A NOTE FOR REAL ANALYSIS QUALIFYING EXAM IN TAMU

XIN MA

ABSTRACT. This note contains solutions to the questions occurred in past Real analysis qualifying exams from Jan 2009 to Jan 2017. I did most of them. The rest are folklore. Typos and errors are inevitable. Comments and corrections are welcome.

1. JANUARY 2017

Problem 1.1. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Show that if for all $n, \mu\{x : |f_n(x)| > 1/n\} < n^{-3/2}$, then $f_n \to 0$ a.e. (μ) .

Proof. Define $M = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \{x : |f_n(x)| > 1/n\}$. Then $\mu(\bigcup_{n=m}^{\infty} \{x : |f_n(x)| > 1/n\}) \le \sum_{n=m}^{\infty} n^{-3/2} \to 0$ as $m \to \infty$. Then $\mu(M) = 0$. Consider $x \in M^c$ iff there is a *m* such that for all n > m, $|f_n(x)| \le 1/n$, i.e. $f_n \to 0$ a.e.

Problem 1.2. Find all $f \in L^1(1,2)$ such that for all $n \in \mathbb{N}$, $\int_1^2 x^{2n} f = 0$.

Proof. We firstly extend f to be defined on [1, 2] by setting f(1) = 0 and f(2) = 0. We still denote this function f. Now, $f \in L^1[1, 2]$ and we still have $\int_1^2 x^{2n} f = 0$. Then, by Stone-Weirtrass theorem, we have for any continuous function $g \in C[1, 2]$, $\int_1^2 gf = 0$. Then use the same argument occurred in problem 2 in Jan 2016. We can see f = 0 a.e. (μ) .

Problem 1.3.

Problem 1.4. We say a sequence $\{a_n\}$ in [0, 1] is equi-distributed if for all interval $[c, d] \subset [0, 1]$, $\lim_{n\to\infty} \frac{|\{a_1, \dots, a_n\} \cap [c, d]|}{n} = d - c$. Prove that $\{a_n\}$ in [0, 1] is equidistributed iff $\lim_{n\to\infty} \int f d\mu_n = \int f dm$ for all $f \in C[0, 1]$, where $\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{a_n}$ *Proof.* By the definition, we see that $\{a_n\}$ is equi-distributed iff for all interval

 $[c,d] \subset [0,1], \lim_{n\to\infty} \int \chi_{[c,d]} d\mu_n = \int \chi_{[c,d]} dm.$

Then if $\lim_{n\to\infty} \int f d\mu_n = \int f dm$ for all $f \in C[0,1]$. For any interval [c,d], define continuous functions $1 \ge f_n \ge 0$ (n > N for some proper N) with $f_n = 1$ on [c,d] and $supp(f_n) \subset [c-1/n, d+1/n]$ such that $f_n \downarrow \chi_{[c,d]}$. Then for all $\epsilon > 0$, there is a K such that whenever k > K, $\mu_k[c,d] \le \int f_n d\mu_k \le \int f_n d\mu + \epsilon \le \mu[c,d] + 2/n + \epsilon$.

Date: Nov 20, 2016.

Note that this K depend on the interval [c, d]. Use this argument for [c - 1/n, c]and [d, d + 1/n], for the ϵ , for each n, there is a K_n such that whenever $k > K_n$, $\int |f_n - \chi_{[c,d]}| d\mu_k \leq \int \chi_{[c-1/n,c]} d\mu_k + \int \chi_{[d,d+1/n]} d\mu_k \leq 4/n + \epsilon$. In addition, $\int |f_n - \chi_{[c,d]}| dm \leq 2/n$ also holds. Now, fix a n big enough such that $6/n < \epsilon$ and $|\int f_n d\mu_k - \int f_n dm| < \epsilon$. This implies that whenever $k > K_n$, $|\int \chi_{[c,d]} d\mu_k - \int \chi_{[c,d]} d\mu_k + |\int f_n d\mu_k - \int f_n dm| + \int |f_n - \chi_{[c,d]}| dm \leq 6/n + 2\epsilon < 3\epsilon$. We are done.

In the converse, If for all interval $[c, d] \subset [0, 1]$, $\lim_{n\to\infty} \int \chi_{[c,d]} d\mu_n = \int \chi_{[c,d]} dm$. Then this pass to all step functions. For any continuous function $f \in C[0, 1]$, we can use step functions to approximate f under the norm $\|\cdot\|_{\infty}$. say for every $\epsilon > 0$, there is a $0 = x_0 < x_1 < \ldots < x_N = 1$ such that for all $n \leq N$, $|\max_{x_n \leq x \leq x_{n+1}} f(x) - \min_{x_n \leq x \leq x_{n+1}} f(x)| < \epsilon$. Now, define $g = \sum_{n=0}^{N} a_n \chi_{[x_n, x_{n+1}]}$ where a_n is an arbitrary number between $\min_{x_n \leq x \leq x_{n+1}} f(x)$ and $\max_{x_n \leq x \leq x_{n+1}} f(x)$. Thus $\|g - f\|_{\infty} < \epsilon$. Now, for the ϵ , there is a K such that whenever k > K, $|\int g d\mu_k - \int g dm| < \epsilon$ and thus $|\int f d\mu_k - \int f dm| \leq \int |f d\mu_k - \int g d\mu_k| + |\int g d\mu_k - \int g dm| + |f dm - \int g dm| < 2 \|f - g\|_{\infty} + \epsilon < 3\epsilon$. We are done.

Problem 1.5. Let S be a closed subspace of $(C[0, 1], \|\cdot\|_{\infty})$. If S is also closed under $\|\cdot\|_{\infty}$, then show S is finite-dimensional. (This is question 66 in Folland on page 178, see also mathematications 52509 for other solutions.)

Proof. Consider the identity map $id : (S, \|\cdot\|_{\infty}) \to (S, \|\cdot\|_2)$ is bounded since $\|f\|_2 \leq \|f\|_{\infty}$ in general (see problem 8 in Jan 2016). Then by open mapping theorem. $\|\cdot\|_2$ is equivalent to $\|\cdot\|_{\infty}$ on S, say for all $f \in S$, $\|f\|_{\infty} \leq C\|f\|_2$. Note that S is a Hilbert space. Let $\{f_n\}_{n\in I}$ be an orthonormal basis of S. For all $f \in S$, $x \in [0,1]$. The evaluation map $\delta_x(f) = f(x)$ is bounded and linear w.r.t $\|\cdot\|_2$. Indeed, $|\delta_x(f)| = |f(x)| \leq \|f\|_{\infty} \leq C\|f\|_2$. Then, by Riesz's lemma, there is a function $g_x \in C[0,1]$ such that $f(x) = \langle f, g_x \rangle$ with $\|g_x\| \leq C$

Thus, $\sum_{n \in I} |f(x)|^2 = \sum_{n \in I} |\langle f, g_x \rangle|^2 = ||g_x||_2^2 \leq C^2$. Then integration implies that $|I| \leq C^2$.

Problem 1.6.

Problem 1.7.

Problem 1.8. (1) Construct a Lebesgue measurable set $A \subset \mathbb{R}$ so that for all a < b $0 < m(A \cap [a, b]) < b - a$.

(2) Suppose that a Lebesgue measurable set $A \subset \mathbb{R}$ so that for all a < b, $m(A \cap [a, b]) < (b-a)/2$. Prove that m(A) = 0.

Proof. (1) It suffices to show the case $A \subset [0, 1]$ since then $B = \bigcup_{n \in \mathbb{Z}} n + A$ works. It also suffices to consider all intervals with rational endpoints by density of \mathbb{Q} . Now fix an enumeration of all this subintervals of [0, 1], say $\{I_n : n \in \mathbb{N}\}$. We define sequences of generalized cantor set $\{C_n\}$ and $\{D_n\}$ such that (i) $m(C_n) > 0$ and $m(D_n) > 0$; (ii) $C_n \bigcup D_n \subset I_n$; (iii) $(\bigcup_{k=1}^n C_k) \cap (\bigcup_{k=1}^n D_k) = \emptyset$.

We define these sequence by induction. If $C_1, ..., C_n$ and $D_1, ..., D_n$ are defined. They are nowhere dense closed sets. Then $\bigcup_{k=1}^n C_k \bigcup D_k$ is also nowhere dense closed set (Indeed, if F_1 and F_2 are nowhere dense. If there is an open set $O \subset F_1 \bigcup F_2$, then $\emptyset \neq O \bigcap F_2^c = O \bigcap F_2^c \bigcap F_1 \subset F_1$, which is a contradiction.). Then $I_{n+1} \setminus \bigcup_{k=1}^n C_k \bigcup D_k$ is a nonempty open set which is a union of open intervals and thus contains a generalized cantor set $C_{n+1} \cap f$ positive measure. Then, in the same manner, we can also choose $D_{n+1} \subset I_{n+1} \setminus (\bigcup_{k=1}^n (C_k \bigcup D_k) \bigcup C_{n+1})$, which is of positive measure.

Now, define $A = \bigcup_n C_n$. By the construction, A works.

(2) We also restrict to [0,1]. Then for any subinterval $I \subset [0,1]$, $m(A \cap I) \leq 0.5m(I)$ implies that $m(A^c \cap I) \geq 0.5m(I)$. Then apply problem 1 in Jan 2016. \Box

Problem 1.9. Prove or disprove that the unit ball of $L^{7}(0,1)$ is closed in $L^{1}(0,1)$

Proof. It is right. Indeed, $B_1 = \{f : ||f||_7 \le 1\}$. Now, let $f_n \to f$ in L^1 , where $f_n \in B_1$. Then, $f_n \to f$ in measure and thus there is a subsequence $f_{n_k} \to f$ a.e.(m). Then $|f_{n_k}|^7 \to |f|^7$ a.e.(m). Then, by Fatou's lemma, $\int |f|^7 \le \liminf_k \int |f_{n_k}|^7 = 1$.

Problem 1.10. Let *C* denote the Banach space of all convergent sequences under the norm $\|\cdot\|_{\infty}$. Compute the extreme points of the unit ball *B* of *C* and determined that whether *B* is the closed convex hull of its extreme points.

Proof. Fix a $a \in B$, if there is a m such that |a(m)| < 1. then there is a number δ such that $|a(m) - \delta| \leq 1$ and $|a(m) + \delta| \leq 1$. Now define $b_1, b_2 \in B$ such that $b_1(n) = a(n)$ whenever $n \neq m$ and $b_1(m) = a(m) + \delta$. In the same manner, define $b_2(n) = a(n)$ whenever $n \neq m$ and $b_1(m) = a(m) - \delta$. Then $a = (b_1 + b_2)/2$. Thus a is not an extreme point.

If for all n, $|a_n| = 1$. Let $a = (b_1 + b_2)/2$. Since $|b_i(n)| \le 1$ for all n, $b_1(n) = b_2(n) = a(n)$, which implies that a is an extreme point. Thus $\text{Ext}(B) = \{a : \forall n, |a(n)| = 1 \text{ and } \exists N, \forall n > N \ a(n) \equiv 1 \text{ or } a(n) \equiv -1.\}$

(Not sure)I think $\overline{\text{conv}}(\text{Ext}(B)) \neq B$. Let $e_0 = (1, 1, 1, 1, ...), e_n = (0, ..0, 1, 0, ...)$ for $n \geq 1$. It can be seen that $\pm e_n \in \text{conv}(\text{Ext}(B))$ for all $n \geq 0$. Consider $\{e_n : n \geq 0\}$ form a basis of C. Then $\overline{\text{conv}}(\text{Ext}(B)) = B$ iff $\sum_{n=0}^k \alpha_n e_n \in \overline{\text{conv}}(\text{Ext}(B))$

for $1 \ge |\alpha_n| \to 0$. This may induce a contradiction of the convexity. Like consider (1/n).

Problem 1.11. Show that every continuous convex function f defined on the closed unit ball of a reflexive Banach space X can achieve the minimum

Proof. At first, Since X is reflexive, then X is isomorphic to X^{**} . By Alaoglu's theorem, The unit ball of X^{**} is w^* -compact, which implies that the unit ball of X, B is weak compact. Then, we know that any function is lower semi-continuous convex iff it is weak lower-semi continuous convex. (This is a classical result in convex analysis. The epigraph is used in its proof or Mazur's lemma?) Thus f is weak-lower-semi-continuous. Thus it can achieve the minimum since B is weak compact.

2. August 2016

Problem 2.1. Let \mathcal{A} be the set of all real valued functions on [0,1] for which f(0) = 0 and $|f(t) - f(s)| \le (t-s)^2$ for $0 \le s < t \le 1$.

(1) Prove that \mathcal{A} is a compact subset of C[0, 1].

4

(2) Prove that \mathcal{A} is a compact subset of $L_1[0,1]$.

Proof. (1) At first, \mathcal{A} is closed. Let $f_n \to f$ under $\|\cdot\|_{\infty}$. Then $|f(t) - f(s)| \leq |f(t) - f_n(t)| + |f_n(t) - f_n(s)| + |f_n(s) - f(s)|$ implies that \mathcal{A} is closed. It is also easy to check that \mathcal{A} is equicontinuous and pointwise bounded. Then by Arzela-Ascoli theorem, \mathcal{A} is compact in C[0, 1].

(2) Consider the identity map *id* from C[0, 1] to $L_1[0, 1]$ is continuous by $||f||_1 = \int |f| \leq ||f||_{\infty}$. Then \mathcal{A} is compact in $L_1[0, 1]$ since any continuous image of a compact set is also compact.

Problem 2.2. (1) Let f(x) be a real valued function on the real line that is differentiable almost everywhere. Prove that f'(x) is a Lebesgue measurable function. (2) If f is continuous real values function on the real line, then the set of points at which f is differentiable is measurable.

Proof. $f'(x) = \lim_{n \to \infty} n(f(x+1/n) - f(x))$ if the limit exists. Then Module a null set, f' is measurable. Thus, it is measurable.

For the second part, By the similar argument, We know that D^+f , D^-f , D_+f and D_-f are measurable. Then $\{x : f'(x) \text{ exsits}\} = \{x : D^+f(x) = D^-f(x) = D_+f(x) = D_-f(x)\}$ is measurable. \Box **Problem 2.3.** (a) Let f be a real valued function on the unit interval [0, 1]. Prove that the set of points at which f is discontinuous is a countable union of closed subsets.

(b) Prove that there is no real valued function on [0,1] that is continuous at all rational points but discontinuous at all irrational points.

Proof. Define $\operatorname{osc}_f(x) = \inf \{ \sup_{z,y \in U} |f(z) - f(y)| : U \text{ is a nbhd of } x \}$. It is not hard to see $\operatorname{osc}_f(x)$ is a continuous function and $\{x : f \text{ is continuous at } x\} = \{x : \operatorname{osc}_f(x) = 0\} = \bigcap_{n=1}^{\infty} \{x : \operatorname{osc}_f(x) < 1/n\}$, which is a G_{δ} set. It implies that $\{x : f \text{ is discontinuous at } x\}$ is a F_{σ} , i.e. a countable union of closed subsets.

For the second part, suppose there is a one. Then $\{x : f \text{ is continuous at } x\} = \mathbb{Q}$ is a dense G_{δ} set, say co-meager, which means that the set Ir of all irrationals is meager. Since \mathbb{Q} is also countable, thus meager, $[0,1] = \mathbb{Q} \bigsqcup Ir$ is also a meager set. A contradiction to the Baire category theorem. \Box

Problem 2.4. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space and (f_n) be a sequence of measurable functions on X that converges pointwise to zero. Prove that (f_n) converges in measure to zero. Show that the converse is false for [0, 1] with Lebesgue measure.

Proof. Fix $\epsilon > 0$, $\delta > 0$ and define $A_n = \{x : |f_n(x)| \ge \epsilon\}$. For the δ , By Egoroff's theorem, there is a measurable set E with $\mu(E) < \delta$ and $f_n \to 0$ on E^c uniformly, say, there is a N, whenever n > N, $x \in E^c$, $|f_n(x)| < \epsilon$. It implies that $A_n \subset E$ and thus $\mu(A_n) < \delta$. It shows that $\mu(A_n) \to 0$, which means $f_n \to 0$ in measure.

For the second part. A counterexample is $f_n = \chi_{[j/2^k, (j+1)/2^k]}$ where $n = 2^k + j$ with $0 \le j < 2^k$ and $k \in \mathbb{N}$.

Problem 2.5. If f is Lebesgue integrable on the real line, prove that $\lim_{h\to 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx = 0.$

Proof. It suffices to show $\lim_{n\to\infty} \int_{\mathbb{R}} |f(x+h_n) - f(x)| dx = 0$ for every $(h_n) \to 0$. Suppose at first that f is continuous, then $g_n = |f(x+h_n) - f(x)| \to 0$ and $g_n \leq |f(x+h_n)| + |f(x)| \in L_1(\mathbb{R})$. Then DCT implies that $\lim_{n\to\infty} \int_{\mathbb{R}} |f(x+h_n) - f(x)| dx = 0$. Then in general, since $C_c(\mathbb{R})$ is dense in $L_1(\mathbb{R})$, there is a $p \in C_c(\mathbb{R})$ such that $\int_{\mathbb{R}} |f-p| < \epsilon/3$. Then by the inequality $|f(x+h_n) - f(x)| \leq |f(x+h_n) - p(x+h_n)| + |p(x+h_n) - p(x)| + |f(x) - p(x)|$, we can see that for the ϵ above, there is a N such that whenever n > N, $\int_{\mathbb{R}} |f(x+h_n) - f(x)| dx < \epsilon$. Then we are done.

Problem 2.6. Prove or disprove that there is a sequence (P_n) of polynomials such that $(P_n(t))$ converges to one for every $t \in [0,1]$ but $\int_0^1 P_n(t)dt$ converge to two as $n \to \infty$

Proof. It is not hard to see there is a sequence of continuous functions (f_n) satisfying the statement. Like f_n is defined to be $\equiv 1$ on [0, 1 - 1/n] and f_n be the piecewise linear function on [1-1/n, 1] which are two line pass points (1-1/n, 1), (1-1/2n, 2n+1)and (1, 1). It satisfies that $f_n(t) \to 1$ for all $t \in [0, 1]$ but $\int_0^1 f_n(t)dt \equiv 2$. Then for each n, applying Stone-Weirstrass theorem, we can find a polynomial P_n with $||f_n - P_n||_{\infty} < 2^{-n}$. It is not hard to check (P_n) works.

Problem 2.7. Let (f_n) be a uniformly bounded sequence of continuous functions on [0, 1] that converges pointwise to zero. Prove that 0 is in the norm closure in C[0, 1] of the convex hull of (f_n) .

Proof. By Geometrical version of Hahn-Banach theorem, $\overline{\operatorname{conv}\{(f_n)\}}^w = \overline{\operatorname{conv}\{(f_n)\}}^n$. Then, it suffice to verify that $0 \in \overline{\operatorname{conv}\{(f_n)\}}^w$. Indeed, by Reisz's representation theorem, $C[0,1]^* = M[0,1]$. Then for all $\mu \in M[0,1]$, $|\int f_n d\mu| \leq \int |f_n| d|\mu| \to 0$ by DCT since (f_n) are uniform bounded and converges pointwise to 0. Then $(f_n) \to 0$ in the weak topology and we are done.

Problem 2.8. Assume that X is a reflexive Banach space and ϕ is a continuous linear functional on X. Prove that there is a norm one vector x such that $\phi(x) = \|\phi\|$. Give an counterexample in the case $X = l_1$.

Proof. By problem 11 in Jan 2017, we see the Ball *B* of *X* is weak compact. It is also easy to verify that ϕ is weak continuous since it is norm continuous and so is $|\phi|$. Then $|\phi|$ achieve the max value on *B*, say there is an element *x* such that $|\phi(x)| = \max_{y \in B} |\phi(y)| \ge \sup\{|\phi(y)| : ||y|| \le 1\} = ||\phi||$. Thus $|\phi(x)| = ||\phi||$ and ||x|| = 1 holds necessarily by $|\phi(x)| \le ||\phi|| ||x||$. Then we can choose a number $e^{i\theta}$ such that $\phi(e^{i\theta}x) = |\phi(x)| = ||\phi||$ and $||e^{i\theta}x|| = 1$.

A counterexample: $l_1^* = l_\infty$. Then let $f = (1 - 1/n)_n \in l_\infty$. Then for every $x = (\alpha_n) \in l_1$ of norm 1, $|f(x)| = |\sum_n (1 - 1/n)\alpha_n| \le \sum_n (1 - 1/n)|\alpha_n| < \sum_n |\alpha_n| = 1 = ||f||$.

Problem 2.9. Suppose that X is a non separable Banach space. Prove that there is an uncountable subset A of the unit ball of X such that for all $x \neq y \in A$, ||x - y|| > 0.9.

Proof. Well, if you are familiar with set theory, you can define A by transfinite recursion by applying Reisz's lemma, i.e. Problem 5 in Jan 2016.

Indeed, we choose any norm one element x_0 to start. Assume we have defined $\{x_0, ..., x_{\alpha}\}$, where α is a countable ordinal i.e. $\alpha < \omega_1$ such that $x_{\beta} \neq x_{\gamma}$ implies that $||x_{\beta} - y_{\gamma}|| > 0.9$. To define $x_{\alpha+1}$, Let $Y = \overline{\mathbb{Q} - \text{span}}\{x_{\beta} : 0 \leq \beta \leq \alpha\}$ is a proper Banach subspace of X since X is non separable. Then, by Problem 5(a) in Jan 2016, we can choose a $x_{\alpha+1}$ of norm 1 such that $||x_{\alpha+1} - x_{\beta}|| > 0.9$ for all $\beta \leq \alpha$.

Now, If we have defined $\{x_0, ..., x_\beta : \beta < \alpha\}$ and $\alpha < \omega_1$ is a limit ordinal. To define x_α , in the same manner, firstly define $Y = \overline{\mathbb{Q} - \text{span}}\{x_\beta : 0 \le \beta < \alpha\}$, which is a proper Banach subspace of X and we can pick up x_α of norm 1 such that $||x_\alpha - x_\beta|| > 0.9$ for all $\beta < \alpha$.

Now let $A = \{x_{\alpha} : \alpha < \omega_1\}$ works. \Box

Problem 2.10. If A is a Borel subset of the line. Then $E = \{(x, y) : x - y \in A\}$ is a Borel subset of the plane. If m(A) = 0, then $m \times m(E) = 0$.

Proof. $f : \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = x - y is continuous. Thus, $E = f^{-1}(A)$ is Borel. $E^y = \{x \in \mathbb{R} : (x, y) \in E\} = y + A$ which is a null set since m(y + A) = m(A) = 0. Thus $m \times m(E) = \int m(E^y) dm(y) = 0$.

3. JANUARY 2016

Problem 3.1. Let *E* be a measurable subset of [0,1]. Suppose there exists $\alpha \in (0,1)$ such that $m(E \cap J) \ge \alpha \cdot m(J)$ for all subintervals *J* of [0,1]. Prove that m(E) = 1.

Proof. For any open subset U of [0,1], $U = \bigsqcup_{i=1}^{\infty} J_i$ for countable many open intervals J_i . It implies that $m(E \cap U) = \sum m(J_i \cap E) \ge \alpha \cdot \sum m(J_i) = m(U)$. So if m(E) < 1, say, $m(E^c) = a > 0$. For all $\epsilon > 0$, Let U be open such that $m(U - E^c) = m(U \cap E) < \epsilon$. But $\epsilon > m(U \cap E) \ge \alpha m(U) \ge \alpha a$. A contradiction.

Problem 3.2. let $f, g \in L^1([0,1])$. Suppose $\int_0^1 x^n f(x) dx = \int_0^1 x^n g(x) dx$ for all integers $n \ge 0$. Prove that f = g a.e.

Proof. Let h = f - g. By the assumption, $\int_0^1 p(x)h(x)dx = 0$ for all polynomial p(x) on [0, 1]. Then, by Stone-Weirstrass theorem, for all continuous function u on [0, 1], $\int_0^1 uh = 0$. Now, suppose there is a measurable set E which is not a null set, such that $h \neq 0$ on E. Without loss of generality, we may assume h > 0 on E by replacing E with $E^+ = \{x \in E : h > 0\}$ or replacing h with -h and E with $E^- = \{x \in E : h < 0\}$. We may also assume h is bounded on E, say, h < m for some $m \in \mathbb{N}$. Indeed, since $h \in L_1$, $E_{\infty} = \{x \in E : h = \infty\}$ is null. Then

consider $E = \bigcup_{m=1}^{\infty} \{x \in E : h < m\} \bigcup E_{\infty}$. There is a *m* such that E_m is not null and replace *E* by this E_m . It also implies that $\int_E h > 0$. Then, we know *E* can be approximated by a finite union of open intervals, say, for every $\epsilon > 0$, there is a $A = \bigsqcup_{i=1}^{n} I_i$ such that $\mu(E\Delta A) < \epsilon$. Thus, we have $\int_A h > 0$ since $|\int_E h - \int_A h| \leq \int_{E\Delta A} h \leq m\mu(E\Delta A) < m\epsilon$. Then, fix a continuous function *u* such that u = 1 on *A*. It implies that $\int_A uh > \int_A h > 0$. A contradiction.

Problem 3.3. Let f, g

Problem 3.4. Let $\{g_n\}$ be a sequence of measurable functions on [0, 1] such that (1) $|g_n(x)| \leq C$ for a.e. $x \in [0, 1]$ and (2) $\lim_{n\to\infty} \int_0^a g_n = 0$ for every $a \in [0, 1]$. Prove that for each $f \in L^1[0, 1]$, we have $\lim_{n\to\infty} \int_0^1 fg_n = 0$

Proof. By some standard approximation argument, we can see $S = \operatorname{span}\{\chi_{[0,a]} : 0 \le a \le 1\}$ is dense in $C_c([0,1])$ with respect to L_1 -norm. Furthermore, since $C_c([0,1])$ is also dense in $L_1[0,1]$ with respect to L_1 -norm, S is also dense in $L_1[0,1]$ with respect to L_1 -norm. Then, for every $f \in L_1[0,1]$, there is a sequence $h_m = \sum_{i=1}^{K_m} k_i^{(m)} \chi_{[0,a_i]} \to f$. Then, by (2), for every m, $\lim_{n\to\infty} \int_0^1 h_m g_n = 0$. Then, for every ϵ , choose a m such that $\|h_m - f\|_1 < \epsilon$. Then for such m, there is a N such that whenever n > N, $|\int_0^1 h_m g_n| < \epsilon$. It implies that $|\int_0^1 fg_n| \le |\int_0^1 (f - h_m)g_n| + |\int_0^1 h_m g_n| \le C \|h_m - f\|_1 + \epsilon \le (C+1)\epsilon$. Then we are done.

Problem 3.5. (a) Let X be a normed vector space and Y be a closed liner subspace of X. Assume Y is a proper subspace, that is, $Y \neq X$. Show that, for arbitrary $\epsilon \in (0, 1)$, there is an element $x \in X$ such that ||x|| = 1 and $\inf_{y \in Y} ||x - y|| > 1 - \epsilon$.

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector space, then the unit ball of X is not compact.

Proof. For all ϵ , and a $x \notin Y$, $\inf_{y \in Y} ||x-y|| = d > 0$. Now, choose a $\delta > 0$ such that $\frac{d}{d+\delta} > 1-\epsilon$. For this δ , choose $y_0 \in Y$ such that $||x-y_0|| < d+\delta$. Define $u = \frac{x-y_0}{||x-y_0||}$. Then ||u|| = 1 and $||u+Y|| = \inf_{y \in Y} ||\frac{x-y_0}{||x-y_0||} - y|| = \frac{||x+Y||}{||x-y_0||} > \frac{d}{d+\delta} > 1-\epsilon$.

If X is infinite dimensional, we can choose a sequence $\{x_n\}$ by induction in the unit ball. We begin with any element x_1 in the unit ball. Then If $\{x_1, x_2, ..., x_{n-1}\}$ has been defined, then by (a), there is an element x_n of norm 1 such that $||x_n+Y|| > \frac{1}{2}$ where $Y = \text{span}\{x_1, ..., x_{n-1}\}$. Then $\{x_n\}$ witnesses that the unit ball is not compact since $||x_n - x_m|| > \frac{1}{2}$ for all n, m.

Problem 3.6. Let $\{f_k\}$ be a sequence of increasing functions on [0, 1]. Suppose $\sum_{k=1}^{\infty} f_k(x)$ converges for all $x \in [0, 1]$. Denote the limit function by f. Prove that $f'(x) = \sum_{k=1}^{\infty} f'_k(x)$ a.e. $x \in [0, 1]$.

Proof. $n(f(x + 1/n) - f(x)) = n \sum_{k} (f_k(x + 1/n) - f_k(x)) \ge n \sum_{k} \int_{n}^{x+1/n} f'_k = n \int_{x}^{x+1/n} \sum_{k} f'_k$ since each f'_k is positive. Then, we know that $\lim_{n\to\infty} n \int_{x}^{x+1/n} \sum_{k} f'_k = \sum_{k} f'_k(x)$, which implies that $f'(x) \ge \sum_{k} f'_k(x)$. In the converse, fix $x \in [0, 1]$. Since f_k and f are increasing, then the points that f_k and f are not continuous are countable. Now, choose $h_n \downarrow 0$ and define $A = \{x, x + h_n : n \in \mathbb{N}\}$ on which f_k and f are continuous. A is closed and thus compact. Let $g_m(x) = \sum_{k}^{m} f_k(x)$. W.L.O.G, we may assume $f_k \ge 0$ by replacing f_k with $f_k - f_k(0)$. Then $g_m > 0$ and $g_m \uparrow f$ on A. Define $\sigma(h_n) = \frac{f(x+h_n)-f(x)}{h_n}$ and $\sigma_m(h_n) = \frac{g_m(x+h_n)-g_m(x)}{h_n}$, which are defined on $A - x = \{0, h_n : n \in N\}$, which is also compact. It can be verified that σ and all σ_m are continuous on A - x and $\sigma_m \uparrow \sigma$ on A - x and thus uniformly by Dini's theorem. It implies that for every ϵ , there is a M such that whenever m > M and all $n \in \mathbb{N}$, $\sigma(h_n) < \sigma_m(h_n) + \epsilon$. Take a limit with respect to n, we have $f'(x) \leq g'_m(x) + \epsilon = \sum_k^m f'_k(x) + \epsilon \leq \sum_k^\infty f'_k(x) + \epsilon$. Thus, $f'(x) \leq \sum_k f'_k(x)$.

The following argument may be helpful to simplify the proof above but it lacks some uniform bound of v(k, x) with respect to k now in order to apply DCT. $f'_k(x)$ is a good candidate but not good enough. See below.

Fix $x \in [0,1]$. Define $u(k,x) = f_k(x)$ and let δ be the counting measure on N. Then $f(x) = \sum_k f_k(x) = \int_{\mathbb{N}} u(k,x) d\delta(k)$. Let $h_n \downarrow 0$. Also define $v_n(k,x) = \frac{u(k,x+h_n)-u(k,x)}{h_n}$. By definition, $v_n(k,x) \to f'_k(x)$. Furthermore, $\frac{f(x+h_n)-f(x)}{h_n} = \int_{\mathbb{N}} \frac{u(k,x+h_n)-u(k,x)}{h_n} d\delta(k) = \int_{\mathbb{N}} v_n(k,x) d\delta(k)$. It implies that $f'(x) = \lim_n \int_{\mathbb{N}} v_n(k,x) d\delta(k)$. If we can apply DCT, then we are done.

Problem 3.7. Suppose $f, g: [0, 1] \to \mathbb{R}$ are both continuous and of bounded variation. Show that the set $\{(f(t), g(t)) \in \mathbb{R}^2 : t \in [0, 1]\}$ cannot cover the entire unit square $[0, 1] \times [0, 1]$.

Proof. Define r(t) = (f(t), g(t)). Then since on \mathbb{R}^2 , l_1^2 norm is equivalent to l_2^2 norm, r is a \mathbb{R}^2 -valued function of BV, say whenever $0 = x_0 < x_1 < \ldots < x_n = b$, $\sum_{i=1}^n ||r(x_i) - r(x_{i-1})||_2 < \infty$. Suppose $[0,1] \times [0,1]$ can be covered. Divide $[0,1] \times [0,1]$ into $n^2 - 1$ small squares, with center z_j , in which the length of each edge is 1/n. Then, we can choose t_j such that $r(t_j) = z_j$ and reorder t_j in increasing order i.e. $s_1 < s_2 < \ldots < s_{n^2}$. Then, $\sum_{j=1}^{n^2-1} ||r(s_j) - r(s_{j+1})||_2 \ge \sum_{j=1}^{n^2-1} 1/n = (n^2 - 1)/n = n - 1/n \to \infty$. A contradiction.

Problem 3.8. (a) Suppose f is a measurable function on [0,1], then $||f||_{L^{\infty}} = \lim_{p} ||f||_{L^{p}}$.

(b) If $f_n \ge 0$ and $f_n \to f$ in measure, then $\int f \le \liminf \int f_n$.

Proof. (a) By Hölder, assuming $1 \leq p < q < \infty$, we have $||f||_p^p = \int |f|^p \cdot 1 \leq ||f|^p|_{\frac{q}{p}} \cdot ||1||_{\frac{q}{q-p}} = ||f||_q^p \cdot \mu([0,1])^{\frac{q-p}{q}}$, which implies that $||f||_p \leq ||f||_q$. If $q = \infty$,

$$\begin{split} \|f\|_p^p &= \int |f|^p \leq \|f\|_{\infty} \cdot \mu([0,1]). \text{ Thus, we see } \|f\|_p \text{ is increasing and bounded} \\ \text{by } \|f\|_{\infty}. \text{ for all } \epsilon, \text{ let } E &= \{x \colon |f(x)| > \|f\|_{\infty} - \epsilon\}. \text{ Then, } \|f\|_p^p \geq \int_E |f|^p \geq \\ (\|f\|_{\infty} - \epsilon)^p \mu(E). \text{ Then, } \|f\|_p \geq \mu(E)^{\frac{1}{p}} (\|f\|_{\infty} - \epsilon). \text{ Now, let } p \to \infty, \text{ we have} \\ \lim \|f\|_p \geq \|f\|_{\infty} - \epsilon, \text{ which implies that } \lim_p \|f\|_p = \|f\|_{\infty} \end{split}$$

(b) For the $\liminf_n \int f_n$, we can choose a sequence $\int f_{n_k}$ such that $\lim_k \int f_{n_k} = \lim_n \inf_n \int f_n$. Since $f_n \to f$ in measure, $f_{n_k} \to f$ in measure. Then there is a subsequence $f_{n_{k_m}}$ converging to f a.e. This implies that $\int f = \int \lim_m f_{n_{k_m}} \leq \lim_m \int f_{n_{k_m}} = \lim_n \inf_n \int f_n$ by Fatou's lemma.

Problem 3.9. Suppose $\{f_n\}$ is a sequence of functions in $L^2[0,1]$ such that $||f_n||_2 \le 1$. If $f_n \to f$ in measure, then

- (a) $f \in L^2[0,1];$
- (b) $f_n \to f$ weakly in L^2 ;
- (c) $f_n \to f$ w.r.t norm in L^p for $1 \le p < 2$

Proof. (a) Since $f_n \to f$ in measure, there is a subsequence f_{n_k} converging to f a.e. Then $\int |f|^2 \leq \liminf \int |f_{n_k}|^2 \leq 1$.

(b) $f_n \to f$ in measure. Then, for all $h \in L^2[0,1]$, $f_nh \to f_nh$ in measure, thus cauchy in measure. Let $A_{m,n} = \{x : |f_n(x)h(x) - f_m(x)h(x)| \ge \epsilon\}$. Then, $\int_0^1 |f_nh - f_mh| = \int_{A_{m,n}} |f_nh - f_mh| + \int_{[0,1] \setminus A_{m,n}} |f_nh - f_mh| \le \int_{A_{m,n}} |f_nh| + \int_{A_{m,n}} |f_mh| + \epsilon \mu([0,1] \setminus A_{m,n})$. Then, for all ϵ , there is a δ such that whenever $\mu(A) < \delta$, $\int_A |f_nh| \le (\int_A |f_n|^2 \cdot \int_A |h|^2)^{\frac{1}{2}} \le (\int_A |h|^2)^{\frac{1}{2}}$. Now, choose N big enough, such that m, n > N implies that $\mu(A_{m,n}) < \delta$. Thus, m, n > N also implies that $\int_0^1 |f_nh - f_mh| \le 3\epsilon$. Thus, f_nh is cauchy in $L^1[0, 1]$, and thus converges to some g. Meanwhile, $f_nh \to g$ in measure, which implies that g = fh and thus $|\int f_nh - \int f_h| \le \int |f_nh - fh| \to 0$. Thus, $f_n \to f$ weakly in L^2 .

(c) Define $E_n = \{x : |f_n(x) - f(x)| \ge \epsilon\}$. By the problem 1.8(a), $||f_n||_p \le ||f_n||_2 \le 1$ and $||f||_p \le ||f||_2 \le \infty$. Then, $\int_{E_n} |f_n - f|^p + \int_{E_n^c} |f_n - f|^p \le 2^p (\int_{E_n} |f_n|^p + \int_{E_n} |f|^p) + \epsilon \mu(E_n^c)$. It remains to show that $||f_n||^p$ are uniformly integrable(see the Hint in the original problem). Indeed, by Hölder, $\int ||f_n||^p \cdot \chi_A \le ||f_n|^p||_{\frac{2}{p}} \cdot ||\chi_A||_{\frac{2}{2-p}} = ||f_n||_2^p \cdot \mu(A)^{\frac{2}{2-p}} \le \mu(A)^{\frac{2}{2-p}}$, which shows that $||f_n|^p||$ are uniformly integrable.

Problem 3.10. Suppose *E* is a measurable subset of [0, 1] with Lebesgue measure m(E) = 99/100. Show that there is a $x \in [0, 1]$ such that for all $r \in (0, 1)$, $m(E \cap (x - r, x + r)) \ge r/4$.

Proof. For any subset $A \subset [0, 1]$, the Hardy-Littlewood Maximal function of χ_A is $M\chi_A(x) = \sup_{r>0} \frac{1}{2r} \int_{x-r}^{x+r} \chi_A = \sup_r \frac{1}{2r} m(A \cap (x-r, x+r))$. Now, suppose that the conclusion is not right, for every $x \in [0, 1]$, there is a r_x such that $m(E \cap (x-r))$

 $(r_x, x + r_x) \leq r_x/4$ i.e. $\frac{1}{2r_x}m(E \cap (x - r_x, x + r_x)) \leq 1/2$, which implies that $\frac{1}{2r_x}m(E^c \cap (x - r_x, x + r_x)) \geq 1/2$. Let $f = \chi_{E^c}$. Then, for every $x \in [0, 1]$, $Mf(x) \geq 1/2$. However, $m\{x: Mf(x) \geq 1/2\} \leq 6 \int \chi_{E^c} = 3/50$. A contradiction.

4. August 2015

Problem 4.1. Let $f: \mathbb{R} \to \mathbb{R}$ be a Borel measurable function. For each $t \in \mathbb{R}$, define $f_t(x) = f(t+x)$. Prove $f_t(x)$ is a Borel measurable function for each fixed t. *Proof.* $f_t^{-1}((-\infty, a)) = \{x: x+t \in f^{-1}((-\infty, a))\} = f^{-1}((-\infty, a)) - t$ is Borel. \Box **Problem 4.2.** justify the statement that $\int_0^1 \int_0^1 \frac{(x-y)\sin(xy)}{x^2+y^2} dx dy = \int_0^1 \int_0^1 \frac{(x-y)\sin(xy)}{x^2+y^2} dy dx$. *Proof.* To apply the Fubini's thm, it suffices to show $\int_0^1 \int_0^1 |\frac{(x-y)\sin(xy)}{x^2+y^2}| dx dy < \infty$. We integrate this on the quarter of a disk of radius $\sqrt{2}$ in the first quadrant, which contains $[0, 1] \times [0, 1]$. We see that $\int_0^{\frac{\pi}{2}} \int_0^{\sqrt{2}} |\frac{r\cos(\theta) - r\sin(\theta)}{r^2}| rdrd\theta \leq 2 \int_0^{\frac{\pi}{2}} \int_0^{\sqrt{2}} drd\theta =$

$$\sqrt{2}\pi$$
.

Problem 4.3. Assume that $\{f_n\}$ is a sequence in C[0, 1]. Show that:

(a) (f_n) converges weakly to 0 iff (f_n) is bounded in C[0, 1] and $\lim_{n\to\infty} f_n(t) = 0$ for all $t \in [0, 1]$.

(b) If (f_n) converges weakly in C[0, 1], then it converges in norm in $L_p[0, 1]$ for all $1 \le p < \infty$.

Proof. Consider $C[0,1]^* = M[0,1]$.

(a) If $f_n \to 0$ weakly, then, for all $\mu \in M[0,1]$, $\int f_n d\mu \to 0$. In particular, $\mu = \delta_t, t \in [0,1]$, implies that $f_n(t) \to 0$. If we view $f_n \in M[0,1]^*$, then $f_n(\mu) = \mu(f_n) \to 0$. Then $\sup_n |f_n(\mu)| < \infty$, which $\sup_n ||f_n|| < \infty$ by Principle of uniform boundedness theorem. In the converse, by DCT, $|\int f_n d\mu| \leq \int |f_n| d|\mu| \to 0$.

(b) W.L.O.G, we may assume $f_n \to 0$ weakly, then by (a), $|f_n(t)|^p \to 0$ and $(|f_n|^p)$ is bounded. Then DCT implies that $f_n \to 0$ in L^p .

Problem 4.4. Let A be a Lebesgue null set in \mathbb{R} . Prove that $B = \{e^x \colon x \in A\}$ is also a null set.

Proof. $f(x) = e^x$ is absolutely continuous on any interval [a, b] since f is differentiable on [a, b] and $|f(x) - f(y)| \leq M|x - y|$, where $M = e^b$ and $x, y \in [a, b]$. At first, assume that $A \subset [a.b]$. $A \subset O_n$, where O_n is a sequence of open sets such that $m(O_n) \to 0$. Let $O_n = \bigsqcup_{i=1}^{\infty} I_{i,n}$. Then $f(A) \subset f(O_n) = \bigsqcup_{i=1}^{\infty} f(I_{i,n})$, which implies that $m(f(A)) \leq \sum_{i=1}^{\infty} m(f(I_{i,n})) \leq M \sum_{i=1}^{\infty} m(I_{i,n}) = M \cdot m(O_n) \to 0$. Then m(f(A)) = 0. If A is not bounded. Define $A_n = A \cap [n, n+1)$ for all $n \in \mathbb{Z}$. $A = \bigsqcup_n A_n$. By the argument above $m(f(A_n)) = 0$ and thus $m(f(A)) = \sum_n m(f(A_n)) = 0$. \Box

Problem 4.5. (b) Show that if f and g are absolutely continuous on [a, b], then so does $f \cdot g$.

(c) Give an example to show that (b) is false if [a, b] is replaced by \mathbb{R} .

Proof. (b) Since f, g are continuous on [a, b], thus bounded by M and N, respectively. Then, for all ϵ there is a δ such that whenever $\sum_{i=1}^{n} |x_i - y_i| < \delta$, $\sum_{i=1}^{n} |f(x_i) - f(y_i)| < \epsilon/2N$ and $\sum_{i=1}^{n} |g(x_i) - g(y_i)| < \epsilon/2M$. Thus $\sum_{i=1}^{n} |f(x_i)g(x_i) - f(x_i)g(y_i)| = \sum_{i=1}^{n} |f(x_i)g(x_i) - f(x_i)g(y_i) + f(x_i)g(y_i) - f(x_i)g(y_i)| \le M \sum_{i=1}^{n} |g(x_i) - g(y_i)| + N \sum_{i=1}^{n} |f(x_i) - f(y_i)| = \epsilon$

(c) f(x) = g(x) = x are absolutely continuous on \mathbb{R} . However, for all $\delta > 0$, choose disjoint intervals $I_i = (m_i, m_i + \delta_i)$ for i = 1, 2, ..., n such that $\sum_i \delta_i = \delta$, $m_i < m_{i+1}$ and $m_1 \delta \ge 1/2$. then $\sum_{i=1}^n |f(m_i + \delta_i)g(m_i + \delta_i) - f(m_i)g(m_i)| = \sum_{i=1}^n |m_i^2 + 2m_i\delta_i + \delta_i^2 - m_i^2| \ge 2\sum_{i=1}^n m_i\delta_i \ge m_1\delta \ge 1/2$

Problem 4.6. Let X, Y be Banach spaces and $T: X \to Y$ be a one-to-one, bounded and linear operator for which the range T(X) is closed in Y. Show that for each continuous linear functional ϕ on X there is a continuous linear functional ψ on Y, so that $\phi = \psi \circ T$.

Proof. By open mapping theorem, $\phi \circ T^{-1}$ is a well-defined linear bounded functional on T(X). Then, by Hahn-Banach Thm, it can be extent to some ψ on Y, say, $y \in T(X)$ implies that $\phi \circ T^{-1}(y) = \psi(y)$. It implies that $\psi(T(x)) = \phi(x)$ for all $x \in X$.

Problem 4.7. Derive Open Mapping Theorem from the Closed Graph Theorem.

Proof. Let $T: X \to Y$ surjective, continuous linear. Define the quotient map $T': X/\ker(T) \to Y$ by $T'(x + \ker(T)) = T(x)$. We show that T' is an isomorphism. At first. $||T'(x + \ker(T))|| = ||T(x + y)|| \le ||T|| ||x + y||$ for all $y \in \ker(T)$, which implies that $||T'|| \le ||T||$. In the converse, consider T^{-1} . Let $T(x_n) \to T(x)$ and $x_n + \ker(T) \to y + \ker(T)$, say, $||x_n - y + \ker(T)|| \to 0$. For all n, choose $z_n \in \ker(T)$ s.t. $||x_n + z_n - y|| - 2^{-n} \le ||x_n - y + \ker(T)|| \to 0$. Thus $T(x_n) = T(x_n + z_n) \to T(y)$. Then $T(x_n) \to T(x)$ implies that T(x) = T(y) and thus $x + \ker(T) = y + \ker(T)$. By Closed Graph theorem, T' is an isomorphism, and T = T'P, where P is the projection from X to $X/\ker(T)$, which is an open map. Then, T(O) = T'(P(O)) is open for all open subset of X.

Problem 4.8. Let Y be a closed subspace of a Banach space X, with norm $\|\cdot\|$. Let $\|\|\cdot\|\|$ be a norm on Y which is equivalent to $\|\cdot\|$, meaning that there is a $C \ge 1$ so that for all $y \in Y$:

$$\frac{1}{C} |||y||| \le ||y|| \le C |||y|||$$

12

Let S be the set of all linear functionals $\psi \colon X \to \mathbb{R}$, so that

 $|\psi(y)| \leq |||y|||$ for all $y \in Y$ and

 $\|\psi(x)\| \le \|x\|$ for all $x \in X$.

Prove the following statements:

- (1) $||||a||||: = \sup_{\psi \in S} |\psi(x)|$ defines a norm on X.
- (2) ||||y|||| = |||y||| for $y \in Y$.
- (3) The norm $\| \cdot \|$ and $\| \cdot \|$ are equivalent on X.

Proof. (1) easy to verify.

(2) For $y \in Y$, by definition of $|||| \cdot ||||$, $||||y|||| \le |||y|||$.

In the converse, choose a $\phi \in (Y, ||| \cdot |||)^*$, s.t. $\phi(y) = |||y|||$ and norm of ϕ is 1. Thus for all $y \in Y$, $|\phi(y)| \leq |||y||| \leq C||y||$. Then, ϕ can be extent to whole X with the same norm, say for all $x \in X$, $|\phi(x)| \leq C||x||$. Then $\phi \in S$ and thus $||||y|||| \geq |||y|||$.

(3) By def of $|||| \cdot ||||$, $||||x|||| \le C||x||$. In the converse, for all $x \in X$, by Hahn-Banach theorem, there is a ϕ s.t. $\phi(x) = ||x||$, and $||\phi|| = 1$. Define $\psi = \frac{1}{C}\phi$, which implies that $\psi(x) = \frac{1}{C}||x||$ and $||\psi(z)|| \le \frac{1}{C}||z|| \le C||z||$ for all $z \in X$ while $||\psi(y)|| \le \frac{1}{C}||y|| \le ||y|||$ for all $y \in Y$. Thus $\psi \in S$ and thus $||||x|||| \ge \frac{1}{C}||x||$.

Problem 4.9. Let f be increasing on [0, 1] and let

$$g(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}, \quad x \in (0,1).$$

Prove that if $A = \{x \in (0,1) : g(x) > 1\}$, then $f(1) - f(0) \ge m^*(A)$.

Proof. For all $x \in A$, for all $\delta > 0$, there is a h_{δ} s.t. $|h_{\delta}| < \delta$ and $\frac{f(x+h_{\delta})-f(x-h_{\delta})}{2h_{\delta}} > 1$. Now, we consider closed intervals I_x^{δ} centered at x of radius h_{δ} , then $\{I_x^{\delta}: x \in A, \delta > 0\}$ form a Vitali cover of A. By Vitali's Lemma. For $\epsilon > 0$, there is $\{I_{x_i}^{\delta_i}\}_{i=1}^n$ such that $\sum_{i=1}^n l(I_{x_i}^{\delta_i}) > m^*(A) - \epsilon$ and $I_{x_i}^{\delta_i} \cap I_{x_j}^{\delta_j} = \emptyset$. Then

$$f(1) - f(0) \ge \sum_{i=1}^{n} (f(x_i + h_{\delta_i}) - f(x_i - h_{\delta_i})) \ge \sum_{i=1}^{n} 2h_{\delta_i} = \sum_{i=1}^{n} l(I_{x_i}^{\delta_i}) > m^*(A) - \epsilon,$$

which implies that $f(1) - f(0) \ge m^*(A)$

which implies that $f(1) - f(0) \ge m^*(A)$.

Problem 4.10. Let A be a uniformly dense subspace of C[0,1] and let $B = \{F(x): F(x) = \int_0^x f(t)dt, 0 \le x \le 1, f \in A\}$. Prove B is uniformly dense in $C_0[0,1] = \{g \in C[0,1]: g(0) = 0\}$. And prove that the span of $\{\sin(nx): n \in \mathbb{N}\}$ is dense in $C_0[0,1]$.

Proof. Let $B' = \{F(x): F(x) = \int_0^x f(t)dt, 0 \le x \le 1, f \in C[0,1]\}$. Firstly, B is dense in B'. Indeed, Let $F \in B'$ and $G \in B$. $F(x) - G(x) = \int_0^x (f(t) - g(t))dt$ implies that $||F - G||_{\infty} \le \int_0^1 |f(t) - g(t)|dt \le ||f - g||_{\infty}$. Then, since A is dense in C[0,1], B is dense in B'.

B' is an algebra. Let $F, G \in B'$, say, $F(x) = \int_0^x f(t)dt$ and $G(x) = \int_0^x g(t)dt$. Then, $F(x) \cdot G(x) = \int_0^x (F(t)g(t) + G(t)f(t))dt \in B'$. B' also separate points since $x = \int_0^x 1dt \in B'$. Then, by Stone-Weirstrass theorem, B' is dense in $C_0[0, 1]$ and thus so does B

 $sin(nx) = \int_0^x n \cos(nt) dt$. Then by the argument above, it suffices to show that $A = \operatorname{span}\{n\cos(nt)\} = \operatorname{span}\{\cos(nt)\}$ is dense in C[0, 1]. Indeed, $\cos(mt)\cos(nt) = \frac{1}{2}(\cos(|m-n|t) + \cos((m+n)t)) \in A$ and $1 = \cos(0 \cdot t) \in A$ separates points on [0, 1]. Then Stone-Weirstrass thm implies that A is dense in C[0, 1].

5. JANUARY 2015

Problem 5.1. Let $f \in L^1(\mathbb{R})$. If $\int_a^b f(x)dx = 0$ for all rational numbers a < b, prove that f = 0 a.e. in \mathbb{R} .

Proof. For all $c < d \in \mathbb{R}$, let $a_n \downarrow c$ and $b_n \uparrow d$, where $a_n, b_n \in \mathbb{Q}$. Define $f_n = f \cdot \chi_{[a_n, b_n]}$, then $f_n \to f \cdot \chi_{[c,d]}$. In addition, $|f_n| \leq |f| \in L^1$. Then, DCT implies that $\int_{[a_n, b_n]} f \to \int_{[c,d]} f = 0$. Then, if $\mu(\{x: f(x) \neq 0\}) > 0$, we may assume $\mu(\{x: f^+(x) \neq 0\}) > 0$ by $f = f^+$ or $f = -f^-$ whenever $f \neq 0$. Then, there is a $n \in \mathbb{N}$ such that $E_n = \{x: f^+(x) > 1/n\}$ is of positive measure s > 0. For $\epsilon = s/3n$, there is a δ_1 such that if $\mu(A) < \delta_1$, $|\int_A f d\mu| < \epsilon$. Let $\delta = \min\{s/3, \delta_1\}$, then there is an open set $A = \bigsqcup_1^m I_i$ such that $\mu(A \bigtriangleup E_n) < \delta$ and thus $\mu(A \cap E_n) \ge s - \delta$. Then, $\int_A f d\mu = \int_{A \cap E_n} f^+ d\mu + \int_{A \setminus E_n} f d\mu \ge \frac{1}{n}(s-\delta) - \epsilon \ge \frac{s}{3n} > 0$. A contradiction to $\int_A f = \sum_{i=1}^m \int_{I_i} f d\mu = 0$.

Problem 5.2. Let $\{g_n\}$ and g be $L^1(\mathbb{R})$ and satisfy $\lim_{n\to\infty} ||g_n - g||_1 = 0$. Prove that there is a subsequence of g_n that converges pointwise to g a.e.

Proof. Let $E_{\epsilon,n} = \{x \colon |g_n(x) - g(x)| > \epsilon\}$. Then $\epsilon \mu(E_{\epsilon,n}) \leq \int_{E_{\epsilon,n}} |g_n - g| \to 0$. Then for any $\epsilon > 0$, for all $\delta > 0$, there is a N such that whenever n > N, $\mu(E_{\epsilon,n}) < \delta$. Then, we choose $\{n_m\}$ by induction such that $\mu(F_m) < 2^{-m}$, where $F_m = \{x \colon |g_{n_m}(x) - g(x)| > 2^{-m}\}$. Now, define $D_k = \bigcup_{m=k}^{\infty} F_m$ and $D = \bigcap_{k=1}^{\infty} D_k$. Since $\mu(D_k) \leq \sum_{m=k}^{\infty} 2^{-m} \to 0$, $\mu(D) = 0$. Now, $x \in D^c$ iff there is a $k \in \mathbb{N}$, whenever $m \geq k$, $|g_{n_m}(x) - g(x)| < 2^{-m}$. Then we are done.

Problem 5.3. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Let $\mathcal{N} \subset \mathcal{M}$ be a σ -algebra. If $f \geq 0$ is \mathcal{M} -measurable and μ -integrable then prove that there exists an \mathcal{N} -measurable and μ -integrable function $g \geq 0$ so that

$$\int_E gd\mu = \int_E fd\mu, \qquad E \in \mathcal{N}.$$

Proof. Define $\nu(E) = \int_E f d\mu$ is a measure on \mathcal{M} . Then $\nu \ll \mu$. Then $\nu|_{\mathcal{N}} \ll \mu|_{\mathcal{N}}$. Then there is a g, which is \mathcal{N} -measurable, such that $\nu(E) = \int_E g d\nu$ by

Radon-Nikodym Theorem. In addition, $\nu(X) = \int_X f d\mu < \infty$ implies that g is μ -integrable.

Problem 5.4. If *H* is a Hilbert space and $T \in L(H)$ satisfying that $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in H$, then prove that *T* is bounded.

Proof. Let $x_n \to x$ and $Tx_n \to y$, we show that Tx = y. Indeed, for all $u \in H$. $|\langle x_n, Tu \rangle - \langle x, Tu \rangle| = |\langle x_n - x, Tu \rangle| \le ||x_n - x|| ||Tu|| \to 0$ and $\langle Tx_n, u \rangle \to \langle y, u \rangle$ by the same argument. Thus $\langle Tx, u \rangle = \langle y, u \rangle$ for all $u \in H$. Then $\langle Tx - y, Tx - y \rangle = 0$, by replacing u by Tx - y, which implies that Tx = y. Then Closed Graph Thm implies that T is bounded.

Problem 5.5. Let $f, g \in L^1(\mathbb{R})$. Prove that $h \in L^1(\mathbb{R})$, where $h(x) = \int_{\mathbb{R}} f(y)g(x-y)dy$ whenever this integral is finite.

 $\begin{array}{l} \textit{Proof.} \ |h(x)| \leq \int_{\mathbb{R}} |f(y)| |g(x-y)| dy. \text{ Then, by Tonelli, } \int_{\mathbb{R}} |h(x)| dx \leq \int_{\mathbb{R}} (\int_{\mathbb{R}} |f(y)| |g(x-y)| dy) dx \\ = \int_{\mathbb{R}} (\int_{\mathbb{R}} |f(y)| |g(x-y)| dx) dy = \int_{\mathbb{R}} |g| \cdot \int_{\mathbb{R}} |f| < \infty \end{array}$

Problem 5.6. Let $f, g \in C[0, 1]$ with f(x) < g(x) for all $x \in [0, 1]$.

(1) Prove there is a polynomial p(x) so that

$$f(x) < p(x) < g(x), \quad x \in [0, 1].$$

(2) Prove that there is an increasing sequence of polynomials $\{p_n(x)\}$ so that

$$f(x) < p_n(x) < g(x), \quad x \in [0, 1]$$

and $p_n \to g$ uniformly on [0, 1].

Proof. $g - f \in C[0, 1]$ and thus define $k = \min_{x \in [0,1]}(g(x) - f(x)) > 0$. Then, by Stone-Weirstrass Thm, there is a polynomial h such that $||f - h||_{\infty} < k/2$, which implies that for all $x \in [0, 1]$, f(x) < h(x) + k/2 and g(x) - h(x) = g(x) - f(x) + f(x) - h(x) > k/2, which implies that f(x) < h(x) + k/2 < g(x) and define p(x) = h(x) + k/2.

For (2), define by induction, choose p_1 such that $f(x) < p_1(x) < g(x)$ and if $f(x) \le g(x) - \frac{k}{2^n} \le p_n(x) < g(x)$. Choose a p_{n+1} such that $g(x) > p_{n+1}(x) \ge \max\{g(x) - \frac{1}{2^{n+1}}, p_n(x)\}$

Problem 5.7. If $f \in L^2(\mathbb{R})$, $g \in L^3(\mathbb{R})$ and $h \in L^6(\mathbb{R})$, then prove that $fgh \in L^1(\mathbb{R})$

 $\begin{array}{l} Proof. \ |f(x)g(x)h(x)| \leq \frac{1}{2}|f(x)|^2 + \frac{1}{2}|g(x)h(x)|^2, \text{ while } |g(x)h(x)|^2 \leq (\frac{2}{3}|g(x)|^3 + \frac{1}{3}|h(x)|^6). \end{array}$ $\begin{array}{l} This \text{ implies that } |f(x)g(x)h(x)| \leq \frac{1}{2}|f(x)|^2 + \frac{1}{3}|g(x)|^3 + \frac{1}{6}|h(x)|^6. \text{ Then,} \\ \int |f(x)g(x)h(x)|dx \leq \frac{1}{2}\int |f(x)|^2dx + \frac{1}{3}\int |g(x)|^3dx + \frac{1}{6}\int |h(x)|^6dx < \infty. \end{array}$

Problem 5.8. (1) Y is metric space. Prove $y \in Y$ is isolated iff the complement $\{y\}^c$ is not dense in Y

(2) Let X be a countable nonempty complete metric space. Prove that the set of isolated points is dense in X.

Proof. If $\{y\}$ is open, then $\{y\} \cap \{y\}^c = \emptyset$, which implies that $\{y\}^c$ is not dense. In the converse, $\{y\}^c$ being not dense implies that there is an open set O such that $\{y\}^c \cap O = \emptyset$. Then $\{y\} = O$ and thus y is an isolated point.

For (2), If not, there is an open set O such that $O \cap \{y \in X : y \text{ is isolated}\} = \emptyset$. It is not hard to see since X is complete, O itself is a Baire space, say, given a sequence $O_n \subset O$, in which members O_n are open and dense in O, then $\bigcap_n O_n$ is also dense in O (consider $U_n = O_n \bigcup \overline{O}^c$). Then, for all $y \in O$, y is not isolated. It implies that $O \setminus \{y\}$ is dense in O. Then by Baire category theorem, $\emptyset = \bigcap_{y \in O} (O \setminus \{y\})$ is also dense in O. A contradiction.

Problem 5.9. Suppose $f \in L^p(\mathbb{R})$ for all $p \in (1,2)$ and that $\sup_{p \in (1,2)} ||f||_p < \infty$. Prove that $f \in L^2(\mathbb{R})$ and that $\lim_{p \to 2^-} ||f||_p = ||f||_2$.

Proof. $||f||_p^p = \int_E |f|^p + \int_{E^c} |f|^p$, where $E^c = \{x \colon |f(x)| \le 1\}$. Now, for all increasing sequence $\{p_n > 1\} \uparrow 2$. On E, $|f(x)|^{p_n} \downarrow |f(x)|^2$. In addition, on E^c , $|f(x)|^{p_n} \uparrow |f(x)|^2$. Then, MCT implies that $\int_E |f|^{p_n} + \int_{E^c} |f|^{p_n} \to \int_{\mathbb{R}} |f|^2$, which implies that $||f||_{p_n}^{\frac{p_n}{2}} \to ||f||_2$. Now, since $M = \sup_{p \in (1,2)} ||f||_p < \infty$, then $||f||_{p_n}^{\frac{p_n}{2}-1} \le M^{\frac{p_n}{2}-1} \to 1$, which implies that $||f||_{p_n}^{\frac{p_n}{2}} - ||f||_{p_n} \to 0$ and thus $||f||_{p_n} \to ||f||_2$.

Since $\{p_n\}$ is arbitrary, $\lim_{p\to 2^-} \|f\|_p = \|f\|_2$ holds and $\|f\|_2 < \infty$ since $M = \sup_{p\in(1,2)} \|f\|_p < \infty$.

Problem 5.10. This problem is same with Problem 8 in Aug 2015

6. August 2014

Problem 6.1. For $n \in \mathbb{N}$, let $f_n: [0,1] \to \mathbb{R}$ be continuous, and for every $x \in [0,1]$ the sequence $(f_n(x))$ is decreasing. Suppose that $f_n \to f$ pointwise. Show the convergence is uniform.

Proof. This is Dini's theorem. Given an $\epsilon > 0$.Consider open sets $U_m = \{x : |f_m(x) - f(x)| < \epsilon\} = \{x : \forall x \ge M, |f_m(x) - f(x)| < \epsilon\}$ since f_m is monotone. Since $f_m \to f$ pointwise, $[0,1] = \bigcup_{m=1}^{\infty} U_m$. Then by the compactness of $[0,1], [0,1] = \bigcup_{n=1}^{N} U_{m_n}$. Now, let $M = \max\{m_1, ..., m_N\}$. Then whenever n > M, for all $x \in [0,1], |f_m(x) - f(x)| < \epsilon$.

Problem 6.2. Let $f \in L^1(0,\infty)$. For x > 0, define $g(x) = \int_0^\infty f(t)e^{-tx}dt$. Prove that g(x) is differentiable for x > 0 with derivative $g'(x) = \int_0^\infty -tf(t)e^{-tx}dt$

 $\begin{array}{l} \textit{Proof. Define } h(x) \ = \ \int_0^x \int_0^\infty -tf(t)e^{-ty}dtdy. \quad \text{Then } \int_0^x \int_0^\infty |-tf(t)e^{-ty}|dtdy \ = \\ \int_0^\infty (\int_0^x e^{-ty}dy) \cdot |-tf(t)|dt \ = \ \int_0^\infty |-tf(t)| \cdot (-\frac{1}{t}e^{-tx} + \frac{1}{t})dt \ = \ \int_0^\infty -|f(t)|e^{-tx}dt + \\ \int_0^\infty |f(t)|dt \ \le \ 2||f||_1. \quad \text{Thus, by Fubini, } h(x) \ = \ \int_0^\infty (\int_0^x e^{-ty}dy) \cdot (-tf(t))dt \ = \\ \int_0^\infty (-tf(t)) \cdot (-\frac{1}{t}e^{-tx} + \frac{1}{t})dt \ = \ \int_0^\infty f(t)e^{-tx}dt - \int_0^\infty f(t)dt. \ \text{Then, } g \ = \ h + \int_0^\infty f(t)dt. \end{array}$ We are done.

Problem 6.3. This problem is same with Problem 1 in Jan 2015.

Problem 6.4. Let f be Lebesgue measurable on [0, 1] with f > 0 a.e. Suppose E_k is a sequence of measurable sets in [0, 1] with the property that $\int_{E_k} f(x) dx \to 0$ as $k \to \infty$. Prove that $\mu(E_k) \to 0$ as $k \to \infty$.

Proof. Define $F_n = \{x \colon f(x) > 1/n\}$. $\frac{1}{n}\mu(F_n \cap E_k) \leq \int_{F_n \cap E_k} f \leq \int_{E_k} f \to 0$ as $k \to \infty$. Since F_n are increasing to the whole space, $\mu(E_k) = \lim_{n \to \infty} \mu(E_k \cap F_n)$ uniformly. Indeed, given an ϵ , there is a N such that whenever $n \geq N$, for all k, $|\mu(E_k \cap F_n) - \mu(E_k)| \leq \mu(F_n^c) < \epsilon/2$. For such N, there is a K, whenever k > K $\mu(F_N \cap E_k) \leq N \int_{E_k} f \leq \epsilon/2$, which implies $\mu(E_k) < \epsilon$. Thus, $\lim_{k \to \infty} \mu(E_k) = 0$.

Problem 6.5. Let (f_n) be a sequence of continuous functions on [0,1] such that for each $x \in [0,1]$ there is an N_x so that $f_n(x) \ge 0$ for all $n \ge N_x$. Show that there is an open nonempty set $U \subset [0,1]$ and an $N \in \mathbb{N}$, so that $f_n(x) \ge 0$ for all $n \ge N$ and all $x \in U$.

Proof. If not, for all open set U, integer N, there is a n > N and a point $x \in U$, such that $f_n(x) < 0$. Consider open sets $E_n = \{x : \exists m \ge n, f(x) < 0\}$ are dense since $E_n \bigcap U \neq \emptyset$. However, $\bigcap_n E_n = \emptyset$. A contradiction to Baire category theorem. \Box

Problem 6.6. Let X be an infinite dimensional Banach space. What is the w^* closure of $S_{X^*} = \{x^* : ||x^*|| = 1\}$. (The best exercise to use Hahn-Banach and
Krein-Milman theorem I have ever seen)

Proof. We claim that $\overline{S_{X^*}}$ in the w^* topology is $\operatorname{Ball}_{X^*}$. Indeed, at first, if $||x^*|| > 1$, then there is a $x \in X$ such that ||x|| = 1 and $|x^*(x)| > 1$. Then, there is an ϵ such that the nbhd of x^* , $A = \{y^* : |x^*(x) - y^*(x)| < \epsilon\}$ does not intersect with $\operatorname{Ball}_{X^*}$. To see this, for all $y^* \in A$, $|y^*(x)| > 1$ and thus $||y^*|| > 1$.

Then, fix a x^* with $||x^*|| \leq 1$. Consider a general nbhd of x^* , say $O = \bigcap_{i=1}^n \{y^* : |x^*(x_i) - y^*(x_i)| < \epsilon\}$. Let $M = \operatorname{span}\{x_i : i = 1, ..., n\}$. To simplify the notation, we denote ϕ for x^* . Let $H_{\phi} = \{f \in X^* : f|_M = \phi\}$. We claim that H_{ψ} is weak*-closed, convex and nonempty set.

Indeed, any Hahn-Banach extension of ϕ , say, f with $||f|| = ||\psi|| \le 1$ implies that H_{ϕ} is nonempty. For all $f_1, f_2 \in H_{\phi}, 0 < \lambda < 1, \lambda f_1 + (1 - \lambda) f_2|_M = \phi$ and $\|\lambda f_1 + (1-\lambda)f_2\| \leq 1$. Thus, H_{ϕ} is convex. Now, let $f_{\mu}(x) \to f(x)$ for all $x \in X$, where $f_{\mu} \in H_{\phi}$. Then since $f_{\mu}|_M = \phi$, $f|_M = \phi$. In addition, for all x is of norm 1, $|f_{\mu}(x)| \leq \|f_{\mu}\| \|x\| \leq 1$. This implies that $|f(x)| \leq 1$ and thus $\|f\| \leq 1$, which implies that H_{ϕ} is w^* -closed.

Then, by Krein-Milman theorem, $\operatorname{Ext}(H_{\phi}) \neq \emptyset$. Let $f \in \operatorname{Ext}(H_{\phi})$, we claim $\|f\| = 1$. Indeed, suppose $\|f\| < 1$. Let g be a linear functional, such that $g|_M = 0$ but $\|g\| = 1$. Then define $f_1 = f + (1 - \|f\|)g$ and $f_1 = f - (1 - \|f\|)g$. Then, it can be verified that $\|f_1\| \leq 1$, $\|f_2\| \leq 1$ and $f_1|_M = f_2|_M = \phi$. However, $f = (f_1 + f_2)/2$. This contradicts to $f \in \operatorname{Ext}(H_{\phi})$. Thus, $f \in S_{X^*} \cap O$. We are done.

Problem 6.7. Let μ be a finite measure on the measurable space (Ω, Σ) . Prove the following part of the proof of the above Theorem: If $F \in L_p^*(\mu)$, then there exists an $h \in L_1(\mu)$ so that $F(\chi_A) = \int_A h d\mu$ for all $A \in \Sigma$.

Proof. $F(\chi_A)$ is a measure on (Ω, Σ) such that $F(\chi_A) \ll \mu$. Indeed, $F(\chi_{\emptyset}) = F(0) = 0$. Let $A = \bigsqcup_{n=1}^{\infty} A_n$. $\chi_A = \sum_{n=1}^{\infty} \chi_{A_n}$ implies that $\sum_{n=1}^{m} \chi_{A_n} \to \chi_A$ in $L^p(\mu)$. Then since $F \in L^p(\mu)^*$, $F(\sum_{n=1}^{m} \chi_{A_n}) = \sum_{n=1}^{m} F(\chi_{A_n}) \to F(\chi_A)$, which implies that $F(\chi_A) = \sum_{n=1}^{\infty} F(\chi_{A_n})$. Thus, $F(\chi_A)$ is a measure. If $\mu(A) = 0$, $|F(\chi_A)| \leq K ||\chi_A||_p = K \mu(A)^p = 0$. Then, Radon-Nikodym theorem applies. \Box

Problem 6.8. Assume that (x_n) is a weakly converging sequence in a Hilbert space H. Show that there is a subsequence (y_n) of (x_n) so that $\frac{1}{n} \sum_{j=1}^n y_j$ converges in norm.

 $\begin{array}{l} Proof. \ (x_n) \text{ is bounded. W.L.O.G, we may assume } (x_n) \to 0 \text{ by subtract its' limit.} \\ \text{It allows to choose } y_j \text{ by induction such that } |\langle y_j, \sum_{k=1}^{j-1} y_k \rangle| < 2^{-j}. \text{ Now, for } n > m, \\ \|\frac{1}{m} \sum_{j=1}^m y_j - \frac{1}{n} \sum_{j=1}^n y_j \| = \langle \frac{1}{m} \sum_{j=1}^m y_j - \frac{1}{n} \sum_{j=1}^n y_j, \frac{1}{m} \sum_{j=1}^m y_j - \frac{1}{n} \sum_{j=1}^n y_j \rangle = \\ \langle (\frac{1}{m} - \frac{1}{n}) \sum_{j=1}^m y_j - \frac{1}{n} \sum_{j=m+1}^n y_j, (\frac{1}{m} - \frac{1}{n}) \sum_{j=1}^m y_j - \frac{1}{n} \sum_{j=m+1}^n y_j \rangle \qquad (\star) \\ \text{ Let } \epsilon > 0, \text{ by the choice of } y_j, \text{ there is a } m \in N, \text{ whenever } n \ge m, \ |(\frac{1}{m} - \frac{1}{n}) \sum_{j=1}^m y_j, \frac{1}{n} \sum_{j=m+1}^n y_j \rangle| < \epsilon^2. \text{ Then } (\star) \le (\frac{1}{m} - \frac{1}{n})^2 \|\sum_{j=1}^m y_j\|^2 + 2\epsilon^2 + \frac{1}{n^2} \|\sum_{j=m+1}^n y_j\|^2 \le \frac{1}{m^2} (\sum_{j=1}^n \|y_j\|^2 + 2) + \frac{1}{n^2} (\sum_{j=m+1}^n \|y_j\|^2 + 2) + 2\epsilon^2 \le \frac{1}{m^2} (m \cdot \sup_{j \in \mathbb{N}} \|y_j\|^2 + 2) + 2\epsilon^2 \end{aligned}$

Problem 6.9. Show that a linear functional ϕ on a Banach space X is continuous iff $\{x: \phi(2x) = 3\}$ is norm closed.

Proof. \Longrightarrow is trivial. In the converse. $\{x: \phi(2x) = 3\} = 3/2 + \ker(\phi)$. Since the shift by 3/2 is a homeomorphism, then $\{x: \phi(2x) = 3\}$ is closed iff $\ker(\phi)$ is closed. Define $\phi': X/\ker(\phi) \to \mathbb{C}$ by $\phi'(x + \ker(\phi)) = \phi(x)$, which is an isomorphism. Indeed, fix a point $x_0 \in X$, s.t. $\phi(x_0) = r \neq 0$. Then for all $w \in \mathbb{C}$, $\phi'(\frac{w}{r}x_0 + \ker(\phi)) = w$. Injectivity follows from the definition of the quotient map ϕ' . Thus, ϕ' is an isomorphism since dim(\mathbb{C}) = 1. Thus, $\phi = \phi' \circ P$ is continuous since projection P is also continuous.

Problem 6.10. Define $T: C^1[0,1] \to C[0,1]$ by Tf = f'. Show that T has closed graph and that T is not bounded.

Proof. Let $f(x) = \int_0^x f'(t)dt + M$ and $f_n(x) = \int_0^x f'_n(t)dt + M_n$. Let $f_n \to f$ and $f'_n \to g$ under $\|\cdot\|_{\infty}$. Since $f_n(0) \to f(0), M_n \to M$. Then, $f'_n \to g$ implies that $f_n(x) = \int_0^x f'_n(t)dt + M_n \to \int_0^x g(t)dt + M$ under $\|\cdot\|_{\infty}$. Thus, g = f'.

On the other hand, let $f_n(x) = x^n$. $||f_n||_{\infty} = 1$ while $||f'_n||_{\infty} = n$. Thus, T is unbounded and $C_1[0, 1]$ is not a Banach space under the uniform norm.

7. JANUARY 2014

Problem 7.1. Let (X, \mathcal{M}, μ) be a non atomic measure space with $\mu(X) > 0$. Show that there is a measurable $f: X \to [0, \infty)$, for which $\int_X f d\mu = \infty$.

Proof. μ is called atomic if there is a $A \in \mathcal{M}$ such that $\mu(A) > 0$ such that whenever $B \subset A$ with $\mu(B) < \mu(A), \ \mu(B) = 0$. Then, if μ is not atomic, we can define a decreasing sequence $X = E_1 \supset E_2 \supset \dots$ such that $\mu(E_1) > \mu(E_2) > \mu(E_3) > \dots > 0$. Thus define $f(x) = \frac{1}{\mu(E_n \setminus E_{n+1})} > 0$ if $x \in E_n \setminus E_{n+1}$ and f(x) = 0 if $x \in \bigcap_n E_n$. Then $\int_X f d\mu = \infty$.

Problem 7.2. Assume that μ is a finite measure on \mathbb{R}^n . Prove that there is a closed set $A \subset \mathbb{R}^n$ with the property that for each closed $B \subsetneq A$ it follows that $\mu(A \setminus B) \neq 0$.

Proof. μ is Radon since it is finite. Now, let $M = \{U : U \text{ is open and } \mu(U) = 0\}$ and $O = \bigcup \{U : U \in M\}$. For any compact set $K \subset O$, there is a subcover i.e. $K \subset \bigcup_{i=1}^{n} U_i$, where all $U_i \in M$. It implies that $\mu(K) = 0$ and thus $\mu(O) = 0$ by the regularity of a Radon measure. Define $A = \mathbb{R}^n \setminus O$. Then for all closed set $B \subsetneq A, B^c$ is open and $\mu(B^c) > 0$ by definition of A. Then $\mu(A \setminus B) = \mu(B^c) > 0$ since $\mu(O \setminus B) = 0$.

Problem 7.3. For a nonnegative function $f \in L_1[0, 1]$, prove that $\lim_{n\to\infty} \int_0^1 \sqrt[n]{f(x)} dx = m\{x : f(x) > 0\}.$

Proof. WLOG, We may assume f > 0 everywhere. Let $F = \{x : f(x) \ge 1\}$. $\int_0^1 f(x)^{1/n} dx = \int_F f(x)^{1/n} dx + \int_{F^c} f(x)^{1/n} dx$. On F, $f(x)^{1/n} \downarrow 1$. Similarly, On F^c , $f(x)^{1/n} \uparrow 1$. Then $\int_F f(x)^{1/n} dx \to m(F)$ and $\int_{F^c} f(x)^{1/n} dx \to m(F^c)$ by MCT and thus $\int_0^1 f(x)^{1/n} dx \to m\{x : f(x) > 0\}$.

Problem 7.4. Let f be Lebesgue integrable on (0, 1). For 0 < x < 1 define $g(x) = \int_x^1 t^{-1} f(t) dt$. Prove that g is Lebesgue integrable on (0, 1) and that $\int_0^1 g(x) dx = \int_0^1 f(x) dx$.

Proof. $\int_0^1 |g(x)| dx \leq \int_0^1 \int_x^1 |t^{-1}f(t)| dt dx = \int_0^1 (\int_0^t |t^{-1}f(t)| dx) dt = \int_0^1 |f(t)| dt < \infty$ by Tonelli. Then Fubini is applied here to see $\int_0^1 g(x) dx = \int_0^1 f(x) dx$ with the same calculation. Note that the integration area is the upper triangle of the unit square of x-t axis. i.e. the triangle constructed by lines x = t, x = 1 and t = 0. \Box

Problem 7.5. Assume that ν and μ are two finite measures on a measurable space (X, \mathcal{M}) . Prove that $\nu \ll \mu$ iff $\lim_{n \to \infty} (\nu - n\mu)^+ = 0$.

Proof. (\Leftarrow): If $\mu(E) = 0$. Then $(\nu - n\mu)(E) = \nu(E)$ and then $\lim_{n\to\infty} (\nu - n\mu)^+(E) = \nu(E) = 0$, which implies that $\nu \ll \mu$.

(⇒): If $\nu \ll \mu$ holds, then $\nu(E) = \int_E f d\mu$ for some positive μ -integrable function f. Then $(\nu - n\mu)(E) = \int_E (f - n)d\mu$, which implies that $(\nu - n\mu)^+(E) = \int_E (f - n)^+ d\mu$. Since $(f(x) - n)^+ \downarrow 0$ for all $x \in X$. Then MCT implies that $\lim_{n\to\infty} (\nu - n\mu)^+ = 0$.

Problem 7.6. Let (p_n) be a sequence of polynomials which converges uniformly on [0,1] to some function f, and assume that f is not a polynomial. Prove that $\lim_{n\to\infty} \deg(p_n) = \infty$.

Proof. If not, say, suppose $\max\{\deg(p_n)\} = m$. $X = \{p : p \text{ is a polynomial and } \deg(p) \le m\}$ is a finite dimensional liner subspace of C[0, 1], thus closed, which implies that $f \in X$ is a polynomial. A contradiction. \Box

Problem 7.7. Let (f_n) be sequence of non zero bounded linear functionals on a Banach space X. Show that there is an $x \in X$ so that $f_n(x) \neq 0$ for all $n \in \mathbb{N}$.

Proof. For each n, ker (f_n) is nowhere dense. Indeed, suppose there is a $B(x, \epsilon) \subset$ ker (f_n) . Then the open Ball of radius ϵ , Ball $(\epsilon) \subset$ ker (f_n) , which implies that $f_n \equiv$ 0. Thus, if the statement does not hold, $X = \bigcup_n \text{ker}(f_n)$, which is a contradiction to Baire category theorem.

Problem 7.8. Assume that $T: l_1 \to l_2$ is bounded, linear and one-to-one. Prove that $T(l_1)$ is not closed in l_2 .

Proof. If $T(l_1)$ is closed, then it is a Hilbert space and thus l_1 is also a Hilbert space by open mapping theorem, say T is in fact an isomorphism. A contradiction.

Problem 7.9. This is same to Problem 3 in Angust 2015.

Problem 7.10. Assume that f is a measurable and non negative function on $[0,1]^2$ and that $1 \leq r . Show that <math>(\int_0^1 (\int_0^1 f^r(x,y)dy)^{p/r}dx)^{1/p} \leq (\int_0^1 (\int_0^1 f^p(x,y)dx)^{r/p}dy)^{1/r}$.

Proof. Define $F(x) = \int_0^1 f^r(x, y) dy$ is a non negative function, s = p/r and s' be the conjugate of s. Then for $h \in L_{s'}[0, 1]$ with $||h||_{s'} = 1$, $Fh \in L_1[0, 1]$ by Hölder. By Tonelli's theorem, $\int_0^1 \int_0^1 |f^r(x, y)h(x)| dy dx = \int_0^1 \int_0^1 f^r(x, y)|h(x)| dy dx = \int_0^1 F(x)|h(x)| dx < \infty$. Then $|\int_0^1 F(x)h(x)dx| = |\int_0^1 (\int_0^1 f^r(x, y)dy)h(x)dx| = |\int_0^1 (\int_0^1 f^r(x, y)h(x)dx)dy| \le \int_0^1 ||f^r(\cdot, y)||_s ||h||_{s'} dy = \int_0^1 (\int_0^1 f^p(x, y)dx)^{r/p} dy$ by Fubini and Hölder.

Then, $||F||_s = \sup\{|\int_0^1 F(x)h(x)dx| : ||h||_{s'} = 1\} \le \int_0^1 (\int_0^1 f^p(x,y)dx)^{r/p}dy.$ Then we are done since $||F||_s = (\int_0^1 (\int_0^1 f^r(x,y)dy)^{p/r}dx)^{r/p}.$

8. August 2013

Problem 8.1. Let $1 \leq p \leq \infty$ and $f \in L^p(\mathbb{R})$. For $t \in \mathbb{R}$, let $f_t(x) = f(x-t)$ and consider the mapping $G : \mathbb{R} \to L^p(\mathbb{R})$ given by $G(t) = f_t$. The space $L^p(\mathbb{R})$ is equipped with the usual norm topology. (a) Show that G is continuous if $1 \leq p < \infty$. (b) Find an f for which the mapping G is not continuous when $p = \infty$. (c) Let $1 \leq p, q \leq \infty$ be conjugate exponents (i.e. 1/p + 1/q = 1). Let $f \in L^p(\mathbb{R})$ and $f \in L^q(\mathbb{R})$. Show that h = f * g is continuous, where $h(t) = \int_{\mathbb{R}} f(t)g(t-x)dx$.

Proof. The continuity of G when $1 \le p < \infty$ share a same proof of Problem 5 in August 2016. If $p = \infty$, Consider $f = \chi_{[0,1)}$. Then for any $t_n \to 0$, $\|\chi_{[0,1),t_n} - \chi_{[0,1)}\| \equiv 1$.

For the last statement, define $g_t(x) = f(t-x)$. $|h(t) - h(t_n)| \leq \int_{\mathbb{R}} |f(x)||g(t-x) - g(t_n - x)|dx \leq ||f||_p ||g_{t_n} - g_t||_q$ by Hölder. By the same argument of the first part, if $t_n \to t$, then $||g_{t_n} - g_t||_q \to 0$.

Problem 8.2. (a) For $f \in C_{\mathbb{R}}[0,1]$, show that $f \ge 0$ iff $\|\lambda - f\|_{\infty} \le \lambda$ for all $\lambda \ge \|f\|_{\infty}$

(b) Suppose $E \subset C_{\mathbb{R}}[0,1]$ is a closed subspace containing the constant function 1. For $\phi \in E^*$, show $\phi \ge 0$ iff $\|\phi\| = \phi(1)$.

(c) If $\phi \in E^*$ and $\phi \ge 0$, show that there is a bounded linear functional ψ on $C_{\mathbb{R}}[0,1]$ so that $\psi \ge 0$ and the restriction of ψ to E is ϕ .

Proof. (a) (\Rightarrow) suppose that $f \ge 0$ and $\lambda \ge ||f||_{\infty}$, then $0 \le \lambda - f \le \lambda$, whence $||\lambda - f||_{\infty} \le \lambda$. (\Leftarrow) If there is a $x \in [0, 1]$ such that f(x) < 0, which entails that $\lambda - f(x) > \lambda$ and thus $||\lambda - f||_{\infty} > \lambda$.

(b)(\Rightarrow) $|f| \leq 1$ implies that $1 \pm f \geq 0$ and thus $\phi(1 \pm f) \geq 0$ since $\phi \geq 0$. Thus $|\phi(f)| \leq \phi(1)$, whence $\phi(1) \geq ||\phi||$ and thus $\phi(1) = ||\phi||$. (\Leftarrow) fix a $f \geq 0$. $\phi(\|f\|_{\infty}\cdot 1-f)\leq \phi(1)\|\|f\|_{\infty}-f\|\leq \phi(1)\|f\|_{\infty}=\phi(\|f\|_{\infty})$ by part (a). Thus $\phi(f)\geq 0$

(c)By Hahn-Banach thm, there is an extension ψ of ϕ with the same norm, which implies that $\|\psi\| = \|\phi\| = \phi(1) = \psi(1)$. Thus $\psi \ge 0$ by part (b).

Problem 8.3. (a) Let μ and λ be mutually singular complex measures defined on the same measurable space (X, \mathcal{M}) and let $\nu = \mu + \lambda$. Show that $|\nu| = |\mu| + |\lambda|$.

(b) Construct a nonzero atomless Borel measure on [0, 1] that this mutually singular with respect to Lebesgue measure m.

Proof. (a) Let F is null for λ while E is null for μ , with $E \bigsqcup F = X$. Let $P_2 \bigcup N_2 = F$ be a Hahn decomposition for λ while $P_3 \bigcup N_3 = E$ be a Hahn decomposition for μ . Then $P_1 = P_2 \bigcup P_3$, with $N_1 = N_2 \bigcup N_3$ is a Hahn decomposition for ν . Then $\nu^+(A) = \nu(A \bigcap P_2) + \nu(A \bigcap P_3) = \mu(A \bigcap P_2) + \lambda(A \bigcap P_3)$ and similarly, $\nu^-(A) = \nu(A \bigcap N_2) + \nu(A \bigcap N_3) = \mu(A \bigcap N_2) + \lambda(A \bigcap N_3)$, which implies that $|\nu| = |\mu| + |\lambda|$.

(b) Let f be the cantor function and consider the Borel measure μ_f , which is the Lebesgue-Stieltjes measure associated to f. It can be checked that μ_f works. \Box

Problem 8.4. Let (f_n) be a sequence of continuous functions on [0, 1] and suppose that for all $x \in [0, 1]$, $f_n(x)$ is eventually nonnegative. Show that there is an open interval $I \subset [0, 1]$ such that for all n large enough, f_n is nonnegative everywhere on I.

Proof. Define $E_n = \{x : \forall m \ge n \ f_m(x) \ge 0\}$. Suppose the conclusion is not right. For all subinterval $I \subset [0, 1], I \nsubseteq E_n$, which entails that E_n is an nowhere dense closed set. However, $[0, 1] = \bigcup_n E_n$, which is a contradiction.

Problem 8.5. Let μ be a nonatomic signed measure on a measurable space (X, Ω) , with $\mu(X) = 1$. Show that there is a measurable subset $E \subset X$ with $\mu(E) = 1/2$.

Proof. At first, assume μ is a positive measure. We show that there is a function $S : [0,1] \to \Omega$ such that for all $0 \le t \le t' \le 1$, $\mu(S(t)) = t$ and $S(t) \subset S(t')$ (i.e. increasing function).

Let $K = \{S : D \to \Omega : D \subset [0, 1], S \text{ is increasing, } \forall t \in D, \ \mu(S(t)) = t\}$. Order K by $S \leq S'$ if graph $(S) \subset$ graph(S'). At first, $K \neq \emptyset$ since $S : \{1\} \to \Omega$ by S(1) = X. Let $\{S_{\alpha}\}$ be a chain in K. Define $S : \bigcup D_{\alpha} \to \Omega$ by $S(t) = S_{\alpha}(t)$ if $t \in D_{S_{\alpha}}$. Then $S \in K$. Now, Zorn's lemma entails that there is a maximal element $S_0 \in K$. We claim that $D_{S_0} = [0, 1]$. Suppose not, let $u = \inf\{x : x \notin D_{S_0}\}$, if u = 0, we extend S_0 by define $S_0(0) = \emptyset$. If u > 0, there is a sequence $(u_n) \subset D_{S_0} \uparrow u$. Then we extend S_0 by define $S_0(u) = \bigcup S_0(u_n)$. It is compatible with the original S_0 . Indeed, since S_0 is increasing, $\mu(S_0(u)) = \mu(\bigcup S_0(u_n)) = \lim_n u_n = u$. A contradiction to the maximality of S_0 . Then S(1/2) is the set we want.

Now, if μ is a signed measure. Consider a Hahn decomposition $X = P \bigcup N$. μ is positive on P with $\mu(P) \ge 1$. By the argument above, there is a E such that $\mu(E) = 1/2$.

Problem 8.6. Compute $\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} dx$

Proof. At first, $\sin(x/n) < x/n$ implies that $\frac{n\sin(x/n)}{x(1+x^2)} \le \frac{1}{1+x^2}$, which is an integrable function on \mathbb{R}^+ . Then since $\frac{n\sin(x/n)}{x(1+x^2)} \to \frac{1}{1+x^2}$, DCT implies that $\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} dx = \int_0^\infty \frac{1}{1+x^2} dx$ =some number.

Problem 8.7. Prove or disprove: for every real-valued continuous function f on [0,1] such that f(0) = 0 and every $\epsilon > 0$, there is a real polynomial p having only odd powers of x, i.e. $p = \sum_{i=1}^{n} a_{2i+1} x^{2i+1}$ such that $\sup_{x \in [0,1]} |f(x) - p(x)| < \epsilon$.

Proof. At first, consider $A = \{xf(x) : f \in C[0,1]\}$ is a subalgebra which separates points by g(x) = x. It implies that $\overline{A} = \{f \in C[0,1] : f(0) = 0\}$ by Stone-Weirstrass theorem. Then similar argument shows that $B = \{p : p(x) = \sum_{0}^{n} a_i x^{2i}\}$ is dense in C[0,1] under $\|\cdot\|_{\infty}$. Then for every $f \in C[0,1]$ with f(0) = 0, there is an element $g \in C[0,1]$ such that $\sup_{x \in [0,1]} |f(x) - xg(x)| < \epsilon/2$ since $xg(x) \in A$. For g, there is a $p \in B$ such that $\|g - p\|_{\infty} \le \epsilon$ and thus $\sup_{x \in [0,1]} |xg(x) - xp(x)| < \epsilon/2$. Combine them, we have $\sup_{x \in [0,1]} |f(x) - xp(x)| < \epsilon$, where xp(x) is a polynomial having only odd powers of x.

Problem 8.8.

Problem 8.9. Let X be a separable Banach space, let $\{x_n : n \ge 1\}$ be a countable, dense subset of the unit ball of X and let B be the closed unit ball in the dual Banach space X^* of X. For $\phi, \psi \in B$, let $d(\phi, \psi) = \sum_{n=1}^{\infty} 2^{-n} |\phi(x_n) - \psi(x_n)|$. Show that d is a metric on B whose topology agrees with the weak*-topology of X^* restricted to B.

Proof. It suffices to show open sets in two topologies coincide. Let $P_{x^*,\epsilon,x} = \{y^* : |y^*(x) - x^*(x)| < \epsilon\}$ and $D = \{x_n\}$ is dense subset of X. if $x^* \in \bigcap_{i=1}^m P_{x_i^*,\epsilon,z_i}$. At first, By the density of D, there is a δ and $\{x_{n_k} : k = 1, 2, ..., m\}$ so that $x^* \in \bigcap_{i=1}^m P_{x_i^*,\delta,x_{n_i}} \subset \bigcap_{i=1}^m P_{x_i^*,\epsilon,z_i}$. Then, there is a r so that $d(x^*,y^*) < r$ implies that $|x^*(x_{n_k}) - y^*(x_{n_k})| < \delta$ for k = 1, 2, ..., m. This implies that $x^* \in B_d(x^*, r) \subset \bigcap_{i=1}^m P_{x_i^*,\delta,x_{n_i}} \subset \bigcap_{i=1}^m P_{x_i^*,\epsilon,x_i}$.

In the converse, for all $\phi, \psi \in B$, $|\phi(x_n) - \psi(x_n)| \leq ||\phi|| + ||\psi|| \leq 2$, and thus $d(\phi, \psi) = \sum_{n=1}^{\infty} 2^{-n} |\phi(x_n) - \psi(x_n)| \leq \sum_{n=1}^{\infty} 2^{-n+1}$, which implies that for every

 $\epsilon > 0$, there is a $m \in \mathbb{N}$ such that for all $\phi, \psi \in B$, $\sum_{n=m+1}^{\infty} 2^{-n} |\phi(x_n) - \psi(x_n)| < \epsilon/2$. Now, for all $y^* \in B_d(x^*, \epsilon)$, $\sum_{n=m+1}^{\infty} 2^{-n} |x^*(x_n) - y^*(x_n)| < \epsilon/2$. Then $x^* \in \bigcap_{k=1}^m P_{x^*, \frac{\epsilon}{2m}, x_k} \subset B_d(x^*, \epsilon)$. Then we are done.

Problem 8.10. Let $T : X \to Y$ be a linear map between Banach spaces that is surjective and satisfies $||Tx|| \ge \epsilon ||x||$ for some $\epsilon > 0$ and all $x \in X$. Show that T is bounded.

Proof. Let $x_n \to x$ and $Tx_n \to y$. Since T is surjective, there is a $z \in X$ such that Tz = y. Then $||Tx_n - Tz|| \ge \epsilon ||x_n - z||$ entails that $x_n \to z$ and thus x = z and Tx = y. By closed graph theorem, T is bounded.

9. JANUARY 2013

Problem 9.1. This problem is same with Problem 4 in Jan 2014.

Problem 9.2. This problem is same with Problem 3 in Aug 2015.

Problem 9.3. This problem is same with Problem 8 in Jan 2016.

Problem 9.4. (a) Is there a signed Borel measure μ on [0,1] such that $p'(0) = \int_0^1 p(x)d\mu(x)$ for all real polynomials p of degree at most 19.

(b) Is there a signed Borel measure μ on [0,1] such that $p'(0) = \int_0^1 p(x)d\mu(x)$ for all real polynomials p.

Proof. (a) Let $X = \operatorname{span}\{x^i : 0 \le i \le 19\} \subset C[0, 1]$ is a finite-dimensional subspace. Then define $F : X \to \mathbb{R}$ by F(p) = p'(0) is a linear map and thus continuous since $\dim(X) = 20$. Then by Hahn-Banach theorem, we can extend F to some bounded linear map G on C[0, 1]. Then there is a Radon Borel measure such that $G(f) = \int_0^1 f d\mu$. Restrict G to X, we have $p'(0) = \int_0^1 p(x) d\mu(x)$.

(b) Suppose it is true. Consider f(x) = ax, where a > 0. Then by Stone-Weirstrass theorem, there is a sequence of polynomials $p_n(x) = \sum_{i=1}^{m_n} a_{(i,n)} x^{2i} \to f$ under $\|\cdot\|_{\infty}$. Then $|\int_0^1 p_n d\mu - \int_0^1 f d\mu| \le \|p_n - f\|_{\infty} \to$. However, by the assumption, $p'_n(0) = 0$ and thus $a = \int_0^1 d\mu = 0$. A contradiction.

Problem 9.5. Let \mathcal{F} be the set of all real valued functions on [0, 1] of the form $f(t) = \frac{1}{\prod_{j=1}^{n}(t-c_j)}$ for natural numbers n and for real numbers $c_j \notin [0, 1]$. Prove or disprove: for all continuous real-valued functions g and h on [0, 1] such that g(t) < h(t) for all $t \in [0, 1]$, there is a function $a \in \text{span } \mathcal{F}$ such that g(t) < a(t) < h(t) for all $t \in [0, 1]$.

Proof. It can be seen that $\mathcal{A} = \operatorname{span} \mathcal{F}$ is an algebra and separates points. Then by Stone-Weirstrass theorem $\overline{\mathcal{A}} = C[0, 1]$. Let $k = \min\{h(t) - g(t)\}$. Now, choose $a_1 \in$

 $\mathcal{A} \text{ such that } \|a_1 - g\|_{\infty} < k/3, \text{ whence } g(t) < a_1(t) + k/3 \text{ and also } a_1(t) < g(t) + k/3.$ Then we need to find a a_2 such that $k/3 \leq a_2(t) \leq 2k/3$. Indeed, for $u \equiv k/2$, there is an $a_2 \in \mathcal{A}$ so that $\|a_2 - u\|_{\infty} < \epsilon < k/6$, whence $k/3 \leq a_2(t) \leq 2k/3$. Now, let $a = a_1 + a_2$. Then $g(t) < a(t) < g(t) + k/3 + 2k/3 \leq h(t)$

Problem 9.6. Let $k : [0,1] \times [0,1] \to \mathbb{R}$ be continuous and let $1 . For <math>f \in L^p[0,1]$, let Tf be the function on [0,1] defined by $(Tf)(x) = \int_0^1 k(x,y)f(y)dy$. Show that Tf is a continuous function on [0,1] and that the image under T of the unit ball in $L^p[0,1]$ has compact closure in C[0,1].

Proof. $|(Tf)(x) - (Tf)(x')| \leq \int_0^1 |k(x,y) - k(x',y)| |f(y)| dy$. Since k is uniformly continuous, if $|x'-x| < \delta$, then for all y, $|k(x,y) - k(x',y)| < \epsilon$. Then $|(Tf)(x) - (Tf)(x')| \leq \epsilon ||f||_1$. Then Tf is continuous. It entails that $\mathcal{F} = \{T(f) : ||f||_p \leq 1\}$ is equicontinuous by $|(Tf)(x) - (Tf)(x')| \leq \epsilon ||f||_1 \leq \epsilon ||f||_p \leq \epsilon$ whenever $|x'-x| < \delta$. Now, since $|k(x,y)| \leq M$ on $[0,1]^2$. $|T(f)(x)| \leq \int_0^1 |k(x,y)| |f(y)| \leq M ||f||_1 \leq M ||f||_p \leq M$. Then Ascoli-Arzela theorem applies there.

Problem 9.7. Suppose $f : [0,1] \to \mathbb{R}$ is absolutely continuous and define $g \in C[0,1]$ by $g(x) = \int_0^1 f(xy) dy$. Show that g is absolutely continuous.

 $\begin{array}{l} \textit{Proof. For all } \epsilon, \text{ there is a } \delta, \text{ such that } \sum_{i=1}^{n} |a_i - b_i| < \delta \text{ implies } \sum_{i=1}^{n} |f(a_i) - f(b_i)| < \epsilon. \text{ For all } y \in [0,1], \sum_{i=1}^{n} |a_iy - b_iy| \le \sum_{i=1}^{n} |a_i - b_i|\delta, \text{ then } \sum_{i=1}^{n} |f(a_iy) - f(b_iy)| < \epsilon, \text{ which implies that } \sum_{i=1}^{n} |g(a_i) - g(b_i)| \le \sum_{i=1}^{n} \int_0^1 |f(a_iy) - f(b_iy)| dy = \int_0^1 \sum_{i=1}^{n} |f(a_iy) - f(b_iy)| dy \le \int_0^1 \epsilon dy = \epsilon. \end{array}$

Problem 9.8. Suppose that we have $\nu_i \ll \mu_i$ for i = 1, 2. Show that $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and $\frac{d(\nu_1 \times \nu_1)}{d(\mu_1 \times \mu_2)}(x, y) = \frac{d\nu_1}{d\mu_1}(x)\frac{d\nu_2}{d\mu_2}(y)$

Proof. $\mu_1 \times \mu_2(E) = \int \mu_2(E_x) d\mu_1(x) = 0$ implies that $\mu_1\{x : \mu_2(E_x) \neq 0\} = 0$. Then since $\nu_i \ll \mu_i$ for i = 1, 2, firstly $\{x : \nu_2(E_x) \neq 0\} \subset \{x : \mu_2(E_x) \neq 0\}$ 0} and then $\mu_1\{x : \nu_2(E_x) \neq 0\} = 0$ implies $\nu_1\{x : \nu_2(E_x) \neq 0\} = 0$. Thus $\nu_1 \times \nu_2(E) = \int \nu_2(E_x) d\nu_1(x) = 0$ which implies that $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$. In addition, $\nu_1 \times \nu_2(E) = \int_{X \times Y} \chi_E(x, y) d(\nu_1 \times \nu_2) = \int_X (\int_Y \chi_E(x, y) f_2(y) d\mu_2(y)) f_1(x) d\mu_1(x) = \int_X (\int_Y \chi_E(x, y) f_1(x) f_2(y) d\mu_2(y)) d\mu_1(x) = \int_E f_1(x) f_2(y) d(\mu_1 \times \mu_2)$. We are done.

Problem 9.9. (a) Let *E* be a nonzero Banach space and show that for every $x \in E$ there is $\phi \in E^*$ such that $\|\phi\| = 1$ and $|\phi(x)| = \|x\|$.

(b) Let E and F be Banach spaces, Let $\pi : E \to F$ be a bounded linear map and let $\pi^* : F^* \to E^*$ be the induced map on dual spaces. Show that $\|\pi^*\| = \|\pi\|$.

Proof. (a) A standard application of Hahn-Banach theorem.

(b) $\pi^*(f) = f \circ \pi$. Then $\|\pi^*\| = \sup_{\|f\|=1} \|\pi^*(f)\| = \sup_{\|f\|=1, \|x\|=1} |f(\pi(x))|$. $|f(\pi(x))| \le \|f\| \|\pi\| \|x\|$ for all $f \in F^*, x \in E$, whence $\|\pi^*\| \le \|\pi\|$. In the converse, by part (a), for every $x \in E$, there is a $f_x \in F^*$ such that $|f_x(\pi(x))| = \|\pi(x)\|$ and $\|f_x\| = 1$. Thus, $\|\pi^*\| = \sup_{\|f\|=1, \|x\|=1} |f(\pi(x))| \ge \sup_{\|x\|=1} |f_x(\pi(x))| = \|\pi\|$. Then we are done.

Problem 9.10. Let X be a real Banach space and suppose C is a closed subset of X such that

- (1) $x_1 + x_2 \in C$ for all $x_1, x_2 \in C$,
- (2) $\lambda x \in C$ for all $x \in C$ and $\lambda > 0$,
- (3) for all $x \in X$ there exist $x_1, x_2 \in C$ such that $x = x_1 x_2$.

Prove that for some M > 0, the unit ball of X is contained in the closure of $A_M = \{x_1 - x_2 : x_i \in C, \|x_i\| \le M, (i = 1, 2)\}$. Deduce that every $x \in X$ can be written $x = x_1 - x_2$, with $x_i \in C$ and $\|x_i\| \le 2M \|x\|$, (i = 1, 2).

Proof. Suppose that there is a $\epsilon > 0, n \in \mathbb{N}$ so that $B_{\epsilon}(0) \subset \overline{A_n}$, then there is a m such that $B_X \subset \overline{A_m}$. Indeed, for all $x \in B_X$, $\|\epsilon x\| \leq \epsilon$, then there is a sequence $(x_1^k - x_2^k) \in A_n$ so that $(x_1^k - x_2^k) \to \epsilon x$, which implies that $\frac{1}{\epsilon}(x_1^k - x_2^k) \to x$. Now, define $y_i^k = \frac{1}{\epsilon} x_i^k$ and choose m such that $\|y_i^k\| \leq n/\epsilon \leq m$.

So suppose the assumption does not hold, say, for all $\epsilon, n, B_{\epsilon}(0) \not\subseteq \overline{A_n}$, then $\overline{A_n}$ is nowhere dense for all n. If not, say there is a $y + B_{\epsilon}(0) \subset \overline{A_n}$. Then for all $x \in B_{\epsilon}(0)$, there is a sequence $(z_1^n - z_2^n) \to y + x$. For a sequence $(y_1^n - y_2^n) \to y$, $((z_1^n + y_2^n) - (z_2^n + y_1^n)) \to x$, which implies that $x \in \overline{A_{2n}}$ and thus $B_{\epsilon}(0) \subset \overline{A_{2n}}$. A contradiction. However, $X = \bigcup_{n=1}^{\infty} A_n$, which is a contradiction to Baire category theorem. Thus, there is a M such that $B_X \subset \overline{A_M}$.

Now, fix $x \in X$, $x/\|x\| \in B_X \subset \overline{A_M}$, then there are y_1, z_1 such that $\|y_1\|, \|z_1\| \le M\|x\|$, so that $\|x - (y_1 - z_1)\| \le (1/2)\|x\|$. Then $\|\frac{x - (y_1 - z_1)}{(1/2)\|x\|}\| \le 1$. Then there are $y_2, z_2 \in A_M$ We can do this process by induction to obtain y_n, z_n with $\|z_n\|, \|y_n\| \le 2^{-n+1}M\|x\|$ and $\|x - \sum_{i=1}^n (y_i - z_i)\| \le 2^{-n}\|x\|$, which implies that $x = \sum_i y_i - \sum_i z_i$.

10. August 2012

Problem 10.1. Let (X, \mathcal{M}, μ) be a measure space. Prove that $L_1(X, \mu)$ is complete.

Proof. You can find a proof in any real analysis textbook. \Box

Problem 10.2. Fix two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) with $\mu(X), \nu(Y) > 0$. Let $f: X \to \mathbb{C}$, and $g: X \to \mathbb{C}$ be measurable. Suppose f(x) = g(y) $(\mu \times \nu)$ -a.e. Show that there is a constant $a \in \mathbb{C}$ such that $f(x) = a \mu$ -a.e. and $g(y) = a \nu$ -a.e.

26

Proof. $E = \{(x, y) : f(x) \neq g(y)\}$ is null. Then $\int \nu(E_x) d\mu(x) = 0$, which implies that $\nu(E_x) = 0$ μ -a.e. Now, define $K = \{x : \nu(E_x) = 0\}$. Suppose the statement is not true, say, for all $a \in \mathbb{C}$, either $\mu\{x : f(x) \neq a\} > 0$ or $\nu\{y : g(y) \neq a\} > 0$. Now, fix $x_0 \in K$ and let $a = f(x_0)$. Then, by definition, $E_{x_0} = \{y : g(y) \neq a\}$ and thus $\nu(\{y : g(y) \neq a\}) = 0$. Thus, $\mu(\{x : f(x) \neq a\}) > 0$ by the assumption. Since $\nu(E_{x_0}) = 0, \nu(\{y : g(y) = a\}) = \nu(Y \setminus E_{x_0}) > 0$. Now, $\{x : f(x) \neq a\} \times \{y : g(y) = a\} \subset E$ is of positive measure. A contradiction. \Box

Problem 10.3. Let $\mathbb{R}^3 \to \mathbb{R}$ be a Borel measurable function. Suppose for every ball B, f is integrable on B and $\int_B f = 0$. What can you deduce about f.

Proof. Since f is locally integrable, then $\lim_{r\to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) dy = f(x)$ for a.e. x, which implies that f(x) = 0 a.e.

We can also use the proof of Problem 1 in Jan 2015 to solve this. Indeed, we can still define E_n . By regularity of lebesgue measure. We can shrink E_n to some compact subset K of positive measure s and obtain a finite cover of K with finite balls, say $K \subset O = \bigcup_{i=1}^{n} B_n$ with $\mu(O \setminus K) < \delta$. Then replace E_n with K, I_n with B_n to do the same process. We are done.

Problem 10.4. Let X be a locally compact Hausdorff space. Show that $C_c(X)$ is dense in $C_0(X)$.

Proof. $C_c(X)$ is an algebra. by Usysohn's lemma, for all $x \neq y \in X$, there is a $g \in C_c(X)$ so that $g(x) \neq g(y)$ and for all $x \in X$, there is a function f in $C_c(X)$ such that f(x) = 1. Then by Stone-Weirstrass theorem for the LCH space, $C_c(X)$ is dense in $C_0(X)$.

Problem 10.5. Give an example of each of the following. justify your answers

(1) A nowhere dense subset of \mathbb{R} of positive Lebesgue measure.

(2) A closed, convex subset of a Banach space with multiple points of minimal norm.

Proof. (1) A first example is any generalized cantor set with positive measure. We provide another example with more descriptive set theory flavor. Let $\{r_n\}$ enumerate all rational numbers in \mathbb{R} , then define $O_m = \bigcup_{n=1}^{\infty} (r_n - \frac{1}{2^{n+1}} \frac{1}{m}, r_n + \frac{1}{2^{n+1}} \frac{1}{m})$ which is dense and $\mu(O_m) \leq 1/m$. Then $A = \bigcap_{m=1}^{\infty} O_m$ is a dense G_{δ} set with $\mu(A) = 0$. Then $A^c = \bigcup_m O_m^c$ is of positive measure. Then there is a m such that O_m^c is of positive measure and O_m^c is nowhere dense by definition.

(2) Let $X = L^{1}[0, 1]$ and $C = \{f \in X : \int_{[0,1]} f(t)dt = 1\}$. The minimal norm of functions in C is 1. Then $\{a\chi_{[1/2,1]} + (2-a)\chi_{[0,1/2]}\} : 0 \ge a \ge 2\} \subset C$ have norm 1.

Problem 10.6. Let $S = \{f \in L^{\infty}(\mathbb{R}) : |f(x)| \le \frac{1}{1+x^2}a.e.\}$. Which of the following statements are true?

- (1) The closure of S is compact in the norm topology.
- (2) S is closed in the norm topology.
- (3) The closure of S is compact in the weak-* topology.

Proof. (1) No. Consider a sequence $\frac{1}{1+nx^2}$. If \overline{S} is compact, then there is a subsequence $\frac{1}{1+n_mx^2}$ converges in \overline{S} under $\|\cdot\|_{\infty}$. Then $\frac{1}{1+n_mx^2} \to 0$ uniformly a.e., which is a contradiction since $\frac{1}{1+n_mx^2}$ does not uniformly converge to 0 on any set of infinite measure.

(2) For all $f_n \to f$ under $\|\cdot\|_{\infty}$. Define E_n be the null set such that on E_n^c , $|f_n(x)| \leq \frac{1}{1+x^2}$. Since $f_n \to f$, there is a null set E such on E^c , $f_n \to f$ uniformly. Then on $(\bigcup_n E_n \bigcup E)^c$, $|f(x)| \leq \frac{1}{1+x^2}$, where $\mu((\bigcup_n E_n \bigcup E)) = 0$

(3) For all $f \in S$, $|f(x)| \leq \frac{1}{1+x^2}$ a.e. which implies that $||f||_{\infty} \leq 1$. Thus $S \subset B_{X^*}$. Thus S is weak-* compact.

Problem 10.7. Let T be a bounded operator on a Hilbert space H. Prove that $||T^*T|| = ||T||^2$.

Proof. $||T||^2 = \sup_{||x||=1} ||Tx||^2 = \sup_{||x||=1} |\langle Tx, Tx \rangle| = \sup_{||x||=1} |\langle x, T^*Tx \rangle| \le \sup_{||x||=1} ||x|| ||T^*Tx|| \le ||T^*T||$. In the converse, $||T^*Tx|| \le ||T^*|| ||T|| ||x|| = ||T||^2$ implies that $||T^*T|| \le ||T||^2$.

Problem 10.8. (a) Let g be an integrable function on [0,1]. Does there exist a bounded measurable function f such that $||f||_{\infty} \neq 0$ and $\int_{0}^{1} fgdx = ||g||_{1} ||f||_{\infty}$.

(b) Let g be a bounded function on [0, 1]. Does there exist an integrable measurable function f such that $||f||_1 \neq 0$ and $\int_0^1 fgdx = ||f||_1 ||g||_{\infty}$.

Proof. (a) Define $f = \overline{\text{sgn}g}$. Then $\int_0^1 fg dx = \|g\|_1 \|f\|_\infty$.

(b) Not always. Consider $g = 1_{\{x\}}$ for some $x \in [0, 1]$. Suppose there is a $f \in L_1[0, 1]$ so that $\int_0^1 fg dx = \|f\|_1 \|g\|_\infty$. Then it implies that $\|f\|_1 = \int_{\{x\}} f = 0$. \Box

Problem 10.9. Let $F : \mathbb{R} \to \mathbb{C}$ be a bounded continuous function, μ the Lebesgue measure, and $f, g \in L^1(\mu)$. Let $\tilde{f}(x) = \int F(xy)f(y)d\mu(y), \tilde{g}(x) = \int F(xy)g(y)d\mu(y)$. Show that \tilde{f} and \tilde{g} are bounded continuous functions which satisfy $\int f\tilde{g}d\mu = \int g\tilde{f}d\mu$

Proof. Let $\sup_{x \in \mathbb{R}} |F(x)| = M$. Consider $|\tilde{f}(x_n) - \tilde{f}(x)| \leq \int |F(x_n y) - F(xy)| |f(y)| dy$. Since $|F(x_n y) - F(xy)| |f(y)| \to 0$ pointwise and $|F(x_n y) - F(xy)| |f(y)| \leq 2M |f(y)|$, which is integrable, DCT implies that $\int |F(x_n y) - F(xy)| |f(y)| dy = 0$. Thus \tilde{f} is continuous. $|\tilde{f}(x)| \leq \int |F(xy)| |f(y)| d\mu(y) \leq M ||f||_1$, which is bounded. The same proof for \tilde{g} .

28

 $\int |f(x)| (\int |F(xy)||g(y)|d\mu(y))d\mu(x) \leq M \int |f(x)|||g||_1 d\mu(x) \leq M ||f||_1 ||g||_1.$ Then, by Fubini, $\int f\tilde{g}d\mu = \int f(x) (\int F(xy)g(y)d\mu(y))d\mu(x) = \int g(y) (\int F(xy)f(x)d\mu(x))d\mu(y) = \int g\tilde{f}d\mu.$

Problem 10.10. Let μ , { $\mu_n : n \in \mathbb{N}$ } be finite Borel measures on [0, 1]. $\mu_n \to \mu$ vaguely if $\mu_n \to \mu$ if it converges in the weak*-topology. $\mu_n \to \mu$ in moments if for each $k \in \{0\} \bigcup \mathbb{N}, \int_{[0,1]} x^k d\mu_n \to \int_{[0,1]} x^k d\mu$. Show these two concepts coincide.

Proof. (\Rightarrow) trivial, since $x^k \in C[0, 1]$.

 $(\Leftarrow) \text{ For } k = 0, \text{ we have } \mu_n([0,1]) \to \mu([0,1]), \text{ which implies that } \mu_n([0,1]) \text{ are } uniformly bounded, say, we may assume that <math>\sup\{\mu_n[0,1],\mu[0,1]:n\in\mathbb{N}\}\leq M$ for some M. By Stone-Weirstrass theorem, for each continuous function f on [0,1], there is a sequence of polynomials $p_m \to f$ under $\|\cdot\|_{\infty}$. Then for every $\epsilon > 0$, choose a m such that $\|p_m - f\|_{\infty} \leq \epsilon/4M$. For the m, there is a N whenever n > N such that $|\int p_m d\mu_n - p_m d\mu| \leq \epsilon/2$ since $\mu_n \to \mu$ in moments. Then $|\int f d\mu_n - \int f d\mu| \leq \int |f - p_m| d\mu_n + \int |f - p_m| d\mu + |\int p_m d\mu_n - p_m d\mu| \leq 2M \cdot (\epsilon/4M) + \epsilon/2 = \epsilon$. Thus $\mu_n \to \mu$ vaguely. \Box

11. JANUARY 2012

Problem 11.1. Let A be the subset of [0,1] consisting of numbers whose decimal expansions contain no sevens. Show that A is Lebesgue measurable, and find its measure. Why does non-uniqueness of decimal expansions not cause any problems?

Proof. We can obtain A by following the procedure of the construction of the cantor set. Firstly divide [0,1] into ten pieces and delete (0.7, 0.8] to obtain A_1 . Then to obtain A_2 , for each of the nine subintervals of A_1 , divide it into ten pieces and delete the seventh subinterval of it. Define the left set to be A_2 .Go on this procedure to obtain A_n . Then define $A = \bigcap_n A_n$. Since we just delete Borel sets from [0,1]. A is Borel thus measurable. $\mu(A) = 1 - \sum_{n=0}^{\infty} \frac{9^n}{10^{n+1}} = 0$.

Since the number who has more than one expansion are exactly $\{\frac{p}{10^n} : n, p \in \mathbb{N}, p \leq 9\}$ which is countable, thus of measure 0. So it will cause no problems. \Box

Problem 11.2. Let functions f_{α} be defined by $f_{\alpha}(x) = x^{\alpha} \cos(1/x)$ if x > 0 and $f_{\alpha}(0) = 0$. Find all $\alpha \ge 0$ such that

- (a) f_{α} is continuous.
- (b) f_{α} is of bounded variation on [0, 1].
- (C) f_{α} is absolutely continuous.

Proof. $|f_{\alpha}(x)| = |= x^{\alpha} \cos(1/x)| \le |x^{\alpha}| \to 0$ when $x \to 0$ if $\alpha > 0$. Thus for all $\alpha > 0$, f_{α} is continuous. For part (b), if $\alpha \le 1$, define $x_n = 1/n\pi$, $\sum |f_{\alpha}(x_n) - f_{\alpha}(x_{n+1})|$

diverges, which implies that f_{α} is not of bounded variation. In the converse, at first, f_{α} is differentiable on (0, 1] for all $\alpha > 0$. If $\alpha > 1$, f_{α} is also differentiable at 0. Then $f_{\alpha}(x) = \int_{0}^{x} f'_{\alpha}(t) dt$. Thus, f_{α} is of bounded variation. For part (c), If $\alpha \leq 1$, f_{α} is not of bounded variation, whence f_{α} is not absolutely continuous. When $\alpha > 1$, f is of a form of integral, thus absolutely continuous.

Problem 11.3. Let \mathcal{F} denote the family of functions on [0,1] of the form $f(x) = \sum_{n=1}^{\infty} a_n \sin(nx)$, where a_n are real and $|a_n| \leq 1/n^3$. Prove that \mathcal{F} is precompact i.e. totally bounded.

Proof. For all $x, y \in [0, 1]$, there is a x_0 between them and a M > 0 such that $|f(x) - f(y)| \le \sum |a_n| |\sin(nx) - \sin(ny)| \le \sum |a_n| |\cos(nx_0)| |nx - ny| \le \sum_n \frac{1}{n^2} |x - y| \le M |x - y|$, whence \mathcal{F} is equicontinuous on [0, 1]. For all $x \in [0, 1]$, $\{f(x) : f \in \mathcal{F}\}$ is bounded since $|f(x)| \le \sum_n 1/n^3 \le \infty$. Then Ascoli-Arzela's theorem implies the result.

Problem 11.4. Let *H* be a Hilbert space and $W \subset H$ be a subspace. Show that $H = \overline{W} \bigoplus W^{\perp}$

Proof. You can find the proof in every textbook of functional analysis. \Box

Problem 11.5. Suppose A is a bounded linear operator on a Hilbert space H with the property that $||p(A)|| \leq C \sup\{|p(z)| : z \in S^1\} = C||p||$ with complex coefficients and a fixed constant C. Show that to each pair $x, y \in H$, there corresponds a complex Borel measure μ on the circle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ such that $\langle A^n x, y \rangle = \int z^n d\mu(z), n = 0, 1, 2, ...$

Proof. Define $H(p) = \langle p(A)x, y \rangle$ for all polynomials p with complex coefficients. $|H(p)| = |\langle p(A)x, y \rangle| \leq ||p(A)|| ||x|| ||y|| \leq C ||p|| ||x|| ||y||$, which implies that H is extended to whole $C(S^1)$ by the density of all polynomials in $C(S^1)$ as a bounded linear functional. Thus, there is a Radon measure μ on S^1 such that $H(f) = \int f d\mu$. Then $H(z^n) = \langle A^n x, y \rangle = \int z^n d\mu(z), n = 0, 1, 2, ...$

Problem 11.6. Let ϕ be the linear functional $\phi(f) = f(0) - \int_{-1}^{1} f(t) dt$.

(a) Compute the norm of ϕ as a functional on the Banach space C[-1,1] with uniform norm.

(b) Compute the norm of ϕ as a functional on the normed vector space LC[-1, 1], which is C[-1, 1] with L^1 norm.

Proof. (a) $\|\phi\| = \sup\{|\phi(f)| : \|f\|_{\infty} = 1\}$. $\|f\|_{\infty} = 1$ implies that $|f(0) - \int_{-1}^{1} f(t)dt| \le |f(0)| + \int_{-1}^{1} |f(t)|dt = 3$. Consider the continuous function f_n such

that $f_n = 1$ on $[-1, -1/n] \bigcup [1/n, 1]$, $f_n(0) = -1$ and f_n is peicewise linear on [-1/n, 1/n]. Then, we can see $|\phi(f_n)| \to 3$, whence $\|\phi\| = 3$.

(b) Define $f_n = 0$ on $[-1, -1/n] \bigcup [1/n, 1]$, $f_n(0) = n$ and f_n is peicewise linear on [-1/n, 1/n]. $||f_n||_1 = 1$ and $|\phi(f_n)| = n + \int_{-1}^1 |f_n| = n + 1$ which implies that $||\phi|| = \infty$.

Problem 11.7. Let X be a normed space, and $A \subset X$ a subset. Show that A is bounded(as a set) if and only if it is weakly bounded(that is, $f(A) \subset \mathbb{C}$ is bounded for each $f \in X^*$).

Proof. (\Rightarrow) Suppose that $\sup\{\|x\| : x \in A\} \leq M$. Then for all $f \in X^*$, $|f(x)| \leq \|f\| \|x\| \leq M \|f\|$.

 $(\Leftarrow) X^* \text{ is a Banach space. For all } f \in X^*, x^{**}(f) = f(x). \text{ Now } \sup_{x \in A} |x^{**}(f)| = \sup_{x \in A} |f(x)| < \infty. \text{ Then uniform boundedness theorem implies that } \sup_{x \in A} ||x|| = \sup_{x \in A} ||x^{**}|| < \infty. \square$

Problem 11.8.

 $E\text{-}mail \ address: \texttt{dongodel@math.tamu.edu}$

32