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Chapter 1: Preliminaries

Section A: Overview of the course

Spaces we live in - Euclidean room, spherical world, hyperbolic universe

Describe these spaces without "distance"
When does calculus, and in particular the Extreme Value Theorem, apply to these spaces?

Section B: Useful tools on sets and functions

De Morgan's laws

Thm: Preimages preserve all Boolean constructions, images preserve some. 
"Preimages are nice"

Tips on how to prove sets are finite or countable.
Axiom of choice and arbitrary Cartesian products

Chapter 2: Topological spaces and continuous functions

Section A: Topology and continuity

Topology:

Open sets in Euclidean space
Definition of a topology

Examples: Discrete, indiscrete, Euclidean, S2, finite complement, included point, excluded

point, infinite ray, line with 2 origins, finite
Finer and coarser topologies on the same set

Continuity:

Motivation: Unraveling the ε-δ definition of continuous in Euclidean space to an equivalent

definition on open sets.
Definition of continuous function

Examples, including inverse image topology
Thm: Constant functions and composition of continuous functions are continuous

Definition of homeomorphism

Examples of pairs of spaces that are or are not homeomorphic

Big picture:

Euclidean, spherical, and hyperbolic spaces are homeomorphic; topology enables

proofs for all three at once

Big questions in topology: Homeomorphism and Classification Problems

Bases:
Definitions of basis and topology generated by a basis

Lemmas: (1) The topology generated by a basis is a topology. (2) T(B) is the collection of

unions of basis elements.

Thm: A function f is continuous iff preimages of basis elements are open.

Examples, including Euclidean and lower limit topology



Lemma: If T is a topology, then T is a basis for the topology T.

Thm: T(B) ⊆ T(B') iff for all B in B and x in B, there is a B' in B' with x ∈ B' ⊆ B.

Section B: Constructing new spaces and continuous functions from old ones, part I

Subspaces:

Definition and examples; "open in" or "open relative to"

Thm: A subspace of a subspace is a subspace

Thm: Given Y ⊆ (X,T(B)), the subspace topology on Y has a basis Bsubsp = { B ∩ Y | B ∈

B }.

Thms: Let X and Y be topological spaces, let A be a subspace of X, and let B be a

subspace of Y.

The inclusion i: A → X is continuous.

If f: X → Y is continuous, then f|A: A → Y is continuous.

If f: X → Y is continuous and f(X) ⊆ B, then f|B: X → B is continuous.

If f: X → B is continuous then f|Y: X → Y is continuous.

"Restrictions and extensions of continuous functions are continuous."

Thm: If X = ∪α Uα with each Uα open in X and if f: X → Y is a function satisfying f|Uα
: Uα

→ Y is continuous for all α, then f is continuous.

Examples of homeomorphic Euclidean subspaces
Product spaces:

Cartesian product and projection maps
Definition of product and box topologies, and examples

Thm: A product of subspaces is a subspace of the product.
Definitions of subbasis, and basis and topology generated by a subbasis

Thm: A function f is continuous iff preimages of subbasis elements are open.
For an arbitrary collection of spaces (Xα,Tα) the product topology on ∏ Xα has a subbasis

Sprod = { pα
-1(Uα) | Uα ∈ Tα} and a basis Bprod = { ∏ Bα | Bα ∈ Tα, Bα = Xα for all but

finitely many α }.
Given topological spaces (Xα,T(Bα)) generated by bases, the product topology on ∏ Xα has

a basis B'prod = { ∏ Bα | Bα ∈ Bα ∪ { Xα}, Bα = Xα for all but finitely many α }.

The projection map πβ : ∏ Xα → Xβ is continuous.

The function f = (fα)α ∈ J: A → ∏ Xα is continuous iff each fα: A → Xα is continuous, using

the product topology.

Section C: Closed sets, boundaries, and continuity

Closed, definition and examples
Lemma: ∅, X, and finite unions and arbitrary intersections of closed sets are closed in X.

Prop: A closed in Y iff A = C &cap Y for some C closed in X.
Closure, interior, boundary, limit point: Definitions and examples
Prop.: C is closed iff C = ClX(C) (ie the closure of C in X). U is open iff U = IntX U (ie the interior

of U in X).
Thm: Closure in subspace equals intersection of closure with subspace.



Thm: The product of the closures equals the closure of the product.

Thm: TFAE: f: X &rarr Y is continuous; preimages of closed sets are closed; images of closures are
contained in closures of images.

Thm: Cl(A)=A ∪ A' (where A' is the set of limit points).
Thm: x ∈ Cl(A) iff every open U in X that contains x intersects A.

Section D: Brief review of continuity

Thm: TFAE: f: X → Y is continuous; preimages of closed sets are closed; images of closures are

contained in closures of images; and for all V ∈ TY and f(x) ∈ V, there exist U ∈ TX with x ∈ U

and f(U) ⊆ V.

Thm CC: Constructing continuous functions: (1) Constant function, (2) inclusion, (3) restricting
domain, (4) restricting or (5) extending range, (6) composition, (7) projection, (8) product, pasting
over (9) open or (10) closed sets, (11) operations in Euclidean reals, (12) uniform limit (cosine and

sine).

Section E: Constructing new spaces and continuous functions from old ones, part II

Quotient = identification spaces:
Definitions of quotient topology, quotient map, and identification topology

Examples
Thm I: If p: X -> X/∼ is a quotient map and g: X -> Z is continuous and constant on

equivalence classes, then g induces a continuous f: X/∼ -> Z with f ο p = g. Moreover: (a) If
[ g(x)=g(x') implies p(x)=p(x') ] then f is one-to-one; (b) If g is onto then f is onto; (c) If (a)

holds and g is a quotient map then f is a homeomorphism.
Thm Q: If g: X → Z is continuous, onto, and open, then g is a quotient map.

Prop CO: Composition, projections, products, and restrictions (range) of open functions are
open.
2-dimensional (surface) examples

Chapter 3: Homeomorphism invariants

Section A: Motivation and Hausdorff

Definition of homeomorphism invariant; example (finite)
Idea: Use homeomorphism invariants to prove two spaces are NOT homeomorphic.
Hausdorff, definition and many examples

Prop: Hausdorff is a homeomorphism invariant.

Prop: Hausdorff is preserved by subspaces and products but not quotients, continuous images, or
continuous preimages.

Section B: Metrizability

Metrizable, definition and examples

Prop: Metrizability is a homeomorphism invariant

Prop: Metrizability is preserved by subspaces and finite and countable products but not quotients,

continuous images, or continuous preimages.



Thm: Metrizable spaces are Hausdorff.

Section C: Connectedness

Connected:

Motivation: Characterize spaces for which the Intermediate Value Theorem holds.

Definition of connected and examples
Thm (IVT): Let X be connected and let f: X → R be continuous. If there are p,q ∈ X and r

∈ R with f(p) < r < f(q), then there is an x ∈ X with f(x)=r.

Thm: A continuous image of a connected space is connected.

Cor: Connectedness is a homeomorphism invariant.
Thm: X is connected iff the only clopen subsets are ∅ and X.

Thm: If X = ∪ Xα, each Xα is connected, and ∩ Xα ≠ ∅, then X is connected.

Prop: If Y ⊆ X is connected and A, B disconnect X, then either Y ⊆ A or Y ⊆ B.

Thm: Connectedness is preserved by continuous images, products and quotients but not

subspaces or continuous preimages.
Thm: Y ⊆ R (with Euclidean top.) is connected iff Y is an interval, ray, or R.

Prop: R and Rn (with n ≥ 2) with the Euclidean topology are not homeomorphic.
Path connected:

Definition of path connected and examples

Thm: A continuous image of a path connected space is path connected.
Cor: Path connectedness is a homeomorphism invariant.

Thm: Path connectedness implies connectedness.

Prop: There are spaces that are connected but not path connected.

Examples (flea and comb, topologist's sine)
Thm: Y ⊆ R (with Euclidean top.) is path connected iff Y is an interval, ray, or R.

Prop: Path connectedness is preserved by products and quotients but not subspaces.

Components:

Definition of component and path component and examples
Prop: The number (cardinality) of (path) components is a homeomorphism invariant.

Prop: Each connected component is a disjoint union of path components.

Section D: Compactness

Motivation: Characterize spaces for which the Extreme Value Theorem holds.

Definition of compact and examples
Thm (EVT): Let X be compact and let f: X → R be continuous. Then there are p,q ∈ X such that

for all x ∈ X, f(p) ≤ f(x) ≤ f(q).

Thm: The continuous image of a compact space is compact.

Prop: Compactness is a homeomorphism invariant preserved by products and quotients but not
subspaces.

Prop: Y ⊆ X is compact iff every covering of Y by open sets of X has finite subcovering.

Thm: Every closed subset of a compact space is compact.

Thm: Every compact subspace of a Hausdorff space is closed.
Prop: If X is Hausdorff, Y ⊆ X is compact, and x ∉ Y, then there are disjoint open U,V with x ∈

U, Y ⊆ V.



Thm (Heine-Borel): Y ⊆ R^n is compact iff Y is closed and bounded.

Thm (VUT): A continuous bijection from a compact space to a Hausdorff space is a

homeomorphism.
Cor (CHI): If g:X -> Y is a continuous surjection, x1 ∼ x2 iff g(x1)=g(x2) for all x1,x2 ∈ X, X is

compact, and Y is Hausdorff, then the quotient X/∼ ≅ Y.
Lemma (Tube): If x ∈ X, Y is compact, and N is an open set in X × Y containing {x} × Y, then

there is a set W open in X with {x} × Y ⊆ W × Y ⊆ N.

Thm (Tychonoff): The product of compact spaces is compact.
Thm (Lebesgue Number Lemma): If X is a compact metrizable space and CC is an open covering

of X, then there is a real number s > 0 such that whenever A is a subset of X with diameter < s,

then there is an open set U in CC with A ⊆ U.

Section E: Separation properties

Motivation: Characterize metrizability (in particular for compact spaces) in terms of properties

defined via open sets.
Thm: A countable basis is a homeomorphism invariant preserved by subspaces and countable

products.

Thm: Compact metrizable implies a countable basis, but metrizable alone does not imply a

countable basis.
Definition of T0, T1, T2=Hausdorff, T3=regular, T4=normal

Thm: Ti for 0 ≤ i ≤ 4 are homeomorphism invariant properties.

Lemma: T1 iff all one-points sets are closed.

Lemma: T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0. For all i, ⇐ does not hold.

Thm: Hausdorff and regular are preserved by subspaces and products.

Thm: Metrizable ⇒ normal.
Thm: Compact and Hausdorff ⇒ normal.

Thm: Regular iff T1 and for all x ∈ X and open U with x ∈ U, there is an open V with x ∈ V ⊆

Cl(V) ⊆ U.

Thm: Normal iff T1 and for all closed A and open U with A ⊆ U, there is an open V with A ⊆ V

⊆ Cl(V) ⊆ U.

Thm: Regular and countable basis ⇒ normal.

Thm (Urysohn Lemma): Let X be a T1 space. TFAE: (1) X is normal. (2) Whenever A and B are

disjoint closed subsets of X, there is a continuous function f : X → [0,1] such that f(A) = {0} and

f(B) = {1}.
Thm (Urysohn Metrization): Regular and countable basis ⇒ metrizable.

Cor: Let X be compact. TFAE: (1) X is metrizable. (2) X is Hausdorff and has a countable basis.

Chapter 4: Homotopy

Section A: Overview of algebraic topology

Big questions in topology
Classification problem

Homeomorphism problem



Homotopy equivalence problem

Algebraic homeomorphism invariants

Groups - homotopy groups
Abelian groups - homology groups

"Categories" and "functors"

Section B: Retracts

Definition of retract (space) and retraction (map)

Definition of deformation retract (space) and deformation retraction (homotopy/map)
Disjoint union topology revisited

Mapping cylinder and mapping torus constructions; examples

Thm: For the mapping cylinder Xf of the map f: X -> Y, Y is a deformation retract of X.

Examples

Section C: Homotopy

Definitions of homotopy and homotopy relative to a subspace

Definitions of homotopy equivalence (maps) and homotopy equivalent/type (equivalence class of

spaces)
Lemma: Homotopy is an equivalence relation on maps, homotopy equivalence is an equivalence

relation on spaces.

Definition of homotopy type invariant
Idea: Use homotopy type invariants to prove two spaces do NOT have the same homotopy type.

Thm: If Y is a deformation retract of X, then they have the same homotopy type.

Thm: If X and Y have the same homotopy type, then there is a space Z that deformation retracts to

both X and Y.

Cor: Let ≈ be the smallest equivalence relation on spaces such that whenever Y is a deformation

retract of X then Y ≈ X. Then X ≈ Z iff X and Z are homotopy equivalent.
Contractible space, nullhomotopic map

Examples

Chapter 5: Fundamental groups

Section A: Definition of π1

Loop, path homotopy, basepoint

Product of loops, constant loop, reverse of a loop

Def: π1(X)

Thm: π1 is a group.

Examples: Discrete and indiscrete, Rn and the straight-line homotopy, S2

Section B: Homomorphisms

Change of basepoint map induced by a path

Thm: π1(X) is independent of basepoint, up to isomorphism.



Group homomorphism induced by a map of pointed spaces
Lemmata: Maps induced by continuous functions are group homomorphisms that compose nicely

and commute with maps induced by paths.

Thm: If X and Y are path-connected and have the same homotopy type, then π1(X) ≅ π1(Y).

Cor: The fundamental group of a contractible space is trivial.

Section C: Manifolds

Definitions and examples

Classification of compact connected 1-manifolds

Connected sum operation

Classification of compact connected 2-manifolds (surfaces)

S. Hermiller.


