
A NOTE FOR REAL ANALYSIS QUALIFYING EXAM IN TAMU

XIN MA

Abstract. This note contains solutions to the questions occurred in past Real

analysis qualifying exams from Jan 2009 to Jan 2017. I did most of them. The

rest are folklore. Typos and errors are inevitable. Comments and corrections

are welcome.

1. January 2017

Problem 1.1. Let (Ω,A, µ) be a measure space. Show that if for all n, µ{x :

|fn(x)| > 1/n} < n−3/2, then fn → 0 a.e. (µ).

Proof. Define M =
⋂∞
m=1

⋃∞
n=m{x : |fn(x)| > 1/n}. Then µ(

⋃∞
n=m{x : |fn(x)| >

1/n}) ≤
∑∞
n=m n

−3/2 → 0 as m→∞. Then µ(M) = 0. Consider x ∈M c iff there

is a m such that for all n > m, |fn(x)| ≤ 1/n, i.e. fn → 0 a.e. �

Problem 1.2. Find all f ∈ L1(1, 2) such that for all n ∈ N,
∫ 2

1
x2nf = 0.

Proof. We firstly extend f to be defined on [1, 2] by setting f(1) = 0 and f(2) = 0.

We still denote this function f . Now, f ∈ L1[1, 2] and we still have
∫ 2

1
x2nf = 0.

Then, by Stone-Weirtrass theorem, we have for any continuous function g ∈ C[1, 2],∫ 2

1
gf = 0. Then use the same argument occurred in problem 2 in Jan 2016. We

can see f = 0 a.e. (µ). �

Problem 1.3.

Problem 1.4. We say a sequence {an} in [0, 1] is equi-distributed if for all interval

[c, d] ⊂ [0, 1], limn→∞
|{a1,...,an}

⋂
[c,d]|

n = d − c. Prove that {an} in [0, 1] is equi-

distributed iff limn→∞
∫
fdµn =

∫
fdm for all f ∈ C[0, 1], where µn = 1

n

∑n
k=1 δan

Proof. By the definition, we see that {an} is equi-distributed iff for all interval

[c, d] ⊂ [0, 1], limn→∞
∫
χ[c,d]dµn =

∫
χ[c,d]dm.

Then if limn→∞
∫
fdµn =

∫
fdm for all f ∈ C[0, 1]. For any interval [c, d],

define continuous functions 1 ≥ fn ≥ 0 (n > N for some proper N) with fn = 1 on

[c, d] and supp(fn) ⊂ [c−1/n, d+1/n] such that fn ↓ χ[c,d]. Then for all ε > 0, there

is a K such that whenever k > K, µk[c, d] ≤
∫
fndµk ≤

∫
fndµ+ε ≤ µ[c, d]+2/n+ε.
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Note that this K depend on the interval [c, d]. Use this argument for [c − 1/n, c]

and [d, d + 1/n], for the ε, for each n, there is a Kn such that whenever k >

Kn,
∫
|fn − χ[c,d]|dµk ≤

∫
χ[c−1/n,c]dµk +

∫
χ[d,d+1/n]dµk ≤ 4/n + ε. In addition,∫

|fn − χ[c,d]|dm ≤ 2/n also holds. Now, fix a n big enough such that 6/n < ε

and |
∫
fndµk −

∫
fndm| < ε. This implies that whenever k > Kn, |

∫
χ[c,d]dµk −∫

χ[c,d]dm| ≤
∫
|fn−χ[c,d]|dµk+|

∫
fndµk−

∫
fndm|+

∫
|fn−χ[c,d]|dm ≤ 6/n+2ε <

3ε. We are done.

In the converse, If for all interval [c, d] ⊂ [0, 1], limn→∞
∫
χ[c,d]dµn =

∫
χ[c,d]dm.

Then this pass to all step functions. For any continuous function f ∈ C[0, 1], we

can use step functions to approximate f under the norm ‖ ·‖∞. say for every ε > 0,

there is a 0 = x0 < x1 < ... < xN = 1 such that for all n ≤ N , | max
xn≤x≤xn+1

f(x) −

min
xn≤x≤xn+1

f(x)| < ε. Now, define g =
∑N
n=0 anχ[xn,xn+1] where an is an arbitrary

number between min
xn≤x≤xn+1

f(x) and max
xn≤x≤xn+1

f(x). Thus ‖g − f‖∞ < ε. Now,

for the ε, there is a K such that whenever k > K, |
∫
gdµk −

∫
gdm| < ε and thus

|
∫
fdµk −

∫
fdm| ≤

∫
|fdµk −

∫
gdµk| + |

∫
gdµk −

∫
gdm| + |fdm −

∫
gdm| <

2‖f − g‖∞ + ε < 3ε. We are done. �

Problem 1.5. Let S be a closed subspace of (C[0, 1], ‖ · ‖∞). If S is also closed

under ‖ · ‖∞, then show S is finite-dimensional. (This is question 66 in Folland on

page 178, see also mathoverflow 52509 for other solutions.)

Proof. Consider the identity map id : (S, ‖ · ‖∞) → (S, ‖ · ‖2) is bounded since

‖f‖2 ≤ ‖f‖∞ in general (see problem 8 in Jan 2016). Then by open mapping

theorem. ‖ · ‖2 is equivalent to ‖ · ‖∞ on S, say for all f ∈ S, ‖f‖∞ ≤ C‖f‖2.

Note that S is a Hilbert space. Let {fn}n∈I be an orthonormal basis of S. For all

f ∈ S, x ∈ [0, 1]. The evaluation map δx(f) = f(x) is bounded and linear w.r.t

‖ · ‖2. Indeed, |δx(f)| = |f(x)| ≤ ‖f‖∞ ≤ C‖f‖2. Then, by Riesz’s lemma, there is

a function gx ∈ C[0, 1] such that f(x) = 〈f, gx〉 with ‖gx‖ ≤ C
Thus,

∑
n∈I |f(x)|2 =

∑
n∈I |〈f, gx〉|2 = ‖gx‖22 ≤ C2. Then integration implies

that |I| ≤ C2. �

Problem 1.6.

Problem 1.7.

Problem 1.8. (1) Construct a Lebesgue measurable set A ⊂ R so that for all a < b

0 < m(A
⋂

[a, b]) < b− a.

(2) Suppose that a Lebesgue measurable setA ⊂ R so that for all a < b, m(A
⋂

[a, b]) <

(b− a)/2. Prove that m(A) = 0.
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Proof. (1) It suffices to show the case A ⊂ [0, 1] since then B =
⋃
n∈Z n+A works.

It also suffices to consider all intervals with rational endpoints by density of Q.

Now fix an enumeration of all this subintervals of [0, 1], say {In : n ∈ N}. We define

sequences of generalized cantor set {Cn} and {Dn} such that (i) m(Cn) > 0 and

m(Dn) > 0; (ii) Cn
⋃
Dn ⊂ In; (iii) (

⋃n
k=1 Ck)

⋂
(
⋃n
k=1Dk) = ∅.

We define these sequence by induction. If C1, ...., Cn and D1, ...., Dn are de-

fined. They are nowhere dense closed sets. Then
⋃n
k=1 Ck

⋃
Dk is also nowhere

dense closed set (Indeed, if F1 and F2 are nowhere dense. If there is an open set

O ⊂ F1

⋃
F2, then ∅ 6= O

⋂
F c2 = O

⋂
F c2

⋂
F1 ⊂ F1, which is a contradiction.).

Then In+1\
⋃n
k=1 Ck

⋃
Dk is a nonempty open set which is a union of open intervals

and thus contains a generalized cantor set Cn+1 of positive measure. Then, in the

same manner, we can also choose Dn+1 ⊂ In+1 \ (
⋃n
k=1(Ck

⋃
Dk)

⋃
Cn+1), which

is of positive measure.

Now, define A =
⋃
n Cn. By the construction, A works.

(2) We also restrict to [0, 1]. Then for any subinterval I ⊂ [0, 1], m(A
⋂
I) ≤

0.5m(I) implies that m(Ac
⋂
I) ≥ 0.5m(I). Then apply problem 1 in Jan 2016. �

Problem 1.9. Prove or disprove that the unit ball of L7(0, 1) is closed in L1(0, 1)

Proof. It is right. Indeed, B1 = {f : ‖f‖7 ≤ 1}. Now, let fn → f in L1, where fn ∈
B1. Then, fn → f in measure and thus there is a subsequence fnk → f a.e.(m).

Then |fnk |7 → |f |7 a.e.(m). Then, by Fatou’s lemma,
∫
|f |7 ≤ lim infk

∫
|fnk |7 =

1. �

Problem 1.10. Let C denote the Banach space of all convergent sequences under

the norm ‖·‖∞. Compute the extreme points of the unit ball B of C and determined

that whether B is the closed convex hull of its extreme points.

Proof. Fix a a ∈ B, if there is a m such that |a(m)| < 1. then there is a number

δ such that |a(m) − δ| ≤ 1 and |a(m) + δ| ≤ 1. Now define b1, b2 ∈ B such that

b1(n) = a(n) whenever n 6= m and b1(m) = a(m) + δ. In the same manner, define

b2(n) = a(n) whenever n 6= m and b1(m) = a(m)− δ. Then a = (b1 + b2)/2. Thus

a is not an extreme point.

If for all n, |an| = 1. Let a = (b1 + b2)/2. Since |bi(n)| ≤ 1 for all n,

b1(n) = b2(n) = a(n), which implies that a is an extreme point. Thus Ext(B) =

{a : ∀n, |a(n)| = 1 and ∃N, ∀n > N a(n) ≡ 1 or a(n) ≡ −1.}
(Not sure)I think conv(Ext(B)) 6= B. Let e0 = (1, 1, 1, 1, ....), en = (0, ..0, 1, 0, ...)

for n ≥ 1. It can be seen that ±en ∈ conv(Ext(B)) for all n ≥ 0. Consider {en :

n ≥ 0} form a basis of C. Then conv(Ext(B)) = B iff
∑k
n=0 αnen ∈ conv(Ext(B))
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for 1 ≥ |αn| → 0. This may induce a contradiction of the convexity. Like consider

(1/n).

�

Problem 1.11. Show that every continuous convex function f defined on the

closed unit ball of a reflexive Banach space X can achieve the minimum

Proof. At first, Since X is reflexive, then X is isomorphic to X∗∗. By Alaoglu’s

theorem, The unit ball of X∗∗ is w∗-compact, which implies that the unit ball of

X, B is weak compact. Then, we know that any function is lower semi-continuous

convex iff it is weak lower-semi continuous convex. (This is a classical result in

convex analysis. The epigraph is used in its proof or Mazur’s lemma?) Thus f

is weak-lower-semi-continuous. Thus it can achieve the minimum since B is weak

compact. �

2. August 2016

Problem 2.1. Let A be the set of all real valued functions on [0, 1] for which

f(0) = 0 and |f(t)− f(s)| ≤ (t− s)2 for 0 ≤ s < t ≤ 1.

(1) Prove that A is a compact subset of C[0, 1].

(2) Prove that A is a compact subset of L1[0, 1].

Proof. (1) At first, A is closed. Let fn → f under ‖ · ‖∞. Then |f(t) − f(s)| ≤
|f(t)−fn(t)|+ |fn(t)−fn(s)|+ |fn(s)−f(s)| implies that A is closed. It is also easy

to check that A is equicontinuous and pointwise bounded. Then by Arzela-Ascoli

theorem, A is compact in C[0, 1].

(2) Consider the identity map id from C[0, 1] to L1[0, 1] is continuous by ‖f‖1 =∫
|f | ≤ ‖f‖∞. Then A is compact in L1[0, 1] since any continuous image of a

compact set is also compact. �

Problem 2.2. (1) Let f(x) be a real valued function on the real line that is differ-

entiable almost everywhere. Prove that f ′(x) is a Lebesgue measurable function.

(2) If f is continuous real values function on the real line, then the set of points at

which f is differentiable is measurable.

Proof. f ′(x) = limn→∞ n(f(x + 1/n) − f(x)) if the limit exists. Then Module a

null set, f ′ is measurable. Thus, it is measurable.

For the second part, By the similar argument, We know that D+f , D−f , D+f

and D−f are measurable. Then {x : f ′(x) exsits} = {x : D+f(x) = D−f(x) =

D+f(x) = D−f(x)} is measurable. �
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Problem 2.3. (a) Let f be a real valued function on the unit interval [0, 1]. Prove

that the set of points at which f is discontinuous is a countable union of closed

subsets.

(b) Prove that there is no real valued function on [0, 1] that is continuous at

all rational points but discontinuous at all irrational points.

Proof. Define oscf (x) = inf{supz,y∈U |f(z) − f(y)| : U is a nbhd of x}. It is not

hard to see oscf (x) is a continuous function and {x : f is continuous at x} = {x :

oscf (x) = 0} =
⋂∞
n=1{x : oscf (x) < 1/n}, which is a Gδ set. It implies that

{x : f is discontinuous at x} is a Fσ, i.e. a countable union of closed subsets.

For the second part, suppose there is a one. Then {x : f is continuous at x} =

Q is a dense Gδ set, say co-meager, which means that the set Ir of all irrationals

is meager. Since Q is also countable, thus meager, [0, 1] = Q
⊔
Ir is also a meager

set. A contradiction to the Baire category theorem. �

Problem 2.4. Let (Ω,A, µ) be a finite measure space and (fn) be a sequence

of measurable functions on X that converges pointwise to zero. Prove that (fn)

converges in measure to zero. Show that the converse is false for [0, 1] with Lebesgue

measure.

Proof. Fix ε > 0, δ > 0 and define An = {x : |fn(x)| ≥ ε}. For the δ, By Egoroff’s

theorem, there is a measurable set E with µ(E) < δ and fn → 0 on Ec uniformly,

say, there is a N , whenever n > N , x ∈ Ec, |fn(x)| < ε. It implies that An ⊂ E

and thus µ(An) < δ. It shows that µ(An)→ 0, which means fn → 0 in measure.

For the second part. A counterexample is fn = χ[j/2k,(j+1)/2k] where n = 2k+j

with 0 ≤ j < 2k and k ∈ N. �

Problem 2.5. If f is Lebesgue integrable on the real line, prove that limh→0

∫
R |f(x+

h)− f(x)|dx = 0.

Proof. It suffices to show limn→∞
∫
R |f(x+ hn)− f(x)|dx = 0 for every (hn)→ 0.

Suppose at first that f is continuous, then gn = |f(x + hn) − f(x)| → 0 and

gn ≤ |f(x + hn)| + |f(x)| ∈ L1(R). Then DCT implies that limn→∞
∫
R |f(x +

hn) − f(x)|dx = 0. Then in general, since Cc(R) is dense in L1(R), there is a

p ∈ Cc(R) such that
∫
R |f − p| < ε/3. Then by the inequality |f(x+ hn)− f(x)| ≤

|f(x+hn)−p(x+hn)|+ |p(x+hn)−p(x)|+ |f(x)−p(x)|, we can see that for the ε

above, there is a N such that whenever n > N ,
∫
R |f(x+ hn)− f(x)|dx < ε. Then

we are done. �



6 XIN MA

Problem 2.6. Prove or disprove that there is a sequence (Pn) of polynomials such

that (Pn(t)) converges to one for every t ∈ [0, 1] but
∫ 1

0
Pn(t)dt converge to two as

n→∞

Proof. It is not hard to see there is a sequence of continuous functions (fn) satisfying

the statement. Like fn is defined to be ≡ 1 on [0, 1− 1/n] and fn be the piecewise

linear function on [1−1/n, 1] which are two line pass points (1-1/n,1), (1-1/2n,2n+1)

and (1, 1). It satisfies that fn(t) → 1 for all t ∈ [0, 1] but
∫ 1

0
fn(t)dt ≡ 2. Then

for each n, applying Stone-Weirstrass theorem, we can find a polynomial Pn with

‖fn − Pn‖∞ < 2−n. It is not hard to check (Pn) works. �

Problem 2.7. Let (fn) be a uniformly bounded sequence of continuous functions

on [0, 1] that converges pointwise to zero. Prove that 0 is in the norm closure in

C[0, 1] of the convex hull of (fn).

Proof. By Geometrical version of Hahn-Banach theorem, conv{(fn)}
w

= conv{(fn)}
n
.

Then, it suffice to verify that 0 ∈ conv{(fn)}
w

. Indeed, by Reisz’s representation

theorem, C[0, 1]∗ = M [0, 1]. Then for all µ ∈M [0, 1], |
∫
fndµ| ≤

∫
|fn|d|µ| → 0 by

DCT since (fn) are uniform bounded and converges pointwise to 0. Then (fn)→ 0

in the weak topology and we are done. �

Problem 2.8. Assume that X is a reflexive Banach space and φ is a continuous

linear functional on X. Prove that there is a norm one vector x such that φ(x) =

‖φ‖. Give an counterexample in the case X = l1.

Proof. By problem 11 in Jan 2017, we see the Ball B of X is weak compact. It

is also easy to verify that φ is weak continuous since it is norm continuous and so

is |φ|. Then |φ| achieve the max value on B, say there is an element x such that

|φ(x)| = maxy∈B |φ(y)| ≥ sup{|φ(y)| : ‖y‖ ≤ 1} = ‖φ‖. Thus |φ(x)| = ‖φ‖ and

‖x‖ = 1 holds necessarily by |φ(x)| ≤ ‖φ‖‖x‖. Then we can choose a number eiθ

such that φ(eiθx) = |φ(x)| = ‖φ‖ and ‖eiθx‖ = 1.

A counterexample: l∗1 = l∞. Then let f = (1 − 1/n)n ∈ l∞. Then for every

x = (αn) ∈ l1 of norm 1, |f(x)| = |
∑
n(1−1/n)αn| ≤

∑
n(1−1/n)|αn| <

∑
n |αn| =

1 = ‖f‖. �

Problem 2.9. Suppose that X is a non separable Banach space. Prove that there

is an uncountable subset A of the unit ball of X such that for all x 6= y ∈ A,

‖x− y‖ > 0.9.

Proof. Well, if you are familiar with set theory, you can define A by transfinite

recursion by applying Reisz’s lemma, i.e. Problem 5 in Jan 2016.
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Indeed, we choose any norm one element x0 to start. Assume we have defined

{x0, ..., xα}, where α is a countable ordinal i.e. α < ω1 such that xβ 6= xγ implies

that ‖xβ − yγ‖ > 0.9. To define xα+1, Let Y = Q− span{xβ : 0 ≤ β ≤ α} is a

proper Banach subspace of X since X is non separable. Then, by Problem 5(a)

in Jan 2016, we can choose a xα+1 of norm 1 such that ‖xα+1 − xβ‖ > 0.9 for all

β ≤ α.

Now, If we have defined {x0, ..., xβ : β < α} and α < ω1 is a limit ordinal.

To define xα, in the same manner, firstly define Y = Q− span{xβ : 0 ≤ β < α},
which is a proper Banach subspace of X and we can pick up xα of norm 1 such

that ‖xα − xβ‖ > 0.9 for all β < α.

Now let A = {xα : α < ω1} works. �

Problem 2.10. If A is a Borel subset of the line. Then E = {(x, y) : x − y ∈ A}
is a Borel subset of the plane. If m(A) = 0, then m×m(E) = 0.

Proof. f : R2 → R by f(x, y) = x − y is continuous. Thus, E = f−1(A) is Borel.

Ey = {x ∈ R : (x, y) ∈ E} = y +A which is a null set since m(y +A) = m(A) = 0.

Thus m×m(E) =
∫
m(Ey)dm(y) = 0. �

3. January 2016

Problem 3.1. Let E be a measurable subset of [0, 1]. Suppose there exists α ∈
(0, 1) such that m(E

⋂
J) ≥ α · m(J) for all subintervals J of [0, 1]. Prove that

m(E) = 1.

Proof. For any open subset U of [0, 1], U = t∞i=1Ji for countable many open in-

tervals Ji. It implies that m(E
⋂
U) =

∑
m(Ji

⋂
E) ≥ α ·

∑
m(Ji) = m(U).

So if m(E) < 1, say, m(Ec) = a > 0. For all ε > 0, Let U be open such that

m(U − Ec) = m(U ∩ E) < ε. But ε > m(U ∩ E) ≥ αm(U) ≥ αa. A contradic-

tion. �

Problem 3.2. let f, g ∈ L1([0, 1]). Suppose
∫ 1

0
xnf(x)dx =

∫ 1

0
xng(x)dx for all

integers n ≥ 0. Prove that f = g a.e.

Proof. Let h = f − g. By the assumption,
∫ 1

0
p(x)h(x)dx = 0 for all polynomial

p(x) on [0, 1]. Then, by Stone-Weirstrass theorem, for all continuous function u on

[0, 1],
∫ 1

0
uh = 0. Now, suppose there is a measurable set E which is not a null

set, such that h 6= 0 on E. Without loss of generality, we may assume h > 0 on

E by replacing E with E+ = {x ∈ E : h > 0} or replacing h with −h and E with

E− = {x ∈ E : h < 0}. We may also assume h is bounded on E, say, h < m

for some m ∈ N. Indeed, since h ∈ L1, E∞ = {x ∈ E : h = ∞} is null. Then
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consider E =
⋃∞
m=1{x ∈ E : h < m}

⋃
E∞. There is a m such that Em is not

null and replace E by this Em. It also implies that
∫
E
h > 0. Then, we know

E can be approximated by a finite union of open intervals, say, for every ε > 0,

there is a A =
⊔n
i=1 Ii such that µ(E∆A) < ε. Thus, we have

∫
A
h > 0 since

|
∫
E
h−

∫
A
h| ≤

∫
E∆A

h ≤ mµ(E∆A) < mε. Then, fix a continuous function u such

that u = 1 on A. It implies that
∫
A
uh >

∫
A
h > 0. A contradiction. �

Problem 3.3. Let f, g

Problem 3.4. Let {gn} be a sequence of measurable functions on [0, 1] such that

(1) |gn(x)| ≤ C for a.e.x ∈ [0, 1] and (2) limn→∞
∫ a

0
gn = 0 for every a ∈ [0, 1].

Prove that for each f ∈ L1[0, 1], we have limn→∞
∫ 1

0
fgn = 0

Proof. By some standard approximation argument, we can see S = span{χ[0,a] : 0 ≤
a ≤ 1} is dense in Cc([0, 1]) with respect to L1−norm. Furthermore, since Cc([0, 1])

is also dense in L1[0, 1] with respect to L1−norm, S is also dense in L1[0, 1] with

respect to L1−norm. Then, for every f ∈ L1[0, 1], there is a sequence hm =∑Km
i=1 k

(m)
i χ[0,ai] → f . Then, by (2), for every m, limn→∞

∫ 1

0
hmgn = 0. Then, for

every ε, choose a m such that ‖hm − f‖1 < ε. Then for such m, there is a N such

that whenever n > N , |
∫ 1

0
hmgn| < ε. It implies that |

∫ 1

0
fgn| ≤ |

∫ 1

0
(f − hm)gn|+

|
∫ 1

0
hmgn| ≤ C‖hm − f‖1 + ε ≤ (C + 1)ε. Then we are done. �

Problem 3.5. (a) Let X be a normed vector space and Y be a closed liner subspace

of X. Assume Y is a proper subspace, that is, Y 6= X. Show that, for arbitrary

ε ∈ (0, 1), there is an element x ∈ X such that ‖x‖ = 1 and infy∈Y ‖x− y‖ > 1− ε.
(b) Use part (a) to prove that, if X is an infinite dimensional normed vector

space, then the unit ball of X is not compact.

Proof. For all ε, and a x /∈ Y , infy∈Y ‖x−y‖ = d > 0. Now, choose a δ > 0 such that
d
d+δ > 1−ε. For this δ, choose y0 ∈ Y such that ‖x−y0‖ < d+δ. Define u = x−y0

‖x−y0‖ .

Then ‖u‖ = 1 and ‖u+ Y ‖ = infy∈Y ‖ x−y0
‖x−y0‖ − y‖ = ‖x+Y ‖

‖x−y0‖ >
d
d+δ > 1− ε.

If X is infinite dimensional, we can choose a sequence {xn} by induction in the

unit ball. We begin with any element x1 in the unit ball. Then If {x1, x2, ..., xn−1}
has been defined, then by (a), there is an element xn of norm 1 such that ‖xn+Y ‖ >
1
2 where Y = span{x1, ..., xn−1}. Then {xn} witnesses that the unit ball is not

compact since ‖xn − xm‖ > 1
2 for all n,m. �

Problem 3.6. Let {fk} be a sequence of increasing functions on [0, 1]. Suppose∑∞
k=1 fk(x) converges for all x ∈ [0, 1]. Denote the limit function by f . Prove that

f ′(x) =
∑∞
k=1 f

′
k(x) a.e. x ∈ [0, 1].
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Proof. n(f(x + 1/n) − f(x)) = n
∑
k(fk(x + 1/n) − fk(x)) ≥ n

∑
k

∫ x+1/n

n
f ′k =

n
∫ x+1/n

x

∑
k f
′
k since each f ′k is positive. Then, we know that limn→∞ n

∫ x+1/n

x

∑
k f
′
k =∑

k f
′
k(x), which implies that f ′(x) ≥

∑
k f
′
k(x). In the converse, fix x ∈ [0, 1]. S-

ince fk and f are increasing, then the points that fk and f are not continuous

are countable. Now, choose hn ↓ 0 and define A = {x, x + hn : n ∈ N} on which

fk and f are continuous. A is closed and thus compact. Let gm(x) =
∑m
k fk(x).

W.L.O.G, we may assume fk ≥ 0 by replacing fk with fk−fk(0). Then gm > 0 and

gm ↑ f on A. Define σ(hn) = f(x+hn)−f(x)
hn

and σm(hn) = gm(x+hn)−gm(x)
hn

, which

are defined on A − x = {0, hn : n ∈ N}, which is also compact. It can be verified

that σ and all σm are continuous on A−x and σm ↑ σ on A−x and thus uniformly

by Dini’s theorem. It implies that for every ε, there is a M such that whenever

m > M and all n ∈ N, σ(hn) < σm(hn) + ε. Take a limit with respect to n, we

have f ′(x) ≤ g′m(x) + ε =
∑m
k f
′
k(x) + ε ≤

∑∞
k f ′k(x) + ε. Thus, f ′(x) ≤

∑
k f
′
k(x).

The following argument may be helpful to simplify the proof above but it lacks

some uniform bound of v(k, x) with respect to k now in order to apply DCT. f ′k(x)

is a good candidate but not good enough. See below.

Fix x ∈ [0, 1]. Define u(k, x) = fk(x) and let δ be the counting measure on

N. Then f(x) =
∑
k fk(x) =

∫
N u(k, x)dδ(k). Let hn ↓ 0. Also define vn(k, x) =

u(k,x+hn)−u(k,x)
hn

. By definition, vn(k, x) → f ′k(x). Furthermore, f(x+hn)−f(x)
hn

=∫
N
u(k,x+hn)−u(k,x)

hn
dδ(k) =

∫
N vn(k, x)dδ(k). It implies that f ′(x) = limn

∫
N vn(k, x)dδ(k).

If we can apply DCT, then we are done. �

Problem 3.7. Suppose f, g : [0, 1]→ R are both continuous and of bounded vari-

ation. Show that the set {(f(t), g(t)) ∈ R2 : t ∈ [0, 1]} cannot cover the entire unit

square [0, 1]× [0, 1].

Proof. Define r(t) = (f(t), g(t)). Then since on R2, l21 norm is equivalent to l22

norm, r is a R2-valued function of BV, say whenever 0 = x0 < x1 < ... < xn =

b,
∑n
i=1 ‖r(xi) − r(xi−1)‖2 < ∞. Suppose [0, 1] × [0, 1] can be covered. Divide

[0, 1]× [0, 1] into n2 − 1 small squares, with center zj , in which the length of each

edge is 1/n. Then, we can choose tj such that r(tj) = zj and reorder tj in increasing

order i.e. s1 < s2 < ... < sn2 . Then,
∑n2−1
j=1 ‖r(sj) − r(sj+1)‖2 ≥

∑n2−1
j=1 1/n =

(n2 − 1)/n = n− 1/n→∞. A contradiction. �

Problem 3.8. (a) Suppose f is a measurable function on [0, 1], then ‖f‖L∞ =

limp ‖f‖Lp .

(b) If fn ≥ 0 and fn → f in measure, then
∫
f ≤ lim inf

∫
fn.

Proof. (a) By Hölder, assuming 1 ≤ p < q < ∞, we have ‖f‖pp =
∫
|f |p · 1 ≤

‖|f |p‖ q
p
· ‖1‖ q

q−p
= ‖f‖pq · µ([0, 1])

q−p
q , which implies that ‖f‖p ≤ ‖f‖q. If q = ∞,
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‖f‖pp =
∫
|f |p ≤ ‖f‖∞ · µ([0, 1]). Thus, we see ‖f‖p is increasing and bounded

by ‖f‖∞. for all ε, let E = {x : |f(x)| > ‖f‖∞ − ε}. Then, ‖f‖pp ≥
∫
E
|f |p ≥

(‖f‖∞ − ε)pµ(E). Then, ‖f‖p ≥ µ(E)
1
p (‖f‖∞ − ε). Now, let p → ∞, we have

lim ‖f‖p ≥ ‖f‖∞ − ε, which implies that limp ‖f‖p = ‖f‖∞
(b) For the lim infn

∫
fn, we can choose a sequence

∫
fnk such that limk

∫
fnk =

lim infn
∫
fn. Since fn → f in measure, fnk → f in measure. Then there is a

subsequence fnkm converging to f a.e. This implies that
∫
f =

∫
limm fnkm ≤

limm

∫
fnkm = lim infn

∫
fn by Fatou’s lemma. �

Problem 3.9. Suppose {fn} is a sequence of functions in L2[0, 1] such that ‖fn‖2 ≤
1. If fn → f in measure, then

(a) f ∈ L2[0, 1];

(b) fn → f weakly in L2;

(c) fn → f w.r.t norm in Lp for 1 ≤ p < 2

Proof. (a) Since fn → f in measure, there is a subsequence fnk converging to f

a.e. Then
∫
|f |2 ≤ lim inf

∫
|fnk |2 ≤ 1.

(b) fn → f in measure. Then, for all h ∈ L2[0, 1], fnh→ fnh in measure, thus

cauchy in measure. Let Am,n = {x : |fn(x)h(x)−fm(x)h(x)| ≥ ε}. Then,
∫ 1

0
|fnh−

fmh| =
∫
Am,n

|fnh − fmh| +
∫

[0,1]\Am,n |fnh − fmh| ≤
∫
Am,n

|fnh| +
∫
Am,n

|fmh| +
εµ([0, 1]\Am,n). Then, for all ε, there is a δ such that whenever µ(A) < δ,

∫
A
|fnh| ≤

(
∫
A
|fn|2 ·

∫
A
|h|2)

1
2 ≤ (

∫
A
|h|2)

1
2 . Now, choose N big enough, such that m,n > N

implies that µ(Am,n) < δ. Thus, m,n > N also implies that
∫ 1

0
|fnh − fmh| ≤ 3ε.

Thus, fnh is cauchy in L1[0, 1], and thus converges to some g. Meanwhile, fnh→ g

in measure, which implies that g = fh and thus |
∫
fnh−

∫
fh| ≤

∫
|fnh− fh| → 0.

Thus, fn → f weakly in L2.

(c) Define En = {x : |fn(x) − f(x)| ≥ ε}. By the problem 1.8(a), ‖fn‖p ≤
‖fn‖2 ≤ 1 and ‖f‖p ≤ ‖f‖2 ≤ ∞. Then,

∫
En
|fn − f |p +

∫
Ecn
|fn − f |p ≤

2p(
∫
En
|fn|p +

∫
En
|f |p) + εµ(Ecn). It remains to show that ‖fn‖p are uniformly

integrable(see the Hint in the original problem). Indeed, by Hölder,
∫
‖fn‖p ·χA ≤

‖|fn|p‖ 2
p
· ‖χA‖ 2

2−p
= ‖fn‖p2 · µ(A)

2
2−p ≤ µ(A)

2
2−p , which shows that ‖|fn|p‖ are

uniformly integrable. �

Problem 3.10. Suppose E is a measurable subset of [0, 1] with Lebesgue measure

m(E) = 99/100. Show that there is a x ∈ [0, 1] such that for all r ∈ (0, 1),

m(E
⋂

(x− r, x+ r)) ≥ r/4.

Proof. For any subset A ⊂ [0, 1], the Hardy-Littlewood Maximal function of χA is

MχA(x) = supr>0
1
2r

∫ x+r

x−r χA = supr
1
2rm(A

⋂
(x − r, x + r)). Now, suppose that

the conclusion is not right, for every x ∈ [0, 1], there is a rx such that m(E
⋂

(x−
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rx, x + rx)) ≤ rx/4 i.e. 1
2rx

m(E
⋂

(x − rx, x + rx)) ≤ 1/2, which implies that
1

2rx
m(Ec

⋂
(x−rx, x+rx)) ≥ 1/2. Let f = χEc . Then, for every x ∈ [0, 1], Mf(x) ≥

1/2. However, m{x : Mf(x) ≥ 1/2} ≤ 6
∫
χEc = 3/50. A contradiction. �

4. August 2015

Problem 4.1. Let f : R → R be a Borel measurable function. For each t ∈ R,

define ft(x) = f(t+x). Prove ft(x) is a Borel measurable function for each fixed t.

Proof. f−1
t ((−∞, a)) = {x : x+t ∈ f−1((−∞, a))} = f−1((−∞, a))−t is Borel. �

Problem 4.2. justify the statement that
∫ 1

0

∫ 1

0
(x−y) sin(xy)

x2+y2 dxdy =
∫ 1

0

∫ 1

0
(x−y) sin(xy)

x2+y2 dydx.

Proof. To apply the Fubini’s thm, it suffices to show
∫ 1

0

∫ 1

0
| (x−y) sin(xy)

x2+y2 |dxdy <∞.

We integrate this on the quarter of a disk of radius
√

2 in the first quadrant, which

contains [0, 1]× [0, 1]. We see that
∫ π

2

0

∫√2

0
| r cos(θ)−r sin(θ)

r2 |rdrdθ ≤ 2
∫ π

2

0

∫√2

0
drdθ =

√
2π. �

Problem 4.3. Assume that {fn} is a sequence in C[0, 1]. Show that:

(a) (fn) converges weakly to 0 iff (fn) is bounded in C[0, 1] and limn→∞ fn(t) =

0 for all t ∈ [0, 1].

(b) If (fn) converges weakly in C[0, 1], then it converges in norm in Lp[0, 1] for

all 1 ≤ p <∞.

Proof. Consider C[0, 1]∗ = M [0, 1].

(a) If fn → 0 weakly, then, for all µ ∈ M [0, 1],
∫
fndµ → 0. In particular,

µ = δt, t ∈ [0, 1], implies that fn(t) → 0. If we view fn ∈ M [0, 1]∗, then fn(µ) =

µ(fn)→ 0. Then supn |fn(µ)| <∞, which supn ‖fn‖ <∞ by Principle of uniform

boundedness theorem. In the converse, by DCT, |
∫
fndµ| ≤

∫
|fn|d|µ| → 0.

(b) W.L.O.G, we may assume fn → 0 weakly, then by (a), |fn(t)|p → 0 and

(|fn|p) is bounded. Then DCT implies that fn → 0 in Lp. �

Problem 4.4. Let A be a Lebesgue null set in R. Prove that B = {ex : x ∈ A} is

also a null set.

Proof. f(x) = ex is absolutely continuous on any interval [a, b] since f is differen-

tiable on [a, b] and |f(x) − f(y)| ≤ M |x − y|, where M = eb and x, y ∈ [a, b]. At

first, assume that A ⊂ [a.b]. A ⊂ On, where On is a sequence of open sets such

that m(On) → 0. Let On =
⊔∞
i=1 Ii,n. Then f(A) ⊂ f(On) =

⊔∞
i=1 f(Ii,n), which

implies that m(f(A)) ≤
∑∞
i=1m(f(Ii,n)) ≤ M

∑∞
i=1m(Ii,n) = M · m(On) → 0.

Then m(f(A)) = 0. If A is not bounded. Define An = A
⋂

[n, n + 1) for all

n ∈ Z. A =
⊔
nAn. By the argument above m(f(An)) = 0 and thus m(f(A)) =∑

nm(f(An)) = 0. �
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Problem 4.5. (b) Show that if f and g are absolutely continuous on [a, b], then

so does f · g.

(c) Give an example to show that (b) is false if [a, b] is replaced by R.

Proof. (b) Since f, g are continuous on [a, b], thus bounded by M and N , respective-

ly. Then, for all ε there is a δ such that whenever
∑n
i=1 |xi− yi| < δ,

∑n
i=1 |f(xi)−

f(yi)| < ε/2N and
∑n
i=1 |g(xi)−g(yi)| < ε/2M . Thus

∑n
i=1 |f(xi)g(xi)−f(xi)g(yi)| =∑n

i=1 |f(xi)g(xi)− f(xi)g(yi) +f(xi)g(yi)−f(xi)g(yi)| ≤M
∑n
i=1 |g(xi)− g(yi)|+

N
∑n
i=1 |f(xi)− f(yi)| = ε

(c) f(x) = g(x) = x are absolutely continuous on R. However, for all δ > 0,

choose disjoint intervals Ii = (mi,mi + δi) for i = 1, 2, ..., n such that
∑
i δi = δ,

mi < mi+1 and m1δ ≥ 1/2. then
∑n
i=1 |f(mi + δi)g(mi + δi) − f(mi)g(mi)| =∑n

i=1 |m2
i + 2miδi + δ2

i −m2
i | ≥ 2

∑n
i=1miδi ≥ m1δ ≥ 1/2 �

Problem 4.6. LetX,Y be Banach spaces and T : X → Y be a one-to-one, bounded

and linear operator for which the range T (X) is closed in Y . Show that for each

continuous linear functional φ on X there is a continuous linear functional ψ on Y ,

so that φ = ψ ◦ T .

Proof. By open mapping theorem, φ ◦ T−1 is a well-defined linear bounded func-

tional on T (X). Then, by Hahn-Banach Thm, it can be extent to some ψ on Y ,

say, y ∈ T (X) implies that φ ◦ T−1(y) = ψ(y). It implies that ψ(T (x)) = φ(x) for

all x ∈ X. �

Problem 4.7. Derive Open Mapping Theorem from the Closed Graph Theorem.

Proof. Let T : X → Y surjective, continuous linear. Define the quotient map

T ′ : X/ ker(T )→ Y by T ′(x+ker(T )) = T (x). We show that T ′ is an isomorphism.

At first. ‖T ′(x + ker(T ))‖ = ‖T (x + y)‖ ≤ ‖T‖‖x + y‖ for all y ∈ ker(T ), which

implies that ‖T ′‖ ≤ ‖T‖. In the converse, consider T−1. Let T (xn) → T (x) and

xn+ker(T )→ y+ker(T ), say, ‖xn−y+ker(T )‖ → 0. For all n, choose zn ∈ ker(T )

s.t. ‖xn+zn−y‖−2−n ≤ ‖xn−y+ker(T )‖ → 0. Thus T (xn) = T (xn+zn)→ T (y).

Then T (xn) → T (x) implies that T (x) = T (y) and thus x + ker(T ) = y + ker(T ).

By Closed Graph theorem, T ′ is an isomorphism, and T = T ′P , where P is the

projection from X to X/ ker(T ), which is an open map. Then, T (O) = T ′(P (O))

is open for all open subset of X. �

Problem 4.8. Let Y be a closed subspace of a Banach space X, with norm ‖ · ‖.
Let |||·||| be a norm on Y which is equivalent to ‖ · ‖, meaning that there is a C ≥ 1

so that for all y ∈ Y :
1

C
|||y||| ≤ ‖y‖ ≤ C|||y|||.
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Let S be the set of all linear functionals ψ : X → R, so that

|ψ(y)| ≤ |||y||| for all y ∈ Y and

‖ψ(x)‖ ≤ ‖x‖ for all x ∈ X.

Prove the following statements:

(1) ||||a|||| : = supψ∈S |ψ(x)| defines a norm on X.

(2) ||||y|||| = |||y||| for y ∈ Y .

(3) The norm ||||·|||| and ‖ · ‖ are equivalent on X.

Proof. (1) easy to verify.

(2) For y ∈ Y , by definition of ||||·||||, ||||y|||| ≤ |||y|||.
In the converse, choose a φ ∈ (Y, |||·|||)∗, s.t. φ(y) = |||y||| and norm of φ is 1. Thus

for all y ∈ Y , |φ(y)| ≤ |||y||| ≤ C‖y‖. Then, φ can be extent to whole X with the

same norm, say for all x ∈ X, |φ(x)| ≤ C‖x‖. Then φ ∈ S and thus ||||y|||| ≥ |||y|||.
(3) By def of ||||·||||, ||||x|||| ≤ C‖x‖. In the converse, for all x ∈ X, by Hahn-

Banach theorem, there is a φ s.t. φ(x) = ‖x‖, and ‖φ‖ = 1. Define ψ = 1
Cφ,

which implies that ψ(x) = 1
C ‖x‖ and ‖ψ(z)‖ ≤ 1

C ‖z‖ ≤ C‖z‖ for all z ∈ X while

‖ψ(y)‖ ≤ 1
C ‖y‖ ≤ |||y||| for all y ∈ Y . Thus ψ ∈ S and thus ||||x|||| ≥ 1

C ‖x‖. �

Problem 4.9. Let f be increasing on [0, 1] and let

g(x) = lim sup
h→0

f(x+ h)− f(x− h)

2h
, x ∈ (0, 1).

Prove that if A = {x ∈ (0, 1) : g(x) > 1}, then f(1)− f(0) ≥ m∗(A).

Proof. For all x ∈ A, for all δ > 0, there is a hδ s.t. |hδ| < δ and f(x+hδ)−f(x−hδ)
2hδ

>

1. Now, we consider closed intervals Iδx centered at x of radius hδ, then {Iδx : x ∈
A, δ > 0} form a Vitali cover of A. By Vitali’s Lemma. For ε > 0, there is {Iδixi}

n
i=1

such that
∑n
i=1 l(I

δi
xi) > m∗(A)− ε and Iδixi

⋂
I
δj
xj = ∅. Then

f(1)− f(0) ≥
n∑
i=1

(f(xi + hδi)− f(xi − hδi)) ≥
n∑
i=1

2hδi =

n∑
i=1

l(Iδixi) > m∗(A)− ε,

which implies that f(1)− f(0) ≥ m∗(A). �

Problem 4.10. Let A be a uniformly dense subspace of C[0, 1] and let B =

{F (x) : F (x) =
∫ x

0
f(t)dt, 0 ≤ x ≤ 1, f ∈ A}. Prove B is uniformly dense in

C0[0, 1] = {g ∈ C[0, 1] : g(0) = 0}. And prove that the span of {sin(nx) : n ∈ N} is

dense in C0[0, 1].

Proof. Let B′ = {F (x) : F (x) =
∫ x

0
f(t)dt, 0 ≤ x ≤ 1, f ∈ C[0, 1]}. Firstly, B is

dense in B′. Indeed, Let F ∈ B′ and G ∈ B. F (x) − G(x) =
∫ x

0
(f(t) − g(t))dt

implies that ‖F −G‖∞ ≤
∫ 1

0
|f(t)− g(t)|dt ≤ ‖f − g‖∞. Then, since A is dense in

C[0, 1], B is dense in B′.
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B′ is an algebra. Let F,G ∈ B′, say, F (x) =
∫ x

0
f(t)dt and G(x) =

∫ x
0
g(t)dt.

Then, F (x) ·G(x) =
∫ x

0
(F (t)g(t) +G(t)f(t))dt ∈ B′. B′ also separate points since

x =
∫ x

0
1dt ∈ B′. Then, by Stone-Weirstrass theorem, B′ is dense in C0[0, 1] and

thus so does B

sin(nx) =
∫ x

0
n cos(nt)dt. Then by the argument above, it suffices to show that

A = span{n cos(nt)} = span{cos(nt)} is dense in C[0, 1]. Indeed, cos(mt) cos(nt) =
1
2 (cos(|m − n|t) + cos((m + n)t)) ∈ A and 1 = cos(0 · t) ∈ A separates points on

[0, 1]. Then Stone-Weirstrass thm implies that A is dense in C[0, 1]. �

5. January 2015

Problem 5.1. Let f ∈ L1(R). If
∫ b
a
f(x)dx = 0 for all rational numbers a < b,

prove that f = 0 a.e. in R.

Proof. For all c < d ∈ R, let an ↓ c and bn ↑ d, where an, bn ∈ Q. Define

fn = f · χ[an,bn], then fn → f · χ[c,d]. In addition, |fn| ≤ |f | ∈ L1. Then, DCT

implies that
∫

[an,bn]
f →

∫
[c,d]

f = 0. Then, if µ({x : f(x) 6= 0}) > 0, we may assume

µ({x : f+(x) 6= 0}) > 0 by f = f+ or f = −f− whenever f 6= 0 . Then, there is a

n ∈ N such that En = {x : f+(x) > 1/n} is of positive measure s > 0. For ε = s/3n,

there is a δ1 such that if µ(A) < δ1, |
∫
A
fdµ| < ε. Let δ = min{s/3, δ1}, then there

is an open set A =
⊔m

1 Ii such that µ(A M En) < δ and thus µ(A
⋂
En) ≥ s − δ.

Then,
∫
A
fdµ =

∫
A

⋂
En
f+dµ+

∫
A\En fdµ ≥

1
n (s−δ)−ε ≥ s

3n > 0. A contradiction

to
∫
A
f =

∑m
i=1

∫
Ii
fdµ = 0. �

Problem 5.2. Let {gn} and g be L1(R) and satisfy limn→∞ ‖gn − g‖1 = 0. Prove

that there is a subsequence of gn that converges pointwise to g a.e.

Proof. Let Eε,n = {x : |gn(x) − g(x)| > ε}. Then εµ(Eε,n) ≤
∫
Eε,n
|gn − g| → 0.

Then for any ε > 0, for all δ > 0, there is a N such that whenever n > N ,

µ(Eε,n) < δ. Then, we choose {nm} by induction such that µ(Fm) < 2−m, where

Fm = {x : |gnm(x)−g(x)| > 2−m}. Now, define Dk =
⋃∞
m=k Fm and D =

⋂∞
k=1Dk.

Since µ(Dk) ≤
∑∞
m=k 2−m → 0 , µ(D) = 0. Now, x ∈ Dc iff there is a k ∈ N,

whenever m ≥ k, |gnm(x)− g(x)| < 2−m. Then we are done. �

Problem 5.3. Let (X,M, µ) be a measure space with µ(X) < ∞. Let N ⊂ M
be a σ-algebra. If f ≥ 0 is M-measurable and µ-integrable then prove that there

exists an N -measurable and µ-integrable function g ≥ 0 so that∫
E

gdµ =

∫
E

fdµ, E ∈ N .

Proof. Define ν(E) =
∫
E
fdµ is a measure on M. Then ν � µ. Then ν|N �

µ|N . Then there is a g, which is N -measurable, such that ν(E) =
∫
E
gdν by
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Radon-Nikodym Theorem. In addition, ν(X) =
∫
X
fdµ < ∞ implies that g is

µ-integrable. �

Problem 5.4. If H is a Hilbert space and T ∈ L(H) satisfying that 〈Tx, y〉 =

〈x, Ty〉 for all x, y ∈ H, then prove that T is bounded.

Proof. Let xn → x and Txn → y, we show that Tx = y. Indeed, for all u ∈ H.

|〈xn, Tu〉−〈x, Tu〉| = |〈xn−x, Tu〉| ≤ ‖xn−x‖‖Tu‖ → 0 and 〈Txn, u〉 → 〈y, u〉 by

the same argument. Thus 〈Tx, u〉 = 〈y, u〉 for all u ∈ H. Then 〈Tx−y, Tx−y〉 = 0,

by replacing u by Tx − y, which implies that Tx = y. Then Closed Graph Thm

implies that T is bounded. �

Problem 5.5. Let f, g ∈ L1(R). Prove that h ∈ L1(R), where h(x) =
∫
R f(y)g(x−

y)dy whenever this integral is finite.

Proof. |h(x)| ≤
∫
R |f(y)||g(x−y)|dy. Then, by Tonelli,

∫
R |h(x)|dx ≤

∫
R(
∫
R |f(y)||g(x−

y)|dy)dx =
∫
R(
∫
R |f(y)||g(x− y)|dx)dy =

∫
R |g| ·

∫
R |f | <∞ �

Problem 5.6. Let f, g ∈ C[0, 1] with f(x) < g(x) for all x ∈ [0, 1].

(1) Prove there is a polynomial p(x) so that

f(x) < p(x) < g(x), x ∈ [0, 1].

(2) Prove that there is an increasing sequence of polynomials {pn(x)} so that

f(x) < pn(x) < g(x), x ∈ [0, 1]

and pn → g uniformly on [0, 1].

Proof. g − f ∈ C[0, 1] and thus define k = minx∈[0,1](g(x) − f(x)) > 0. Then,

by Stone-Weirstrass Thm, there is a polynomial h such that ‖f − h‖∞ < k/2,

which implies that for all x ∈ [0, 1], f(x) < h(x) + k/2 and g(x) − h(x) = g(x) −
f(x) + f(x)− h(x) > k/2, which implies that f(x) < h(x) + k/2 < g(x) and define

p(x) = h(x) + k/2.

For (2), define by induction, choose p1 such that f(x) < p1(x) < g(x) and if

f(x) ≤ g(x) − k
2n ≤ pn(x) < g(x). Choose a pn+1 such that g(x) > pn+1(x) ≥

max{g(x)− 1
2n+1 , pn(x)} �

Problem 5.7. If f ∈ L2(R), g ∈ L3(R) and h ∈ L6(R), then prove that fgh ∈
L1(R)

Proof. |f(x)g(x)h(x)| ≤ 1
2 |f(x)|2 + 1

2 |g(x)h(x)|2, while |g(x)h(x)|2 ≤ ( 2
3 |g(x)|3 +

1
3 |h(x)|6). This implies that |f(x)g(x)h(x)| ≤ 1

2 |f(x)|2 + 1
3 |g(x)|3 + 1

6 |h(x)|6. Then,∫
|f(x)g(x)h(x)|dx ≤ 1

2

∫
|f(x)|2dx+ 1

3

∫
|g(x)|3dx+ 1

6

∫
|h(x)|6dx <∞. �
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Problem 5.8. (1) Y is metric space. Prove y ∈ Y is isolated iff the complement

{y}c is not dense in Y

(2) Let X be a countable nonempty complete metric space. Prove that the set

of isolated points is dense in X.

Proof. If {y} is open, then {y}
⋂
{y}c = ∅, which implies that {y}c is not dense. In

the converse, {y}c being not dense implies that there is an open set O such that

{y}c
⋂
O = ∅. Then {y} = O and thus y is an isolated point.

For (2), If not, there is an open set O such that O
⋂
{y ∈ X : yis isolated} = ∅.

It is not hard to see since X is complete, O itself is a Baire space, say, given a

sequence On ⊂ O, in which memebers On are open and dense in O, then
⋂
nOn is

also dense in O (consider Un = On
⋃
O
c
). Then, for all y ∈ O, y is not isolated.

It implies that O \ {y} is dense in O. Then by Baire category theorem, ∅ =⋂
y∈O(O \ {y}) is also dense in O. A contradiction. �

Problem 5.9. Suppose f ∈ Lp(R) for all p ∈ (1, 2) and that supp∈(1,2) ‖f‖p <∞.

Prove that f ∈ L2(R) and that limp→2− ‖f‖p = ‖f‖2.

Proof. ‖f‖pp =
∫
E
|f |p +

∫
Ec
|f |p, where Ec = {x : |f(x)| ≤ 1}. Now, for all in-

creasing sequence {pn > 1} ↑ 2. On E, |f(x)|pn ↓ |f(x)|2. In addition, on Ec,

|f(x)|pn ↑ |f(x)|2. Then, MCT implies that
∫
E
|f |pn +

∫
Ec
|f |pn →

∫
R |f |

2, which

implies that ‖f‖
pn
2
pn → ‖f‖2. Now, since M = supp∈(1,2) ‖f‖p <∞, then ‖f‖

pn
2 −1
pn ≤

M
pn
2 −1 → 1, which implies that ‖f‖

pn
2
pn − ‖f‖pn → 0 and thus ‖f‖pn → ‖f‖2.

Since {pn} is arbitrary, limp→2− ‖f‖p = ‖f‖2 holds and ‖f‖2 <∞ since M =

supp∈(1,2) ‖f‖p <∞. �

Problem 5.10. This problem is same with Problem 8 in Aug 2015

6. August 2014

Problem 6.1. For n ∈ N, let fn : [0, 1]→ R be continuous, and for every x ∈ [0, 1]

the sequence (fn(x)) is decreasing. Suppose that fn → f pointwise. Show the

convergence is uniform.

Proof. This is Dini’s theorem. Given an ε > 0.Consider open sets Um = {x : |fm(x)−
f(x)| < ε} = {x : ∀x ≥M, |fm(x)−f(x)| < ε} since fm is monotone. Since fm → f

pointwise, [0, 1] =
⋃∞
m=1 Um. Then by the compactness of [0, 1], [0, 1] =

⋃N
n=1 Umn .

Now, let M = max{m1, ...,mN}. Then whenever n > M , for all x ∈ [0, 1],

|fm(x)− f(x)| < ε. �

Problem 6.2. Let f ∈ L1(0,∞). For x > 0, define g(x) =
∫∞

0
f(t)e−txdt. Prove

that g(x) is differentiable for x > 0 with derivative g′(x) =
∫∞

0
−tf(t)e−txdt
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Proof. Define h(x) =
∫ x

0

∫∞
0
−tf(t)e−tydtdy. Then

∫ x
0

∫∞
0
| − tf(t)e−ty|dtdy =∫∞

0
(
∫ x

0
e−tydy) · | − tf(t)|dt =

∫∞
0
| − tf(t)| · (− 1

t e
−tx + 1

t )dt =
∫∞

0
−|f(t)|e−txdt+∫∞

0
|f(t)|dt ≤ 2‖f‖1. Thus, by Fubini, h(x) =

∫∞
0

(
∫ x

0
e−tydy) · (−tf(t))dt =∫∞

0
(−tf(t))·(− 1

t e
−tx+ 1

t )dt =
∫∞

0
f(t)e−txdt−

∫∞
0
f(t)dt. Then, g = h+

∫∞
0
f(t)dt.

We are done. �

Problem 6.3. This problem is same with Problem 1 in Jan 2015.

Problem 6.4. Let f be Lebesgue measurable on [0, 1] with f > 0 a.e. Suppose Ek

is a sequence of measurable sets in [0, 1] with the property that
∫
Ek
f(x)dx→ 0 as

k →∞. Prove that µ(Ek)→ 0 as k →∞.

Proof. Define Fn = {x : f(x) > 1/n}. 1
nµ(Fn

⋂
Ek) ≤

∫
Fn

⋂
Ek
f ≤

∫
Ek
f → 0 as

k → ∞. Since Fn are increasing to the whole space, µ(Ek) = limn→∞ µ(Ek
⋂
Fn)

uniformly. Indeed, given an ε, there is a N such that whenever n ≥ N , for all k,

|µ(Ek
⋂
Fn) − µ(Ek)| ≤ µ(F cn) < ε/2. For such N , there is a K, whenever k > K

µ(FN
⋂
Ek) ≤ N

∫
Ek
f ≤ ε/2, which implies µ(Ek) < ε. Thus, limk→∞ µ(Ek) =

0. �

Problem 6.5. Let (fn) be a sequence of continuous functions on [0, 1] such that

for each x ∈ [0, 1] there is an Nx so that fn(x) ≥ 0 for all n ≥ Nx. Show that there

is an open nonempty set U ⊂ [0, 1] and an N ∈ N, so that fn(x) ≥ 0 for all n ≥ N
and all x ∈ U .

Proof. If not, for all open set U , integer N , there is a n > N and a point x ∈ U , such

that fn(x) < 0. Consider open sets En = {x : ∃m ≥ n, f(x) < 0} are dense since

En
⋂
U 6= ∅. However,

⋂
nEn = ∅. A contradiction to Baire category theorem. �

Problem 6.6. Let X be an infinite dimensional Banach space. What is the w∗-

closure of SX∗ = {x∗ : ‖x∗‖ = 1}. (The best exercise to use Hahn-Banach and

Krein-Milman theorem I have ever seen)

Proof. We claim that SX∗ in the w∗ topology is BallX∗ . Indeed, at first, if ‖x∗‖ > 1,

then there is a x ∈ X such that ‖x‖ = 1 and |x∗(x)| > 1. Then, there is an ε such

that the nbhd of x∗, A = {y∗ : |x∗(x)− y∗(x)| < ε} does not intersect with BallX∗ .

To see this, for all y∗ ∈ A, |y∗(x)| > 1 and thus ‖y∗‖ > 1.

Then, fix a x∗ with ‖x∗‖ ≤ 1. Consider a general nbhd of x∗, say O =⋂n
i=1{y∗ : |x∗(xi) − y∗(xi)| < ε}. Let M = span{xi : i = 1, ..., n}. To simplify the

notation, we denote φ for x∗. Let Hφ = {f ∈ X∗ : f |M = φ}. We claim that Hψ is

weak∗-closed, convex and nonempty set.

Indeed, any Hahn-Banach extension of φ, say, f with ‖f‖ = ‖ψ‖ ≤ 1 implies

that Hφ is nonempty. For all f1, f2 ∈ Hφ, 0 < λ < 1, λf1 + (1 − λ)f2|M = φ and
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‖λf1 + (1− λ)f2‖ ≤ 1. Thus, Hφ is convex. Now, let fµ(x) → f(x) for all x ∈ X,

where fµ ∈ Hφ. Then since fµ|M = φ, f |M = φ. In addition, for all x is of norm

1, |fµ(x)| ≤ ‖fµ‖‖x‖ ≤ 1. This implies that |f(x)| ≤ 1 and thus ‖f‖ ≤ 1, which

implies that Hφ is w∗-closed.

Then, by Krein-Milman theorem, Ext(Hφ) 6= ∅. Let f ∈ Ext(Hφ), we claim

‖f‖ = 1. Indeed, suppose ‖f‖ < 1. Let g be a linear functional, such that g|M = 0

but ‖g‖ = 1. Then define f1 = f+(1−‖f‖)g and f1 = f− (1−‖f‖)g. Then, it can

be verified that ‖f1‖ ≤ 1, ‖f2‖ ≤ 1 and f1|M = f2|M = φ. However, f = (f1+f2)/2.

This contradicts to f ∈ Ext(Hφ). Thus, f ∈ SX∗
⋂
O. We are done. �

Problem 6.7. Let µ be a finite measure on the measurable space (Ω,Σ). Prove

the following part of the proof of the above Theorem: If F ∈ L∗p(µ), then there

exists an h ∈ L1(µ) so that F (χA) =
∫
A
hdµ for all A ∈ Σ.

Proof. F (χA) is a measure on (Ω,Σ) such that F (χA) � µ. Indeed, F (χ∅) =

F (0) = 0. Let A =
⊔∞
n=1An. χA =

∑∞
n=1 χAn implies that

∑m
n=1 χAn → χA in

Lp(µ). Then since F ∈ Lp(µ)∗, F (
∑m
n=1 χAn) =

∑m
n=1 F (χAn) → F (χA), which

implies that F (χA) =
∑∞
n=1 F (χAn). Thus, F (χA) is a measure. If µ(A) = 0,

|F (χA)| ≤ K‖χA‖p = Kµ(A)p = 0. Then, Radon-Nikodym theorem applies. �

Problem 6.8. Assume that (xn) is a weakly converging sequence in a Hilbert space

H. Show that there is a subsequence (yn) of (xn) so that 1
n

∑n
j=1 yj converges in

norm.

Proof. (xn) is bounded. W.L.O.G, we may assume (xn)→ 0 by subtract its’ limit.

It allows to choose yj by induction such that |〈yj ,
∑j−1
k=1 yk〉| < 2−j . Now, for n > m,

‖ 1
m

∑m
j=1 yj −

1
n

∑n
j=1 yj‖ = 〈 1

m

∑m
j=1 yj −

1
n

∑n
j=1 yj ,

1
m

∑m
j=1 yj −

1
n

∑n
j=1 yj〉 =

〈( 1
m −

1
n )

∑m
j=1 yj −

1
n

∑n
j=m+1 yj , (

1
m −

1
n )

∑m
j=1 yj −

1
n

∑n
j=m+1 yj〉 (?)

Let ε > 0, by the choice of yj , there is a m ∈ N , whenever n ≥ m, |( 1
m −

1
n )

∑m
j=1 yj ,

1
n

∑n
j=m+1 yj〉| < ε2. Then (?) ≤ ( 1

m−
1
n )2‖

∑m
j=1 yj‖2+2ε2+ 1

n2 ‖
∑n
j=m+1 yj‖2 ≤

1
m2 (

∑n
j=1 ‖yj‖2 + 2) + 1

n2 (
∑n
j=m+1 ‖yj‖2 + 2) + 2ε2 ≤ 1

m2 (m · supj∈N ‖yj‖2 + 2) +
1
n2 (n · supj∈N ‖yj‖2 + 2) + 2ε2 �

Problem 6.9. Show that a linear functional φ on a Banach space X is continuous

iff {x : φ(2x) = 3} is norm closed.

Proof. =⇒ is trivial. In the converse. {x : φ(2x) = 3} = 3/2+ker(φ). Since the shift

by 3/2 is a homeomorphism, then {x : φ(2x) = 3} is closed iff ker(φ) is closed. Define

φ′ : X/ ker(φ) → C by φ′(x + ker(φ)) = φ(x), which is an isomorphism. Indeed,

fix a point x0 ∈ X, s.t. φ(x0) = r 6= 0. Then for all w ∈ C, φ′(wr x0 + ker(φ)) =

w. Injectivity follows from the definition of the quotient map φ′. Thus, φ′ is an
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isomorphism since dim(C) = 1. Thus, φ = φ′ ◦ P is continuous since projection P

is also continuous. �

Problem 6.10. Define T : C1[0, 1]→ C[0, 1] by Tf = f ′. Show that T has closed

graph and that T is not bounded.

Proof. Let f(x) =
∫ x

0
f ′(t)dt + M and fn(x) =

∫ x
0
f ′n(t)dt + Mn. Let fn → f and

f ′n → g under ‖ · ‖∞. Since fn(0) → f(0), Mn → M . Then, f ′n → g implies that

fn(x) =
∫ x

0
f ′n(t)dt+Mn →

∫ x
0
g(t)dt+M under ‖ · ‖∞. Thus, g = f ′.

On the other hand, let fn(x) = xn. ‖fn‖∞ = 1 while ‖f ′n‖∞ = n. Thus, T is

unbounded and C1[0, 1] is not a Banach space under the uniform norm. �

7. January 2014

Problem 7.1. Let (X,M, µ) be a non atomic measure space with µ(X) > 0. Show

that there is a measurable f : X → [0,∞), for which
∫
X
fdµ =∞.

Proof. µ is called atomic if there is a A ∈M such that µ(A) > 0 such that whenever

B ⊂ A with µ(B) < µ(A), µ(B) = 0. Then, if µ is not atomic, we can define a

decreasing sequence X = E1 ⊃ E2 ⊃ .... such that µ(E1) > µ(E2) > µ(E3) > ... >

0. Thus define f(x) = 1
µ(En\En+1) > 0 if x ∈ En \En+1 and f(x) = 0 if x ∈

⋂
nEn.

Then
∫
X
fdµ =∞. �

Problem 7.2. Assume that µ is a finite measure on Rn. Prove that there is a

closed set A ⊂ Rn with the property that for each closed B  A it follows that

µ(A \B) 6= 0.

Proof. µ is Radon since it is finite. Now, let M = {U : U is open and µ(U) = 0}
and O =

⋃
{U : U ∈ M}. For any compact set K ⊂ O, there is a subcover i.e.

K ⊂
⋃n
i=1 Ui, where all Ui ∈ M . It implies that µ(K) = 0 and thus µ(O) = 0 by

the regularity of a Radon measure. Define A = Rn \ O. Then for all closed set

B  A, Bc is open and µ(Bc) > 0 by definition of A. Then µ(A \B) = µ(Bc) > 0

since µ(O \B) = 0. �

Problem 7.3. For a nonnegative function f ∈ L1[0, 1], prove that limn→∞
∫ 1

0
n
√
f(x)dx =

m{x : f(x) > 0}.

Proof. WLOG, We may assume f > 0 everywhere. Let F = {x : f(x) ≥ 1}.∫ 1

0
f(x)1/ndx =

∫
F
f(x)1/ndx +

∫
F c
f(x)1/ndx. On F , f(x)1/n ↓ 1. Similarly, On

F c, f(x)1/n ↑ 1. Then
∫
F
f(x)1/ndx → m(F ) and

∫
F c
f(x)1/ndx → m(F c) by

MCT and thus
∫ 1

0
f(x)1/ndx→ m{x : f(x) > 0}. �
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Problem 7.4. Let f be Lebesgue integrable on (0, 1). For 0 < x < 1 define g(x) =∫ 1

x
t−1f(t)dt. Prove that g is Lebesgue integrable on (0, 1) and that

∫ 1

0
g(x)dx =∫ 1

0
f(x)dx.

Proof.
∫ 1

0
|g(x)|dx ≤

∫ 1

0

∫ 1

x
|t−1f(t)|dtdx =

∫ 1

0
(
∫ t

0
|t−1f(t)|dx)dt =

∫ 1

0
|f(t)|dt < ∞

by Tonelli. Then Fubini is applied here to see
∫ 1

0
g(x)dx =

∫ 1

0
f(x)dx with the same

calculation. Note that the integration area is the upper triangle of the unit square

of x-t axis. i.e. the triangle constructed by lines x = t, x = 1 and t = 0. �

Problem 7.5. Assume that ν and µ are two finite measures on a measurable space

(X,M). Prove that ν � µ iff limn→∞(ν − nµ)+ = 0.

Proof. (⇐): If µ(E) = 0. Then (ν − nµ)(E) = ν(E) and then limn→∞(ν −
nµ)+(E) = ν(E) = 0, which implies that ν � µ.

(⇒): If ν � µ holds, then ν(E) =
∫
E
fdµ for some positive µ-integrable

function f . Then (ν − nµ)(E) =
∫
E

(f − n)dµ, which implies that (ν − nµ)+(E) =∫
E

(f − n)+dµ. Since (f(x) − n)+ ↓ 0 for all x ∈ X. Then MCT implies that

limn→∞(ν − nµ)+ = 0. �

Problem 7.6. Let (pn) be a sequence of polynomials which converges uniformly

on [0, 1] to some function f , and assume that f is not a polynomial. Prove that

limn→∞ deg(pn) =∞.

Proof. If not, say, suppose max{deg(pn)} = m. X = {p : p is a polynomial and deg(p) ≤
m} is a finite dimensional liner subspace of C[0, 1], thus closed, which implies that

f ∈ X is a polynomial. A contradiction. �

Problem 7.7. Let (fn) be sequence of non zero bounded linear functionals on a

Banach space X. Show that there is an x ∈ X so that fn(x) 6= 0 for all n ∈ N.

Proof. For each n, ker(fn) is nowhere dense. Indeed, suppose there is a B(x, ε) ⊂
ker(fn). Then the open Ball of radius ε, Ball(ε) ⊂ ker(fn), which implies that fn ≡
0. Thus, if the statement does not hold, X =

⋃
n ker(fn), which is a contradiction

to Baire category theorem. �

Problem 7.8. Assume that T : l1 → l2 is bounded, linear and one-to-one. Prove

that T (l1) is not closed in l2.

Proof. If T (l1) is closed, then it is a Hilbert space and thus l1 is also a Hilbert space

by open mapping theorem, say T is in fact an isomorphism. A contradiction. �

Problem 7.9. This is same to Problem 3 in Angust 2015.
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Problem 7.10. Assume that f is a measurable and non negative function on

[0, 1]2 and that 1 ≤ r < p < ∞. Show that (
∫ 1

0
(
∫ 1

0
fr(x, y)dy)p/rdx)1/p ≤

(
∫ 1

0
(
∫ 1

0
fp(x, y)dx)r/pdy)1/r.

Proof. Define F (x) =
∫ 1

0
fr(x, y)dy is a non negative function, s = p/r and s′ be the

conjugate of s. Then for h ∈ Ls′ [0, 1] with ‖h‖s′ = 1, Fh ∈ L1[0, 1] by Hölder. By

Tonelli’s theorem,
∫ 1

0

∫ 1

0
|fr(x, y)h(x)|dydx =

∫ 1

0

∫ 1

0
fr(x, y)|h(x)|dydx =

∫ 1

0
F (x)|h(x)|dx <

∞. Then |
∫ 1

0
F (x)h(x)dx| = |

∫ 1

0
(
∫ 1

0
fr(x, y)dy)h(x)dx| = |

∫ 1

0
(
∫ 1

0
fr(x, y)h(x)dx)dy| ≤∫ 1

0
‖fr(·, y)‖s‖h‖s′dy =

∫ 1

0
(
∫ 1

0
fp(x, y)dx)r/pdy by Fubini and Hölder.

Then, ‖F‖s = sup{|
∫ 1

0
F (x)h(x)dx| : ‖h‖s′ = 1} ≤

∫ 1

0
(
∫ 1

0
fp(x, y)dx)r/pdy.

Then we are done since ‖F‖s = (
∫ 1

0
(
∫ 1

0
fr(x, y)dy)p/rdx)r/p. �

8. August 2013

Problem 8.1. Let 1 ≤ p ≤ ∞ and f ∈ Lp(R). For t ∈ R, let ft(x) = f(x − t)
and consider the mapping G : R→ Lp(R) given by G(t) = ft. The space Lp(R) is

equipped with the usual norm topology. (a) Show thatG is continuous if 1 ≤ p <∞.

(b) Find an f for which the mapping G is not continuous when p = ∞. (c) Let

1 ≤ p, q ≤ ∞ be conjugate exponents(i.e 1/p + 1/q = 1). Let f ∈ Lp(R) and

f ∈ Lq(R). Show that h = f ∗ g is continuous, where h(t) =
∫
R f(t)g(t− x)dx.

Proof. The continuity of G when 1 ≤ p < ∞ share a same proof of Problem 5 in

August 2016. If p = ∞, Consider f = χ[0,1). Then for any tn → 0, ‖χ[0,1),tn −
χ[0,1)‖ ≡ 1.

For the last statement, define gt(x) = f(t− x). |h(t)− h(tn)| ≤
∫
R |f(x)||g(t−

x)− g(tn − x)|dx ≤ ‖f‖p‖gtn − gt‖q by Hölder. By the same argument of the first

part, if tn → t, then ‖gtn − gt‖q → 0. �

Problem 8.2. (a) For f ∈ CR[0, 1], show that f ≥ 0 iff ‖λ − f‖∞ ≤ λ for all

λ ≥ ‖f‖∞
(b) Suppose E ⊂ CR[0, 1] is a closed subspace containing the constant function

1. For φ ∈ E∗, show φ ≥ 0 iff ‖φ‖ = φ(1).

(c) If φ ∈ E∗ and φ ≥ 0, show that there is a bounded linear functional ψ on

CR[0, 1] so that ψ ≥ 0 and the restriction of ψ to E is φ.

Proof. (a) (⇒) suppose that f ≥ 0 and λ ≥ ‖f‖∞, then 0 ≤ λ − f ≤ λ, whence

‖λ − f‖∞ ≤ λ. (⇐) If there is a x ∈ [0, 1] such that f(x) < 0, which entails that

λ− f(x) > λ and thus ‖λ− f‖∞ > λ.

(b)(⇒) |f | ≤ 1 implies that 1 ± f ≥ 0 and thus φ(1 ± f) ≥ 0 since φ ≥ 0.

Thus |φ(f)| ≤ φ(1), whence φ(1) ≥ ‖φ‖ and thus φ(1) = ‖φ‖. (⇐) fix a f ≥ 0.



22 XIN MA

φ(‖f‖∞ · 1 − f) ≤ φ(1)‖‖f‖∞ − f‖ ≤ φ(1)‖f‖∞ = φ(‖f‖∞) by part (a). Thus

φ(f) ≥ 0

(c)By Hahn-Banach thm, there is an extension ψ of φ with the same norm,

which implies that ‖ψ‖ = ‖φ‖ = φ(1) = ψ(1). Thus ψ ≥ 0 by part (b). �

Problem 8.3. (a) Let µ and λ be mutually singular complex measures defined on

the same measurable space (X,M) and let ν = µ+ λ. Show that |ν| = |µ|+ |λ|.
(b) Construct a nonzero atomless Borel measure on [0, 1] that this mutually

singular with respect to Lebesgue measure m.

Proof. (a) Let F is null for λ while E is null for µ, with E
⊔
F = X. Let P2

⋃
N2 =

F be a Hahn decomposition for λ while P3

⋃
N3 = E be a Hahn decomposition

for µ. Then P1 = P2

⋃
P3, with N1 = N2

⋃
N3 is a Hahn decomposition for ν.

Then ν+(A) = ν(A
⋂
P2) + ν(A

⋂
P3) = µ(A

⋂
P2) + λ(A

⋂
P3) and similarly,

ν−(A) = ν(A
⋂
N2) + ν(A

⋂
N3) = µ(A

⋂
N2) + λ(A

⋂
N3), which implies that

|ν| = |µ|+ |λ|.
(b) Let f be the cantor function and consider the Borel measure µf , which is

the Lebesgue-Stieltjes measure associated to f . It can be checked that µf works. �

Problem 8.4. Let (fn) be a sequence of continuous functions on [0, 1] and suppose

that for all x ∈ [0, 1], fn(x) is eventually nonnegative. Show that there is an open

interval I ⊂ [0, 1] such that for all n large enough, fn is nonnegative everywhere on

I.

Proof. Define En = {x : ∀m ≥ n fm(x) ≥ 0}. Suppose the conclusion is not right.

For all subinterval I ⊂ [0, 1], I * En, which entails that En is an nowhere dense

closed set. However, [0, 1] =
⋃
nEn, which is a contradiction. �

Problem 8.5. Let µ be a nonatomic signed measure on a measurable space (X,Ω),

with µ(X) = 1. Show that there is a measurable subset E ⊂ X with µ(E) = 1/2.

Proof. At first, assume µ is a positive measure. We show that there is a function

S : [0, 1] → Ω such that for all 0 ≤ t ≤ t′ ≤ 1, µ(S(t)) = t and S(t) ⊂ S(t′) (i.e.

increasing function).

Let K = {S : D → Ω : D ⊂ [0, 1], S is increasing, ∀t ∈ D, µ(S(t)) = t}. Order

K by S ≤ S′ if graph(S) ⊂ graph(S′). At first, K 6= ∅ since S : {1} → Ω by

S(1) = X. Let {Sα} be a chain in K. Define S :
⋃
Dα → Ω by S(t) = Sα(t) if

t ∈ DSα . Then S ∈ K. Now, Zorn’s lemma entails that there is a maximal element

S0 ∈ K. We claim that DS0
= [0, 1]. Suppose not, let u = inf{x : x /∈ DS0

}, if

u = 0, we extend S0 by defineS0(0) = ∅. If u > 0, there is a sequence (un) ⊂
DS0 ↑ u. Then we extend S0 by define S0(u) =

⋃
S0(un). It is compatible with the
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original S0. Indeed, since S0 is increasing, µ(S0(u)) = µ(
⋃
S0(un)) = limn un = u.

A contradiction to the maximality of S0. Then S(1/2) is the set we want.

Now, if µ is a signed measure. Consider a Hahn decomposition X = P
⋃
N .

µ is positive on P with µ(P ) ≥ 1. By the argument above, there is a E such that

µ(E) = 1/2. �

Problem 8.6. Compute limn→∞
∫∞

0
n sin(x/n)
x(1+x2) dx

Proof. At first, sin(x/n) < x/n implies that n sin(x/n)
x(1+x2) ≤

1
1+x2 , which is an integrable

function on R+. Then since n sin(x/n)
x(1+x2) →

1
1+x2 , DCT implies that limn→∞

∫∞
0

n sin(x/n)
x(1+x2) dx =∫∞

0
1

1+x2 dx =some number. �

Problem 8.7. Prove or disprove: for every real-valued continuous function f on

[0, 1] such that f(0) = 0 and every ε > 0, there is a real polynomial p having only

odd powers of x, i.e. p =
∑n
i=1 a2i+1x

2i+1 such that supx∈[0,1] |f(x)− p(x)| < ε.

Proof. At first, consider A = {xf(x) : f ∈ C[0, 1]} is a subalgebra which separates

points by g(x) = x. It implies that A = {f ∈ C[0, 1] : f(0) = 0} by Stone-

Weirstrass theorem. Then similar argument shows that B = {p : p(x) =
∑n

0 aix
2i}

is dense in C[0, 1] under ‖·‖∞. Then for every f ∈ C[0, 1] with f(0) = 0, there is an

element g ∈ C[0, 1] such that supx∈[0,1] |f(x)−xg(x)| < ε/2 since xg(x) ∈ A. For g,

there is a p ∈ B such that ‖g − p‖∞ ≤ ε and thus supx∈[0,1] |xg(x)− xp(x)| < ε/2.

Combine them, we have supx∈[0,1] |f(x)− xp(x)| < ε, where xp(x) is a polynomial

having only odd powers of x. �

Problem 8.8.

Problem 8.9. Let X be a separable Banach space, let {xn : n ≥ 1} be a countable,

dense subset of the unit ball ofX and letB be the closed unit ball in the dual Banach

space X∗ of X. For φ, ψ ∈ B, let d(φ, ψ) =
∑∞
n=1 2−n|φ(xn) − ψ(xn)|. Show that

d is a metric on B whose topology agrees with the weak*-topology of X∗ restricted

to B.

Proof. It suffices to show open sets in two topologies coincide. Let Px∗,ε,x = {y∗ :

|y∗(x) − x∗(x)| < ε} and D = {xn} is dense subset of X. if x∗ ∈
⋂m
i=1 Px∗i ,ε,zi .

At first, By the density of D, there is a δ and {xnk : k = 1, 2, ...,m} so that

x∗ ∈
⋂m
i=1 Px∗i ,δ,xni ⊂

⋂m
i=1 Px∗i ,ε,zi . Then, there is a r so that d(x∗, y∗) < r implies

that |x∗(xnk)− y∗(xnk)| < δ for k = 1, 2, ...,m. This implies that x∗ ∈ Bd(x∗, r) ⊂⋂m
i=1 Px∗i ,δ,xni ⊂

⋂m
i=1 Px∗i ,ε,xi .

In the converse, for all φ, ψ ∈ B, |φ(xn) − ψ(xn)| ≤ ‖φ‖ + ‖ψ‖ ≤ 2, and thus

d(φ, ψ) =
∑∞
n=1 2−n|φ(xn) − ψ(xn)| ≤

∑∞
n=1 2−n+1, which implies that for every
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ε > 0, there is a m ∈ N such that for all φ, ψ ∈ B,
∑∞
n=m+1 2−n|φ(xn)− ψ(xn)| <

ε/2. Now, for all y∗ ∈ Bd(x
∗, ε),

∑∞
n=m+1 2−n|x∗(xn) − y∗(xn)| < ε/2. Then

x∗ ∈
⋂m
k=1 Px∗, ε2m ,xk ⊂ Bd(x

∗, ε). Then we are done. �

Problem 8.10. Let T : X → Y be a linear map between Banach spaces that is

surjective and satisfies ‖Tx‖ ≥ ε‖x‖ for some ε > 0 and all x ∈ X. Show that T is

bounded.

Proof. Let xn → x and Txn → y. Since T is surjective, there is a z ∈ X such that

Tz = y. Then ‖Txn − Tz‖ ≥ ε‖xn − z‖ entails that xn → z and thus x = z and

Tx = y. By closed graph theorem, T is bounded. �

9. January 2013

Problem 9.1. This problem is same with Problem 4 in Jan 2014.

Problem 9.2. This problem is same with Problem 3 in Aug 2015.

Problem 9.3. This problem is same with Problem 8 in Jan 2016.

Problem 9.4. (a) Is there a signed Borel measure µ on [0, 1] such that p′(0) =∫ 1

0
p(x)dµ(x) for all real polynomials p of degree at most 19.

(b) Is there a signed Borel measure µ on [0, 1] such that p′(0) =
∫ 1

0
p(x)dµ(x)

for all real polynomials p.

Proof. (a) Let X = span{xi : 0 ≤ i ≤ 19} ⊂ C[0, 1] is a finite-dimensional subspace.

Then define F : X → R by F (p) = p′(0) is a linear map and thus continuous

since dim(X) = 20. Then by Hahn-Banach theorem, we can extend F to some

bounded linear map G on C[0, 1]. Then there is a Radon Borel measure such that

G(f) =
∫ 1

0
fdµ. Restrict G to X, we have p′(0) =

∫ 1

0
p(x)dµ(x).

(b) Suppose it is true. Consider f(x) = ax, where a > 0. Then by Stone-

Weirstrass theorem, there is a sequence of polynomials pn(x) =
∑mn
i=1 a(i,n)x

2i → f

under ‖·‖∞. Then |
∫ 1

0
pndµ−

∫ 1

0
fdµ| ≤ ‖pn−f‖∞ →. However, by the assumption,

p′n(0) = 0 and thus a =
∫ 1

0
dµ = 0. A contradiction. �

Problem 9.5. Let F be the set of all real valued functions on [0, 1] of the form

f(t) = 1∏n
j=1(t−cj) for natural numbers n and for real numbers cj /∈ [0, 1]. Prove or

disprove: for all continuous real-valued functions g and h on [0, 1] such that g(t) <

h(t) for all t ∈ [0, 1], there is a function a ∈ span F such that g(t) < a(t) < h(t) for

all t ∈ [0, 1].

Proof. It can be seen that A = span F is an algebra and separates points. Then by

Stone-Weirstrass theorem A = C[0, 1]. Let k = min{h(t)−g(t)}. Now, choose a1 ∈
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A such that ‖a1−g‖∞ < k/3, whence g(t) < a1(t)+k/3 and also a1(t) < g(t)+k/3.

Then we need to find a a2 such that k/3 ≤ a2(t) ≤ 2k/3. Indeed, for u ≡ k/2,

there is an a2 ∈ A so that ‖a2−u‖∞ < ε < k/6, whence k/3 ≤ a2(t) ≤ 2k/3. Now,

let a = a1 + a2. Then g(t) < a(t) < g(t) + k/3 + 2k/3 ≤ h(t) �

Problem 9.6. Let k : [0, 1] × [0, 1] → R be continuous and let 1 < p < ∞. For

f ∈ Lp[0, 1], let Tf be the function on [0, 1] defined by (Tf)(x) =
∫ 1

0
k(x, y)f(y)dy.

Show that Tf is a continuous function on [0, 1] and that the image under T of the

unit ball in Lp[0, 1] has compact closure in C[0, 1].

Proof. |(Tf)(x) − (Tf)(x′)| ≤
∫ 1

0
|k(x, y) − k(x′, y)||f(y)|dy. Since k is uniformly

continuous, if |x′ − x| < δ, then for all y, |k(x, y)− k(x′, y)| < ε. Then |(Tf)(x)−
(Tf)(x′)| ≤ ε‖f‖1. Then Tf is continuous. It entails that F = {T (f) : ‖f‖p ≤ 1} is

equicontinuous by |(Tf)(x)− (Tf)(x′)| ≤ ε‖f‖1 ≤ ε‖f‖p ≤ ε whenever |x′−x| < δ.

Now, since |k(x, y)| ≤ M on [0, 1]2. |T (f)(x)| ≤
∫ 1

0
|k(x, y)||f(y)| ≤ M‖f‖1 ≤

M‖f‖p ≤M if ‖f‖p ≤M . Then Ascoli-Arzela theorem applies there. �

Problem 9.7. Suppose f : [0, 1] → R is absolutely continuous and define g ∈
C[0, 1] by g(x) =

∫ 1

0
f(xy)dy. Show that g is absolutely continuous.

Proof. For all ε, there is a δ, such that
∑n
i=1 |ai − bi| < δ implies

∑n
i=1 |f(ai) −

f(bi)| < ε. For all y ∈ [0, 1],
∑n
i=1 |aiy−biy| ≤

∑n
i=1 |ai−bi|δ, then

∑n
i=1 |f(aiy)−

f(biy)| < ε, which implies that
∑n
i=1 |g(ai)−g(bi)| ≤

∑n
i=1

∫ 1

0
|f(aiy)−f(biy)|dy =∫ 1

0

∑n
i=1 |f(aiy)− f(biy)|dy ≤

∫ 1

0
εdy = ε. �

Problem 9.8. Suppose that we have νi � µi for i = 1, 2. Show that ν1 × ν2 �
µ1 × µ2 and d(ν1×ν1)

d(µ1×µ2) (x, y) = dν1
dµ1

(x) dν2dµ2
(y)

Proof. µ1 × µ2(E) =
∫
µ2(Ex)dµ1(x) = 0 implies that µ1{x : µ2(Ex) 6= 0} = 0.

Then since νi � µi for i = 1, 2, firstly {x : ν2(Ex) 6= 0} ⊂ {x : µ2(Ex) 6=
0} and then µ1{x : ν2(Ex) 6= 0} = 0 implies ν1{x : ν2(Ex) 6= 0} = 0. Thus

ν1×ν2(E) =
∫
ν2(Ex)dν1(x) = 0 which implies that ν1×ν2 � µ1×µ2. In addition,

ν1×ν2(E) =
∫
X×Y χE(x, y)d(ν1×ν2) =

∫
X

(
∫
Y
χE(x, y)f2(y)dµ2(y))f1(x)dµ1(x) =∫

X
(
∫
Y
χE(x, y)f1(x)f2(y)dµ2(y))dµ1(x) =

∫
E
f1(x)f2(y)d(µ1 × µ2). We are done.

�

Problem 9.9. (a) Let E be a nonzero Banach space and show that for every x ∈ E
there is φ ∈ E∗ such that ‖φ‖ = 1 and |φ(x)| = ‖x‖.

(b) Let E and F be Banach spaces, Let π : E → F be a bounded linear map

and let π∗ : F ∗ → E∗ be the induced map on dual spaces. Show that ‖π∗‖ = ‖π‖.

Proof. (a) A standard application of Hahn-Banach theorem.
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(b) π∗(f) = f ◦ π. Then ‖π∗‖ = sup‖f‖=1 ‖π∗(f)‖ = sup‖f‖=1,‖x‖=1 |f(π(x))|.
|f(π(x))| ≤ ‖f‖‖π‖‖x‖ for all f ∈ F ∗, x ∈ E, whence ‖π∗‖ ≤ ‖π‖. In the converse,

by part (a), for every x ∈ E, there is a fx ∈ F ∗ such that |fx(π(x))| = ‖π(x)‖
and ‖fx‖ = 1. Thus, ‖π∗‖ = sup‖f‖=1,‖x‖=1 |f(π(x))| ≥ sup‖x‖=1 |fx(π(x))| = ‖π‖.
Then we are done. �

Problem 9.10. Let X be a real Banach space and suppose C is a closed subset of

X such that

(1) x1 + x2 ∈ C for all x1, x2 ∈ C,

(2) λx ∈ C for all x ∈ C and λ > 0,

(3) for all x ∈ X there exist x1, x2 ∈ C such that x = x1 − x2.

Prove that for some M > 0, the unit ball of X is contained in the closure of

AM = {x1 − x2 : xi ∈ C, ‖xi‖ ≤ M, (i = 1, 2)}. Deduce that every x ∈ X can be

written x = x1 − x2, with xi ∈ C and ‖xi‖ ≤ 2M‖x‖, (i = 1, 2).

Proof. Suppose that there is a ε > 0, n ∈ N so that Bε(0) ⊂ An, then there is a m

such that BX ⊂ Am. Indeed, for all x ∈ BX , ‖εx‖ ≤ ε, then there is a sequence

(xk1 − xk2) ∈ An so that (xk1 − xk2)→ εx, which implies that 1
ε (xk1 − xk2)→ x. Now,

define yki = 1
εx
k
i and choose m such that ‖yki ‖ ≤ n/ε ≤ m.

So suppose the assumption does not hold, say, for all ε, n, Bε(0) * An, then

An is nowhere dense for all n. If not, say there is a y + Bε(0) ⊂ An. Then for all

x ∈ Bε(0), there is a sequence (zn1 − zn2 ) → y + x. For a sequence (yn1 − yn2 ) → y,

((zn1 + yn2 )− (zn2 + yn1 ))→ x, which implies that x ∈ A2n and thus Bε(0) ⊂ A2n. A

contradiction. However, X =
⋃∞
n=1An, which is a contradiction to Baire category

theorem. Thus, there is a M such that BX ⊂ AM .

Now, fix x ∈ X, x/‖x‖ ∈ BX ⊂ AM , then there are y1, z1 such that ‖y1‖, ‖z1‖ ≤
M‖x‖, so that ‖x − (y1 − z1)‖ ≤ (1/2)‖x‖. Then ‖x−(y1−z1)

(1/2)‖x‖ ‖ ≤ 1. Then there

are y2, z2 ∈ AM ..... We can do this process by induction to obtain yn, zn with

‖zn‖, ‖yn‖ ≤ 2−n+1M‖x‖ and ‖x −
∑n
i=1(yi − zi)‖ ≤ 2−n‖x‖, which implies that

x =
∑
i yi −

∑
i zi. �

10. August 2012

Problem 10.1. Let (X,M, µ) be a measure space. Prove that L1(X,µ) is com-

plete.

Proof. You can find a proof in any real analysis textbook. �

Problem 10.2. Fix two measure spaces (X,M, µ) and (Y,N , ν) with µ(X), ν(Y ) >

0. Let f : X → C, and g : X → C be measurable. Suppose f(x) = g(y) (µ× ν)-a.e.

Show that there is a constant a ∈ C such that f(x) = a µ-a.e. and g(y) = a ν-a.e.
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Proof. E = {(x, y) : f(x) 6= g(y)} is null. Then
∫
ν(Ex)dµ(x) = 0, which implies

that ν(Ex) = 0 µ-a.e. Now, define K = {x : ν(Ex) = 0}. Suppose the statement

is not true, say, for all a ∈ C, either µ{x : f(x) 6= a} > 0 or ν{y : g(y) 6= a} > 0.

Now, fix x0 ∈ K and let a = f(x0). Then, by definition, Ex0 = {y : g(y) 6= a} and

thus ν({y : g(y) 6= a}) = 0. Thus, µ({x : f(x) 6= a}) > 0 by the assumption. Since

ν(Ex0
) = 0, ν({y : g(y) = a}) = ν(Y \Ex0

) > 0. Now, {x : f(x) 6= a} × {y : g(y) =

a} ⊂ E is of positive measure. A contradiction. �

Problem 10.3. Let R3 → R be a Borel measurable function. Suppose for every

ball B, f is integrable on B and
∫
B
f = 0. What can you deduce about f .

Proof. Since f is locally integrable, then limr→0
1

m(B(r,x))

∫
B(r,x)

f(y)dy = f(x) for

a.e. x, which implies that f(x) = 0 a.e.

We can also use the proof of Problem 1 in Jan 2015 to solve this. Indeed, we

can still define En. By regularity of lebesgue measure. We can shrink En to some

compact subset K of positive measure s and obtain a finite cover of K with finite

balls, say K ⊂ O =
⋃n
i=1Bn with µ(O \K) < δ. Then replace En with K, In with

Bn to do the same process. We are done. �

Problem 10.4. Let X be a locally compact Hausdorff space. Show that Cc(X) is

dense in C0(X).

Proof. Cc(X) is an algebra. by Usysohn’s lemma, for all x 6= y ∈ X, there is a

g ∈ Cc(X) so that g(x) 6= g(y) and for all x ∈ X, there is a function f in Cc(X)

such that f(x) = 1. Then by Stone-Weirstrass theorem for the LCH space, Cc(X)

is dense in C0(X). �

Problem 10.5. Give an example of each of the following. justify your answers

(1) A nowhere dense subset of R of positive Lebesgue measure.

(2) A closed, convex subset of a Banach space with multiple points of minimal

norm.

Proof. (1) A first example is any generalized cantor set with positive measure.

We provide another example with more descriptive set theory flavor. Let {rn}
enumerate all rational numbers in R, then define Om =

⋃∞
n=1(rn − 1

2n+1
1
m , rn +

1
2n+1

1
m ) which is dense and µ(Om) ≤ 1/m. Then A =

⋂∞
m=1Om is a dense Gδ set

with µ(A) = 0. Then Ac =
⋃
mO

c
m is of positive measure. Then there is a m such

that Ocm is of positive measure and Ocm is nowhere dense by definition.

(2) Let X = L1[0, 1] and C = {f ∈ X :
∫

[0,1]
f(t)dt = 1}. The minimal norm

of functions in C is 1. Then {aχ[1/2,1] + (2 − a)χ[0,1/2]} : 0 ≥ a ≥ 2} ⊂ C have

norm 1. �
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Problem 10.6. Let S = {f ∈ L∞(R) : |f(x)| ≤ 1
1+x2 a.e.}. Which of the following

statements are true?

(1) The closure of S is compact in the norm topology.

(2) S is closed in the norm topology.

(3) The closure of S is compact in the weak-∗ topology.

Proof. (1) No. Consider a sequence 1
1+nx2 . If S is compact, then there is a sub-

sequence 1
1+nmx2 converges in S under ‖ · ‖∞. Then 1

1+nmx2 → 0 uniformly a.e. ,

which is a contradiction since 1
1+nmx2 does not uniformly converge to 0 on any set

of infinite measure.

(2) For all fn → f under ‖ · ‖∞. Define En be the null set such that on Ecn,

|fn(x)| ≤ 1
1+x2 . Since fn → f , there is a null set E such on Ec, fn → f uniformly.

Then on (
⋃
nEn

⋃
E)c, |f(x)| ≤ 1

1+x2 , where µ((
⋃
nEn

⋃
E)) = 0

(3) For all f ∈ S, |f(x)| ≤ 1
1+x2 a.e. which implies that ‖f‖∞ ≤ 1. Thus

S ⊂ BX∗ . Thus S is weak-∗ compact. �

Problem 10.7. Let T be a bounded operator on a Hilbert space H. Prove that

‖T ∗T‖ = ‖T‖2.

Proof. ‖T‖2 = sup‖x‖=1 ‖Tx‖2 = sup‖x‖=1 |〈Tx, Tx〉| = sup‖x‖=1 |〈x, T ∗Tx〉| ≤
sup‖x‖=1 ‖x‖‖T ∗Tx‖ ≤ ‖T ∗T‖. In the converse, ‖T ∗Tx‖ ≤ ‖T ∗‖‖T‖‖x‖ = ‖T‖2

implies that ‖T ∗T‖ ≤ ‖T‖2. �

Problem 10.8. (a) Let g be an integrable function on [0, 1]. Does there exist a

bounded measurable function f such that ‖f‖∞ 6= 0 and
∫ 1

0
fgdx = ‖g‖1‖f‖∞.

(b) Let g be a bounded function on [0, 1]. Does there exist an integrable

measurable function f such that ‖f‖1 6= 0 and
∫ 1

0
fgdx = ‖f‖1‖g‖∞.

Proof. (a) Define f = sgng. Then
∫ 1

0
fgdx = ‖g‖1‖f‖∞.

(b) Not always. Consider g = 1{x} for some x ∈ [0, 1]. Suppose there is a f ∈
L1[0, 1] so that

∫ 1

0
fgdx = ‖f‖1‖g‖∞. Then it implies that ‖f‖1 =

∫
{x} f = 0. �

Problem 10.9. Let F : R→ C be a bounded continuous function, µ the Lebesgue

measure, and f, g ∈ L1(µ). Let f̃(x) =
∫
F (xy)f(y)dµ(y), g̃(x) =

∫
F (xy)g(y)dµ(y).

Show that f̃ and g̃ are bounded continuous functions which satisfy
∫
fg̃dµ =

∫
gf̃dµ

Proof. Let supx∈R |F (x)| = M . Consider |f̃(xn)−f̃(x)| ≤
∫
|F (xny)−F (xy)||f(y)|dy.

Since |F (xny)−F (xy)||f(y)| → 0 pointwise and |F (xny)−F (xy)||f(y)| ≤ 2M |f(y)|,
which is integrable, DCT implies that

∫
|F (xny) − F (xy)||f(y)|dy = 0. Thus f̃ is

continuous. |f̃(x)| ≤
∫
|F (xy)||f(y)|dµ(y) ≤ M‖f‖1, which is bounded. The same

proof for g̃.
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|f(x)|(

∫
|F (xy)||g(y)|dµ(y))dµ(x) ≤M

∫
|f(x)|‖g‖1dµ(x) ≤M‖f‖1‖g‖1. Then,

by Fubini,
∫
fg̃dµ =

∫
f(x)(

∫
F (xy)g(y)dµ(y))dµ(x) =

∫
g(y)(

∫
F (xy)f(x)dµ(x))dµ(y) =∫

gf̃dµ. �

Problem 10.10. Let µ, {µn : n ∈ N} be finite Borel measures on [0, 1]. µn → µ

vaguely if µn → µ if it converges in the weak*-topology. µn → µ in moments if for

each k ∈ {0}
⋃
N,

∫
[0,1]

xkdµn →
∫

[0,1]
xkdµ. Show these two concepts coincide.

Proof. (⇒) trivial, since xk ∈ C[0, 1].

(⇐) For k = 0, we have µn([0, 1])→ µ([0, 1]), which implies that µn([0, 1]) are

uniformly bounded, say, we may assume that sup{µn[0, 1], µ[0, 1] : n ∈ N} ≤M for

some M . By Stone-Weirstrass theorem, for each continuous function f on [0, 1],

there is a sequence of polynomials pm → f under ‖·‖∞. Then for every ε > 0, choose

a m such that ‖pm − f‖∞ ≤ ε/4M . For the m, there is a N whenever n > N such

that |
∫
pmdµn− pmdµ| ≤ ε/2 since µn → µ in moments. Then |

∫
fdµn−

∫
fdµ| ≤∫

|f − pm|dµn +
∫
|f − pm|dµ+ |

∫
pmdµn − pmdµ| ≤ 2M · (ε/4M) + ε/2 = ε. Thus

µn → µ vaguely. �

11. January 2012

Problem 11.1. Let A be the subset of [0, 1] consisting of numbers whose decimal

expansions contain no sevens. Show that A is Lebesgue measurable, and find its

measure. Why does non-uniqueness of decimal expansions not cause any problems?

Proof. We can obtain A by following the procedure of the construction of the cantor

set. Firstly divide [0, 1] into ten pieces and delete (0.7, 0.8] to obtain A1. Then to

obtain A2, for each of the nine subintervals of A1, divide it into ten pieces and delete

the seventh subinterval of it. Define the left set to be A2.Go on this procedure to

obtain An. Then define A =
⋂
nAn. Since we just delete Borel sets from [0, 1]. A

is Borel thus measurable. µ(A) = 1−
∑∞
n=0

9n

10n+1 = 0.

Since the number who has more than one expansion are exactly { p
10n : n, p ∈

N, p ≤ 9} which is countable, thus of measure 0. So it will cause no problems. �

Problem 11.2. Let functions fα be defined by fα(x) = xαcos(1/x) if x > 0 and

fα(0) = 0. Find all α ≥ 0 such that

(a) fα is continuous.

(b) fα is of bounded variation on [0, 1].

(C) fα is absolutely continuous.

Proof. |fα(x)| = | = xα cos(1/x)| ≤ |xα| → 0 when x→ 0 if α > 0. Thus for all α >

0, fα is continuous. For part (b), if α ≤ 1, define xn = 1/nπ,
∑
|fα(xn)− fα(xn+1|
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diverges, which implies that fα is not of bounded variation. In the converse, at

first, fα is differentiable on (0, 1] for all α > 0. If α > 1, fα is also differentiable

at 0. Then fα(x) =
∫ x

0
f ′α(t)dt. Thus, fα is of bounded variation. For part (c),

If α ≤ 1, fα is not of bounded variation, whence fα is not absolutely continuous.

When α > 1, f is of a form of integral, thus absolutely continuous. �

Problem 11.3. Let F denote the family of functions on [0, 1] of the form f(x) =∑∞
n=1 an sin(nx), where an are real and |an| ≤ 1/n3. Prove that F is precompact

i.e. totally bounded.

Proof. For all x, y ∈ [0, 1], there is a x0 between them and a M > 0 such that|f(x)−
f(y)| ≤

∑
|an|| sin(nx) − sin(ny)| ≤

∑
|an|| cos(nx0)||nx − ny| ≤

∑
n

1
n2 |x − y| ≤

M |x− y|, whence F is equicontinuous on [0, 1]. For all x ∈ [0, 1], {f(x) : f ∈ F} is

bounded since |f(x)| ≤
∑
n 1/n3 ≤ ∞. Then Ascoli-Arzela’s theorem implies the

result. �

Problem 11.4. Let H be a Hilbert space and W ⊂ H be a subspace. Show that

H = W
⊕
W⊥

Proof. You can find the proof in every textbook of functional analysis. �

Problem 11.5. Suppose A is a bounded linear operator on a Hilbert space H

with the property that ‖p(A)‖ ≤ C sup{|p(z)| : z ∈ S1} = C‖p‖ with complex

coefficients and a fixed constant C. Show that to each pair x, y ∈ H, there corre-

sponds a complex Borel measure µ on the circle S1 = {z ∈ C : |z| = 1} such that

〈Anx, y〉 =
∫
zndµ(z), n = 0, 1, 2, ...

Proof. Define H(p) = 〈p(A)x, y〉 for all polynomials p with complex coefficients.

|H(p)| = |〈p(A)x, y〉| ≤ ‖p(A)‖‖x‖‖y‖ ≤ C‖p‖‖x‖‖y‖, which implies that H is

extended to whole C(S1) by the density of all polynomials in C(S1) as a bounded

linear functional. Thus, there is a Radon measure µ on S1 such that H(f) =
∫
fdµ.

Then H(zn) = 〈Anx, y〉 =
∫
zndµ(z), n = 0, 1, 2, .... �

Problem 11.6. Let φ be the linear functional φ(f) = f(0)−
∫ 1

−1
f(t)dt.

(a) Compute the norm of φ as a functional on the Banach space C[−1, 1] with

uniform norm.

(b) Compute the norm of φ as a functional on the normed vector space LC[−1, 1],

which is C[−1, 1] with L1 norm.

Proof. (a) ‖φ‖ = sup{|φ(f)| : ‖f‖∞ = 1}. ‖f‖∞ = 1 implies that |f(0) −∫ 1

−1
f(t)dt| ≤ |f(0)| +

∫ 1

−1
|f(t)|dt = 3. Consider the continuous function fn such
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that fn = 1 on [−1,−1/n]
⋃

[1/n, 1], fn(0) = −1 and fn is peicewise linear on

[−1/n, 1/n]. Then, we can see |φ(fn)| → 3, whence ‖φ‖ = 3.

(b) Define fn = 0 on [−1,−1/n]
⋃

[1/n, 1], fn(0) = n and fn is peicewise linear

on [−1/n, 1/n]. ‖fn‖1 = 1 and |φ(fn)| = n +
∫ 1

−1
|fn| = n + 1 which implies that

‖φ‖ =∞. �

Problem 11.7. Let X be a normed space, and A ⊂ X a subset. Show that A is

bounded(as a set) if and only if it is weakly bounded(that is, f(A) ⊂ C is bounded

for each f ∈ X∗).

Proof. (⇒) Suppose that sup{‖x‖ : x ∈ A} ≤ M . Then for all f ∈ X∗, |f(x)| ≤
‖f‖‖x‖ ≤M‖f‖.

(⇐)X∗ is a Banach space. For all f ∈ X∗, x∗∗(f) = f(x). Now supx∈A |x∗∗(f)| =
supx∈A |f(x)| <∞. Then uniform boundedness theorem implies that supx∈A ‖x‖ =

supx∈A ‖x∗∗‖ <∞. �

Problem 11.8.
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