. Thus S is weak-* compact. O

Problem 10.7. Let T be a bounded operator on a Hilbert space H. Prove that
17T = | T||.

Proof. |T||* = SUD||3 )| =1 |Tz|?> = sup|jz =1 [(Tx, Tx)| = supj =y [(z, T"Tx)| <
Sup|g=1 [l |T*Tx| < |T*T|. In the converse, |T*Txz|| < |T*||T|lz| = [T
implies that ||T*T|| < ||T|?. O

Problem 10.8. (a) Let g be an integrable function on [0,1]. Does there exist a
bounded measurable function f such that || || # 0 and fol fodx = [|g|l1|| f]| -

(b) Let g be a bounded function on [0,1]. Does there exist an integrable
measurable function f such that || f]j; # 0 and fol fadx = ||fll1119]co-

Proof. (a) Define f = sgng. Then fol Fadz = ||gll11 f|lco-
(b) Not always. Consider g = 1y, for some z € [0, 1]. Suppose there is a f €
L1]0,1] so that fol fgdz = || fll1|lgllcc. Then it implies that || f||; = f{x} f=0 0

Problem 10.9. Let F': R — C be a bounded continuous function, u the Lebesgue

measure, and f, g € L' (u). Let f(z) = [ F(zy) f(y)du(y), §(z) = [ F(wy)g(y)du(y)-
Show that f and § are bounded continuous functions which satisfy [ fgdu = [ gfdu

Proof. Let sup,eg |F(2)| = M. Consider |f(z,)—f(z)| < [ |F(zay)—F (xy)|| f(y)|dy.
Since |F(zny)—F(zy)|[f (y)| — 0 pointwise and |F(zny)—F (zy)|[f (y)| < 2M|f (y)|,
which is integrable, DCT implies that [ |F(zny) — F(zy)||f(y)|dy = 0. Thus f is
continuous. |f(z)| < J1F(zy)||f(y)|dp(y) < M| f|l1, which is bounded. The same
proof for g.
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@I 1F@y)llg(y)ldu(y))du(z) < M [1f(@)Igllidu(z) < M| fll1]lgll- Then,
by Fubini, [ fgdp = [ f(2)(] F(zy)g(y)du(y))du(z) = [ 9(y)([ F(zy)f (2)dpu(z))duly) =
[afdp. O

Problem 10.10. Let p, {u, : n € N} be finite Borel measures on [0,1]. pu, — p
vaguely if u, — p if it converges in the weak*-topology. u, — u in moments if for

each k € {0} UN, f[o 1 o*dp, — f[o 1 x¥dp. Show these two concepts coincide.

Proof. (=) trivial, since z* € C[0,1].

(<) For k =0, we have u,,([0,1]) — w([0,1]), which implies that u,([0,1]) are
uniformly bounded, say, we may assume that sup{u,[0,1], [0,1] : n € N} < M for
some M. By Stone-Weirstrass theorem, for each continuous function f on [0, 1],
there is a sequence of polynomials p,,, — f under ||-||«. Then for every € > 0, choose
a m such that ||py, — flleo < €/4M. For the m, there is a N whenever n > N such
that | [ prdpn — pmdp| < €/2 since p,, — p in moments. Then | [ fdu, — [ fdu| <
J1f =pmldpn + [ 1f = pmldp+| [ pmdpn — pmdp| < 2M - (e/4M) +¢/2 = e. Thus
n — 1 vaguely. (]

11. JANUARY 2012

Problem 11.1. Let A be the subset of [0, 1] consisting of numbers whose decimal
expansions contain no sevens. Show that A is Lebesgue measurable, and find its

measure. Why does non-uniqueness of decimal expansions not cause any problems?

Proof. We can obtain A by following the procedure of the construction of the cantor
set. Firstly divide [0, 1] into ten pieces and delete (0.7,0.8] to obtain A;. Then to
obtain A,, for each of the nine subintervals of A, divide it into ten pieces and delete
the seventh subinterval of it. Define the left set to be As.Go on this procedure to
obtain A,. Then define A =, A,. Since we just delete Borel sets from [0,1]. A
is Borel thus measurable. p(4)=1-3% " %ﬁrl = 0.

Since the number who has more than one expansion are exactly {15z : n,p €

N, p < 9} which is countable, thus of measure 0. So it will cause no problems. O

Problem 11.2. Let functions f, be defined by f,(x) = 2%cos(1/z) if > 0 and
fa(0) =0. Find all a > 0 such that

(a) fa is continuous.

(b) fa is of bounded variation on [0, 1].

(

C) fa is absolutely continuous.

Proof. |fo(x)] =] = x“cos(l/x)| < |z* — 0 when x — 0if & > 0. Thus for all & >
0, fo is continuous. For part (b), if @ < 1, define z,, = 1/nm, > |fa(xn) — fo(Tnt1]
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diverges, which implies that f, is not of bounded variation. In the converse, at
first, f, is differentiable on (0,1] for all @ > 0. If & > 1, f, is also differentiable
at 0. Then f,(z fo fL(t)dt. Thus, f, is of bounded variation. For part (c),
If a <1, f, is not of bounded variation, whence f, is not absolutely continuous.

When « > 1, f is of a form of integral, thus absolutely continuous. O

Problem 11.3. Let F denote the family of functions on [0, 1] of the form f(z) =
>0 | an sin(nz), where a,, are real and |a,| < 1/n3. Prove that F is precompact

i.e. totally bounded.

Proof. For all z,y € [0, 1], there is a 2y between them and a M > 0 such that|f(z)—
FWI < X lanl|sin(nz) — sin(ny)| < 3 lan|| cos(no)|[ne —nyl < 32, 7zl —yl <
M|z — y|, whence F is equicontinuous on [0, 1]. For all z € [0,1], {f(z) : f € F}is
bounded since |f(z)| < >, 1/n® < co. Then Ascoli-Arzela’s theorem implies the
result. O

Problem 11.4. Let H be a Hilbert space and W C H be a subspace. Show that
H=W@wt

Proof. You can find the proof in every textbook of functional analysis. O

Problem 11.5. Suppose A is a bounded linear operator on a Hilbert space H
with the property that ||p(A)|| < Csup{|p(z)| : z € S*} = C||p|| with complex
coefficients and a fixed constant C. Show that to each pair x,y € H, there corre-
sponds a complex Borel measure p on the circle S' = {z € C : |z| = 1} such that
(A"z,y) = [ 2"dp(z), n=0,1,2, ...

Proof. Define H(p) = (p(A)z,y) for all polynomials p with complex coefficients.
[H(p)| = [(p(A)z,y)| < llp(Allllzllllyll < Cliplli=lllyll, which implies that H is
extended to whole C'(S') by the density of all polynomials in C'(S*) as a bounded
linear functional. Thus, there is a Radon measure p on S* such that H(f) = [ fdu.
Then H(2") = (A"x,y) = [2"du(z), n=0,1,2,.... O

Problem 11.6. Let ¢ be the linear functional ¢(f) f f @)

(a) Compute the norm of ¢ as a functional on the Banach space C [71, 1] with
uniform norm.

(b) Compute the norm of ¢ as a functional on the normed vector space LC[—1, 1],
which is C[—1, 1] with L' norm.

Proof. (a) [l6] = sup{w( >| Iflle = 1} flle = 1 implies that |£(0)
fil f@®)dt| < |f(0)| + f (t)|dt = 3. Consider the continuous function f, such
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that f, = 1 on [-1,—1/n][1/n,1], f,(0) = —1 and f, is peicewise linear on
[-1/n,1/n]. Then, we can see |¢(fr)| — 3, whence ||¢| = 3.

(b) Define f, = 0on [-1,-1/n]U[1/n,1], f»(0) = n and f,, is peicewise linear
on [—1/n,1/n]. ||fallh =1 and |¢(fn)] = n + f_ll |fr] = n + 1 which implies that
161l = . 0

Problem 11.7. Let X be a normed space, and A C X a subset. Show that A is
bounded(as a set) if and only if it is weakly bounded(that is, f(A) C C is bounded
for each f € X™).

Proof. (=) Suppose that sup{||z| : © € A} < M. Then for all f € X*, |f(z)] <

Il < MIL£I-
(<) X* is a Banach space. Forall f € X*, 2**(f) = f(x). Now sup,c 4 [2**(f)]
sup,c4 | f(x)| < co. Then uniform boundedness theorem implies that sup,c 4 ||z| =

sup, 4 [l < oo, O

Problem 11.8.
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