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Dummit and Foote

page 530, problems 4,12,13,14,16,17

Notation. µn(R) = {x 2 R : x
n
= 1} where R is a commutative ring and n is a

natural number. Note that µn(R) is a sugroup of R
⇥
, the group of units of R.

Theorem proved in class F is a field, n is a natural number. Assume that the

order of group µn(F ) is n. Let 0 6= a 2 F . Let E = F (↵) where ↵
n
= a. Let

d = deg(E/F ).Then

(1)d divides n. There is some b 2 F such that b
n
d = a and ↵

d
= b.

(2) Let � 2 E. Assume that �
d 2 F .Then �

d
= b

k
c
d
for some k 2 Z c 2 F .

The problems below use only the easy case n = 2 of the above theorem

2.1. Let F be a field of characteristic 6= 2 and let E be a quadratic extension of

F . Show that the kernel of the natural homomorphism F
⇥
/(F

⇥
)
2 ! E

⇥
/(E

⇥
)
2
is a

group of order 2.

Deduce that if there is a chain of fields F = E0 ⇢ E1 ⇢ ... ⇢ En = E with

deg(Ei/Ei�1) = 2 for i = 1, 2, ..., n, then the kernel of the natural homomorphism

F
⇥
/(F

⇥
)
2 ! E

⇥
/(E

⇥
)
2
has order dividing 2

n
.

2.2. Char.F is 6= 2. Let a1, a2, ..., ar be nonzero elements of F and let G be the

subgroup generated by their images in F
⇥
/(F

⇥
)
2
. Let E = F (

p
a1,

p
a2, ...,

p
ar).

Prove that deg(E/F ) is the order of G.

2.3. Here (a1, a2, a3) = (2, 3, 5). Let E = Q(
p
a1,

p
a2,

p
a3). Let (b1, b2, b3) 2 {±1}3.

Prove

(1) There exists a field automorphism � of E such that �
p
ai = bi

p
ai for i =

1, 2, 3.

Hint: Use the previous problem to do this when (b1, b2, b3) equals (1, 1,�1), (1,�1, 1), (�1, 1, 1),

and then consider the group generated by these three automorphisms.

(2) Deduce that Q(
p
a1 +

p
a2 +

p
a3) = E.

Hint: First deduce from part (1) that ±p
a1+±p

a2+±p
a3 are all conjugates

of each other.

2.4. Let x1, x2, x3 2 F . Find a monic degree eight f 2 F [X] which hasp
x1 +

p
x2 +

p
x3 as a root.

3

3.1. p is an odd prime and q = p
k
. Let E be a splitting field of X

q
+X 2 Fp[X].How

many elements does it have?

3.2. For which primes p is there some 1 6= ! 2 Fp such that !
3
= 1. For such a prime

p, how many elements are there in a splitting field of X
p � !X 2 Fp[X]

3.3. Let p be a prime which is ⌘ 1mod 2
k
, but not congruent to 1 modulo a higher

power of 2. Assume k � 2. Assume that u0 2 Fp is not a square. Construct a

sequence of pairs (En, un) where En is a field and un 2 En as follows.

Define (E0, u0) = (Fp, u0).
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Assume that (En, un) has been defined. Let En+1 be a field extension of En obtaing

by adjoining a square-root un+1 of un 2 En.

Show that deg(En/En�1) = 2 for all n > 0.

3.4. Explain how you would construct a sequence of quadratic extensions when k = 1

in the previous problem.

3.5. Explain how you would obtain a sequence of field extensions En+1/En of degree

three, with E0 = F19.

3.6. Let Fq be a finite field of characteristic p. How mny elements of Fq are of the

type x� x
p
, x 2 Fq?

3.7. The cylotomic polynomials �n(X) 2 Z[X] defined for all natural numbers n,

have the property

X
n � 1 = ⇧

d|n
�d(X)

Let n = n
0
p
k
with p not dividing n

0
. let F be a field of characteristic p such that

µn0(F ) has order n
0
. Show that the roots of �n(X) in F are the primitive n

0
-th roots

of unity, each of them occuring with multiplicity '(p
k
).

Here ' is Euler’s phi function.

'(m) is the order of the group of units of the ring Z/mZ.
Equivalently, '(m) is the cardinality of the set of natural numbers k  m such that

g.c.d.(k,m) = 1.

'(1) = 1. If p is a prime, then '(p
k
) = p

k�1
(p� 1) if k > 0.

3.8. Deduce the equality �n(X) = �n0(X)
'(pk)

in Fp[X] from the previous problem.

3.9. Let f = Q
2 � cP

2
where c 2 F and P,Q 2 F [X] with Q monic of degree two

and deg(P ) < 2. Show that if g is an irreducible monic polynomial of degree � 3

that divides f , then g = f .

Show that if f is irreducible, then the field E = F (✓) obtained by adjoining a root

✓ of f , necessarily contains a quadratic extension of F

3.10. Conversely, Let E = F (✓) be a edgree four extension of F that contains a

quadratic extension of F . Prove that the (monic) minimal polynomial is of the type

described in the previous problem. Here we are assuming that char.F is 6= 2.

3.11. Take F = Q in the previous problem. Assume that f 2 Z[X]. Prove that we

may choose P,Q, c satisfying

(i) c is a square-free integer, and

(ii) the coe�cients of P and Q lie in R = {m

2n : m � 0, n 2 Z}.
Deduce that if p is an odd prime, then f modulo p, i.e. its image f 2 Fp[X] does

not have an irreducible factor of degree 3.

(this was an example I gave on Wednesday first week (without a proof) of a degree

four extension of Q that does not contain a quadratic extension)

Hint for part (ii). If Q(X) = X
2
+ uX + v, on examining the coe�cient of X

3
in

f , we see that 2u 2 Z. Thus u 2 R. Now f 2 Z[X] ⇢ R[X]. It follows that

f(X � u

2 ) 2 R[X]. We put bf(X) = f(X � u

2 ),
bQ(X) = Q(X � u

2 ),
bP (X) = P (X � u

2 ).

We observe bf = bQ2 � c bP 2
. Note that bQ(X) = X

2
+ bQ(0).



3

Case 1: bQ(0) 2 R. It follows that bQ 2 R[X]. Also c bP 2
= bQ2� bf 2 R[X]. Because c is

a square-free integer, it follows that bP 2 2 R[X]. By examining the leading coe�cient

and constant coe�cient of bP 2
, we see that bP itself belongs to R[X]. It follows that

P,Q belong to R[X], because P (X) = bP (X +
u

2 ) and Q(X) = bQ(X +
u

2 ) .

Case 2: bQ(0) /2 R. In which case, bQ(0) =
a

b
where a, b 2 Z, and we have an odd

prime p that does not divide a, but divides b. Let k be the highest power of p that

divides b. Let bP = r1X + r0 and let v1 and v0 be the highest powers of p that divide

the denominator of r1 and r0 (when expressed as reduced fractions).

The equation bf(0) = bQ(0)
2 � c bP (0)

2
shows that p does not divide c, and also that

k = 2v0. (Here we are using once again the squarefree assumption on c).

Examining the degree two coe�cient of f , we see that k = v1.

Examining the degree one coe�cient of f , we see that the highest power of p that

divides it is v0 + v1, and that is impossible because f 2 R[X]. Thus case 2 does not

occur.

4

4.1. Let R be a commutative ring and let T 2 Mn(R). Show that for every v 2 R
n
,

there exists w 2 R
n
such that Tw = det(T )v.

Hint: This is a consequence of the definition of the adjoint matrix adj(T ) and the

fact that T.adj(T ) equals the scalar matrix det(T ).

Remark: In reality, the above adjoint matrix is simply ⇤
n�1

(T ) . Therefore this

problem could be stated and solved entirely within the framework of exterior algebras,

with no reference to matrices.

4.2. With R, n, T as above, assume that R is an integral domain. Prove that T :

R
n ! R

n
is one-to-one if and only if det(T ) is nonzero.

Hint: Let K be the fraction field of R. We may regard T as a member of Mn(K).

4.3. Let R be a subring of a commutative ring S. Assume that S, when regarded as

a R-module, is free of rank n. Prove that for every ↵ 2 S, there exists � 2 S such

that Norm
S

R
(↵) = �↵.

Show that if S is an integral domain, then Norm
S

R
(↵) 6= 0.

4.4. Let E be a field extension of F of degree n.

(i) Prove that E[X], when regarded as a module over its subring F [X], is free of rank

n.

(ii) Let 0 6= f 2 E[X]. Prove that there is some g 2 E[X] such that gf = h wher

0 6= h 2 F [X].

Hint: Consider h = Norm
E[X]
F [X](f).

(iii) Prove that E(X) is a field extension of F (X) of degree n. More precisely, show

that if w1, ..., wn is a F -basis for E, then w1, ..., wn is also a F (X)-basis for E(X).

4.5. With E and F as in the previous problem, show that E(X1, ..., Xd) is a field

extension of F (X1, ..., Xd) of degree n.
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4.6. Let F be any field. We have an action of the permutation group Sd on the

polynomial ring F [X1, X2, ..., Xd] by permuting the variables: for � 2 Sd, we de-

fine �f(X1, ..., Xn) = f(X�(1), ..., X�(n)). This action of Sd on F [X1, ..., Xd] extends

uniquely to an action of Sd on its fraction field F (X1, ..., Xn).

Employ Emil Artin’s theorem to deduce that there is a finite Galois extension of

fields with Sd as Galois group.

4.7. Show that every finite group can be realised as the Galois group of some finite

Galois extension of fields.

4.8. Let q = p
k
where p is a prime. Let E be a finite field extension of Fq of degree

n. Prove that E is a Galois extension of Fq. Define �(x) = x
q
for all x 2 E. Prove

that � belongs to Gal(E/Fq), and in fact generates this group.

4.9. Given an automorphism � of a ring R, denote by R
�

the subring

{a 2 R : a = �a}.
Let F be a field of characteristic zero. Define �f(X) = f(X + 1) for all f 2 F [X].

Note that � also gives rise to an automorphism of its fraction field F (X). Prove that

F = F [X]
�
= F (X)

�

4.10. Let F be a field of characteristic p > 0. With � as in the previous problem,

show that F (X) is a Galois extension of F (X)
�
of degree p.

Do you know what F [X]
�
and F (X)

�
are?

5

5.1. Let L be a finite Galois extension of F . Let H1 and H2 be subgroups of G =

Gal(L/F ) and consider their fixed fields E1 = L
H1 and E2 = L

H2 respectively. Prove

that Gal(L/E1E2) equals H1 \H2.

5.2. With notation as in the previous problem, show that Gal(L/E1 \ E2) is the

subgroup of G generated by H1 and H2.

5.3. Given F ⇢ E ⇢ E
0
and F ⇢ K ⇢ E

0
, where F,E,K are subfields of E

0
.

It is not assumed that E is an algebraic extension of F Prove that

(1) IfK is a finite separable extension of F , then EK is a finite separable extension

of E.

(2) If K is a finite normal extension of F , then EK is a finite normal extension

of E.

(3) If K is a finite Galois extension of F , then EK is a finite Galois extension of

E.

5.4. Assuming the hypothesis of part (3) of the previous problem, show that � 7! �|K
gives an isomorphism Gal(EK/E) ! Gal(K/K \ E).

Warning If your proof never relies on the Fundamental Thm of Galois theory, it is

likely to be wrong. So, state precisely where you appeal to this thm.

5.5. Let p be a prime, let n be a natural number, and let F be a field that contains

a primitive p
n
-th root of unity. Let a 2 F . Show that if degF (a

1/p
)/F ) > 1, then

degF (a
1/pn

)/F ) = p
n
.

Hint: let E = F (b) where b
p
n
= a. Is E a Galois extension of F?
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Let u = p
n�1

and let c = b
u
. Does a F -automorphism � of F (c) extend to an

F -automorphism of F (b)?

The next two problems are the analogues of problems 2.1 and 2.2.

5.6. Assume that F contains p distinct p-th roots of unity, where p is a prime.

Let a 2 F
⇥

and let E = F (a
1/p

). Show that the kernel of the natural homomor-

phism F
⇥
/(F

⇥
)
p ! E

⇥
/(E

⇥
)
p
is the cyclic subgroup generated by the image of a in

F
⇥
/(F

⇥
)
p
.

5.7. With the assumptions on p and F as in the previous problem, let a1, ..., ar 2 F
⇥
.

(i)Show that degF (a
1/p
1 , a

1/p
2 , ..., a

1/p
r )/F ) = p

s
where 0  s  r.

(ii)Show that the order of the subgroup of F
⇥
/(F

⇥
)
p
generated by the images of

a1, a2, ..., ar is p
s
.

5.8. Let K/F be a finite Galois extension with Galois group G. Assume that K

contains a primitive p-th root of unity. Let a 2 K
⇥
. Prove that every normal

extension of F that contains K(a
1/p

) necessarily contains the field L obtained from

K by adjoining p-th roots of �(a) for all � 2 G).

5.9. If in the previous problem, (i) Gal(L/F ) is Abelian, and (ii) F contains a prim-

itive p-th root of unity,

show that a
�1
�(a) 2 (K

⇥
)
p
for every � 2 Gal(K/F ).

5.10. In the previous problem, assume furthermore that p does not divide the order

of Gal(K/F ). Show hat there is some b 2 F such that L = K(b
1/p

)

5.11. Let F be a field which contains a primitive p-th root of unity ⇣. Show that a

cyclic extension K/F of degree p is contained in a cyclic extension of degree p
2
if and

only if there exists u 2 K such that Norm
K

F
(u) = ⇣.

Hint: For p = 2, this was proved in class using Hilbert’s Thm.90. That proof can be

mimicked, relying on 5.9.

6

6.1. Let f : A ! B and g : B ! C be ring homomorphisms. Let �1, ..., �m 2 B and

let �1, ..., �n 2 C.

(1) Assume that B, when regarded as a left A-module, is generated by �1, ..., �m,

and also that C, when regarded as a left B-module, is generated by �1, ..., �n 2
C.

Show that C, when regarded as a A-module, is generated by �i.g(�j) for all

1  i  n, 1  j  m.

(2) Assume now that B is a free A-module with the �i as basis, and C is a free B-

module with the �j as basis. Show that C is A-free with the given generators

in part (1) as basis.

6.2. Let f(T ) = T
n�a1T

n�1
+ ...+(�1)

n
an 2 A[T ]. Let B = A[X1, X2, ..., Xn]/(s1�

a1, s2 � a2, ..., sn � an), where s1, s2, ..., sn are the elementary symmetric polynomials

in X1, X2, ..., Xn. Prove that B is a free A-module with basis (as the image in B) of

the monomials X
m1
1 X

m2
2 ...X

mn
n

where all the mi are non-negative integers such that

mi + i  n for all i = 1, 2, ..., n.

Prove this for n = 3
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In all the remaining problems of this section, F is a field of characteristic p > 0

6.3. Let F be a field of characteristic p > 0. Let A be a finite additive subgroup of

F .

Let fA 2 F [X] be the product of (X � a), taken over all a 2 A.

(i) Prove that fA(X + a) = fA(X) for all a 2 A.

(ii) Deduce that fA(X + Y ) = fA(X) + fA(Y ) 2 F [X, Y ].

Hint: Let C = F [Y ] and let h(X) = �fA(X + Y ) + fA(X) + fA(Y ) 2 C[X]. Use (i)

to find more c 2 C such that h(c) = 0 than the degree of h 2 C[X].

6.4. Let f 2 F [X]. Prove that f(X + Y ) = f(X) + f(Y ) if and only if f =

a0X + a1X
p
+ ...+ anX

p
n
for some n � 0 and a0, ..., an 2 F .

6.5. Assume that F is algebraically closed. Show that A 7! fA is a one-to-one

correspondence from the collection of additive subgroups A ⇢ F of order p
n
and the

set of polynomials in F [X] of the form f = a0X + a1X
p
+ ...+ an�1X

p
n�1

+X
p
n
with

a0 6= 0.

7

7.1. Let G = Gal(K/F ). Assume that the order of µn(F ) is n.

Let � : G ! µn(F ) be a homomorphism. Show that V
�

= {a 2 K : �(a) =

�(�).a8� 2 G} is a one-dimensional F -vector space of K.

Hint: Let b 2 K. Let a 2 K denote the sum of �(�)
�1
�(b), taken over all � 2 G.

Show that a belongs to V
�
.

Use Dedekind’s “linear independence of characters” to show that there is some b 2 K

such that the above a is nonzero.
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