Title

D. Zack Garza

Sunday $17^{\rm th}$ May, 2020

Contents

1	Fall 2009	1
2	Fall 2011	4
3	Spring 2014	7
4	Fall 2015	8

5 Spring 2015 11

15

6 Fall 2016

1 Fall 2009

1. (1) Assume
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
 converges in $|z| < R$. Show that for $r < R$,
$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

- (2) Deduce Liouville's theorem from (1).
- 2. Let f be a continuous function in the region

$$D = \{ z \mid |z| > R, 0 \le \arg z \le \theta \} \text{ where } 1 \le \theta \le 2\pi.$$

If there exists k such that $\lim_{z \to \infty} zf(z) = k$ for z in the region D. Show that

$$\lim_{R'\longrightarrow\infty}\int_L f(z)dz = i\theta k,$$

where L is the part of the circle |z| = R' which lies in the region D.

3. Suppose that f is an analytic function in the region D which contains the point a. Let

F(z) = z - a - qf(z), where q is a complex parameter.

- (1) Let $K \subset D$ be a circle with the center at point a and also we assume that $f(z) \neq 0$ for $z \in K$. Prove that the function F has one and only one zero z = w on the closed disc \overline{K} whose boundary is the circle K if $|q| < \min_{z \in K} \frac{|z-a|}{|f(z)|}$.
- (2) Let G(z) be an analytic function on the disk \overline{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)} = \frac{1}{2\pi i} \int_{K} \frac{G(z)}{F(z)} dz$, where w is the zero from (1).
- (3) If $z \in K$, prove that the function $\frac{1}{F(z)}$ can be represented as a convergent series with respect to q: $\frac{1}{F(z)} = \sum_{n=0}^{\infty} \frac{(qf(z))^n}{(z-a)^{n+1}}$.
- 4. Evaluate

$$\int_0^\infty \frac{x \sin x}{x^2 + a^2} \, dx.$$

5. Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}, r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

- 6. Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here *n* is a positive integer.
- 7. For s > 0, the **gamma function** is defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.
 - 1. Show that the gamma function is analytic in the half-plane $\Re(s) > 0$, and is still given there by the integral formula above.
 - 2. Apply the formula in the previous question to show that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Hint: You may need
$$\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$$
 for $t > 0$.

8. Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If

$$P_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n \quad (a_n \neq 0)$$

is a polynomial of degree n, then it has n zeros in \mathbb{C} .

9. Suppose f is entire and there exist A, R > 0 and natural number N such that

$$|f(z)| \ge A|z|^N$$
 for $|z| \ge R$.

Show that

- (i) f is a polynomial and
- (ii) the degree of f is at least N.
- 10. Let $f : \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called *univalent*) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.
- 11. Let g be analytic for $|z| \leq 1$ and |g(z)| < 1 for |z| = 1.
 - 1. Show that g has a unique fixed point in |z| < 1.
 - 2. What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z| = 1? Give an example if (a) is not true or give an proof if (a) is still true.
 - 3. What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that $f(z) \neq z$. Can f have more than one fixed point in |z| < 1?

Hint: The map $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha} z}$ may be useful.

- 12. Find a conformal map from $D = \{z : |z| < 1, |z 1/2| > 1/2\}$ to the unit disk $\Delta = \{z : |z| < 1\}$.
- 13. Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω . Show without using Picard's theorems that f(z) is a constant.

(1) Assume
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
 converges in $|z| < R$. Show that for $r < R$
$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

(2) Deduce Liouville's theorem from (1).

- 14. Let f(z) be entire and assume that $f(z) \leq M|z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤ 2 .
- 15. Let $a_n(z)$ be an analytic sequence in a domain D such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\sum_{n=0}^{\infty} |a'_n(z)|$ converges uniformly on bounded and closed sub-regions of D.
- 16. Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\int_{\Lambda} f(z)dz = 0$ for all triangles Δ in Ω .
- 17. Assume f is continuous in the region: $0 < |z a| \le R$, $0 \le \arg(z a) \le \beta_0$ $(0 < \beta_0 \le 2\pi)$ and the limit $\lim_{z \to a} (z - a)f(z) = A$ exists. Show that

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = i A \beta_0 \; ,$$

where $\gamma_r := \{ z \mid z = a + re^{it}, \ 0 \le t \le \beta_0 \}.$

- 18. Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .
- 19. (1) Show that the function u = u(x, y) given by

$$u(x,y) = \frac{e^{ny} - e^{-ny}}{2n^2} \sin nx \quad \text{for } n \in \mathbf{N}$$

is the solution on $D=\{(x,y) \ | x^2+y^2<1\}$ of the Cauchy problem for the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad u(x,0) = 0, \quad \frac{\partial u}{\partial y}(x,0) = \frac{\sin nx}{n}.$$

(2) Show that there exist points $(x, y) \in D$ such that $\limsup_{n \to \infty} |u(x, y)| = \infty$.

2 Fall 2011

1. (1) Assume
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
 converges in $|z| < R$. Show that for $r < R$,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^\infty |c_n|^2 r^{2n}$$

- (2) Deduce Liouville's theorem from (1).
- 2. Let f be a continuous function in the region

$$D = \{ z \mid |z| > R, 0 \le \arg Z \le \theta \} \text{ where } 0 \le \theta \le 2\pi.$$

If there exists k such that $\lim_{z \to \infty} zf(z) = k$ for z in the region D. Show that

$$\lim_{R'\longrightarrow\infty}\int_L f(z)dz=i\theta k,$$

where L is the part of the circle |z| = R' which lies in the region D.

3. Suppose that f is an analytic function in the region D which contains the point a. Let

F(z) = z - a - qf(z), where q is a complex parameter.

- (1) Let $K \subset D$ be a circle with the center at point a and also we assume that $f(z) \neq 0$ for $z \in K$. Prove that the function F has one and only one zero z = w on the closed disc \overline{K} whose boundary is the circle K if $|q| < \min_{z \in K} \frac{|z-a|}{|f(z)|}$.
- (2) Let G(z) be an analytic function on the disk \overline{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)} = \frac{1}{2\pi i} \int_{K} \frac{G(z)}{F(z)} dz$, where w is the zero from (1).

- (3) If $z \in K$, prove that the function $\frac{1}{F(z)}$ can be represented as a convergent series with respect to q: $\frac{1}{F(z)} = \sum_{n=0}^{\infty} \frac{(qf(z))^n}{(z-a)^{n+1}}$.
- 4. Evaluate $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$.
- 5. Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}, r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

- 6. Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here *n* is a positive integer.
- 7. For s > 0, the **gamma function** is defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.
 - 1. Show that the gamma function is analytic in the half-plane $\Re(s) > 0$, and is still given there by the integral formula above.
 - 2. Apply the formula in the previous question to show that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Hint: You may need
$$\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$$
 for $t > 0$.

8. Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If

$$P_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n \quad (a_n \neq 0)$$

is a polynomial of degree n, then it has n zeros in \mathbb{C} .

9. Suppose f is entire and there exist A, R > 0 and natural number N such that

$$|f(z)| \ge A|z|^N$$
 for $|z| \ge R$.

Show that (i) f is a polynomial and (ii) the degree of f is at least N.

- 10. Let $f : \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.
- 11. Let g be analytic for $|z| \leq 1$ and |g(z)| < 1 for |z| = 1.
 - Show that g has a unique fixed point in |z| < 1.
 - What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z| = 1? Give an example if (a) is not true or give an proof if (a) is still true.
 - What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that $f(z) \neq z$. Can f have more than one fixed point in |z| < 1?

Hint: The map $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$ may be useful.

- 12. Find a conformal map from $D = \{z : |z| < 1, |z 1/2| > 1/2\}$ to the unit disk $\Delta = \{z : |z| < 1\}$.
- 13. Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω . Show without using Picard's theorems that f(z) is a constant.
- 14. Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω . Show without using Picard's theorems that f(z) is a constant.

15. (1) Assume
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
 converges in $|z| < R$. Show that for $r < R$
$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} .$$

- (2) Deduce Liouville's theorem from (1).
- 16. Let f(z) be entire and assume that $f(z) \leq M|z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤ 2 .
- 17. Let $a_n(z)$ be an analytic sequence in a domain D such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\sum_{n=0}^{\infty} |a'_n(z)|$ converges uniformly on bounded and closed sub-regions of D.
- 18. Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\int_{\Lambda} f(z)dz = 0$ for all triangles Δ in Ω .
- 19. Assume f is continuous in the region: $0 < |z a| \le R$, $0 \le \arg(z a) \le \beta_0$ $(0 < \beta_0 \le 2\pi)$ and the limit $\lim_{z \to a} (z a)f(z) = A$ exists. Show that

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = i A \beta_0 \;,$$

where $\gamma_r := \{ z \mid z = a + re^{it}, \ 0 \le t \le \beta_0 \}.$

- 20. Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .
 - (1) Show that the function u = u(x, y) given by

$$u(x,y) = \frac{e^{ny} - e^{-ny}}{2n^2} \sin nx \quad \text{for } n \in \mathbf{N}$$

is the solution on $D=\{(x,y) \ | x^2+y^2<1\}$ of the Cauchy problem for the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad u(x,0) = 0, \quad \frac{\partial u}{\partial y}(x,0) = \frac{\sin nx}{n}.$$

(2) Show that there exist points $(x, y) \in D$ such that $\limsup_{x \to \infty} |u(x, y)| = \infty$.

3 Spring 2014

- 1. The question provides some insight into Cauchy's theorem. Solve the problem without using the Cauchy theorem.
 - 1. Evaluate the integral $\int_{\gamma} z^n dz$ for all integers *n*. Here γ is any circle centered at the origin with the positive (counterclockwise) orientation.
 - 2. Same question as (a), but with γ any circle not containing the origin.
 - 3. Show that if |a| < r < |b|, then $\int_{\gamma} \frac{dz}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}$. Here γ denotes the circle centered at the origin, of radius r, with the positive orientation.
- 2. (1) Assume the infinite series $\sum_{n=0}^{\infty} c_n z^n$ converges in |z| < R and let f(z) be the limit. Show that for r < R,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^\infty |c_n|^2 r^{2n} \, d\theta.$$

- (2) Deduce Liouville's theorem from (1). Liouville's theorem: If f(z) is entire and bounded, then f is constant.
- 3. Let f be a continuous function in the region

$$D = \{ z \mid |z| > R, 0 \le \arg Z \le \theta \} \text{ where } 0 \le \theta \le 2\pi.$$

If there exists k such that $\lim_{z \to \infty} zf(z) = k$ for z in the region D. Show that

$$\lim_{R'\longrightarrow\infty}\int_L f(z)dz=i\theta k,$$

where L is the part of the circle |z| = R' which lies in the region D.

- 4. Evaluate $\int_0^\infty \frac{x \sin x}{x^2 + a^2} \, dx.$
- 5. Let f = u + iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z = re^{i\theta}, r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

- 6. Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here *n* is a positive integer.
- 7. For s > 0, the **gamma function** is defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.
 - Show that the gamma function is analytic in the half-plane $\Re(s) > 0$, and is still given there by the integral formula above.

• Apply the formula in the previous question to show that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Hint: You may need
$$\Gamma(1-s) = t \int_0^\infty e^{-vt} (vt)^{-s} dv$$
 for $t > 0$.

8. Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If

$$P_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n \quad (a_n \neq 0)$$

is a polynomial of degree n, then it has n zeros in **C**.

9. Suppose f is entire and there exist A, R > 0 and natural number N such that

$$|f(z)| \ge A|z|^N$$
 for $|z| \ge R$.

Show that (i) f is a polynomial and (ii) the degree of f is at least N.

- 10. Let $f : \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.
- 11. Let g be analytic for $|z| \leq 1$ and |g(z)| < 1 for |z| = 1.
 - Show that g has a unique fixed point in |z| < 1.
 - What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z| = 1? Give an example if (a) is not true or give an proof if (a) is still true.
 - What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that $f(z) \neq z$. Can f have more than one fixed point in |z| < 1?

Hint: The map $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$ may be useful.

12. Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $\Delta = \{z : |z| < 1\}$.

4 Fall 2015

- 1. Let $a_n \neq 0$ and assume that $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L$. Show that $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$. In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.
- 2. (a) Let z, w be complex numbers, such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right| < 1 \quad \text{if } |z| < 1 \text{ and } |w| < 1,$$

and also that

$$\left|\frac{w-z}{1-\overline{w}z}\right| = 1 \quad \text{if } |z| = 1 \text{ or } |w| = 1.$$

(b) Prove that for fixed w in the unit disk \mathbb{D} , the mapping

$$F:z\mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (c) F maps \mathbb{D} to itself and is holomorphic.
- (ii) F interchanges 0 and w, namely, F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F: \mathbb{D} \mapsto \mathbb{D}$ is bijective.

Hint: Calculate $F \circ F$.

3. Use *n*-th roots of unity (i.e. solutions of $z^n - 1 = 0$) to show that

$$2^{n-1}\sin\frac{\pi}{n}\sin\frac{2\pi}{n}\cdots\sin\frac{(n-1)\pi}{n} = n \; .$$

Hint: $1 - \cos 2\theta = 2\sin^2 \theta$, $\sin 2\theta = 2\sin \theta \cos \theta$.

(a) Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{and} \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

(b) Use these equations to show that the logarithm function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is a holomorphic function in the region r > 0, $-\pi < \theta < \pi$. Also show that $\log z$ defined above is not continuous in r > 0.

4. Assume f is continuous in the region: $x \ge x_0$, $0 \le y \le b$ and the limit

$$\lim_{x \to +\infty} f(x + iy) = A$$

exists uniformly with respect to y (independent of y). Show that

$$\lim_{x \to +\infty} \int_{\gamma_x} f(z) dz = iAb \; ,$$

where $\gamma_x := \{ z \mid z = x + it, \ 0 \le t \le b \}.$

5. (Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f'(z) exists in an open set containing γ and Ω_2 and $\lim_{z \to \infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1, \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}$$

6. Let f(z) be bounded and analytic in \mathbb{C} . Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz.$$

Use this to show that f(z) must be a constant (Liouville's theorem).

7. Prove by justifying all steps that for all $\xi \in \mathbb{C}$ we have $e^{-\pi\xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x \xi} dx$.

Hint: You may use that fact in Example 1 on p. 42 of the textbook without proof, i.e., you may assume the above is true for real values of ξ .

- 8. Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z_0 on the unit circle. Let denote the the power series in the open disc. Show that (1) $c_n \neq 0$ for all large enough *n*'s, and (2) $\lim_{n \to \infty} \frac{c_n}{c_{n+1}} = z_0$.
- 9. Let f(z) be a non-constant analytic function in |z| > 0 such that $f(z_n) = 0$ for infinite many points z_n with $\lim_{n \to \infty} z_n = 0$. Show that z = 0 is an essential singularity for f(z). (An example of such a function is $f(z) = \sin(1/z)$.)
- 10. Let f be entire and suppose that $\lim_{z\to\infty} f(z) = \infty$. Show that f is a polynomial.
- 11. Expand the following functions into Laurent series in the indicated regions:

(a)
$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}, \ 2 < |z| < 3, \ 3 < |z| < +\infty.$$

(b) $f(z) = \sin \frac{z}{1-z}, \ 0 < |z-1| < +\infty$

- 12. Assume f(z) is analytic in region D and Γ is a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \Gamma$, then f(z) is a constant.
- 13. Find the number of roots of $z^4 6z + 3 = 0$ in |z| < 1 and 1 < |z| < 2 respectively.
- 14. Prove that $z^4 + 2z^3 2z + 10 = 0$ has exactly one root in each open quadrant.
- 15. (1) Let $f(z) \in H(\mathbb{D})$, Re(f(z)) > 0, f(0) = a > 0. Show that

$$\left|\frac{f(z) - a}{f(z) + a}\right| \le |z|, \quad |f'(0)| \le 2a.$$

- (2) Show that the above is still true if $\operatorname{Re}(f(z)) > 0$ is replaced with $\operatorname{Re}(f(z)) \ge 0$.
- 16. Assume f(z) is analytic in \mathbb{D} and f(0) = 0 and is not a rotation (i.e. $f(z) \neq e^{i\theta}z$). Show that $\sum_{n=1}^{\infty} f^n(z)$ converges uniformly to an analytic function on compact subsets of \mathbb{D} , where $f^{n+1}(z) = f(f^n(z))$.
- 17. Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic and one-to-one in |z| < 1. For 0 < r < 1, let D_r be the disk

|z| < r. Show that the area of $f(D_r)$ is finite and is given by

$$S = \pi \sum_{n=1}^{\infty} n |c_n|^2 r^{2n}.$$

(Note that in general the area of $f(D_1)$ is infinite.)

18. Let $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$ be analytic and one-to-one in $r_0 < |z| < R_0$. For $r_0 < r < R < R_0$, let D(r, R) be the annulus r < |z| < R. Show that the area of f(D(r, R)) is finite and is given by

$$S = \pi \sum_{n = -\infty}^{\infty} n |c_n|^2 (R^{2n} - r^{2n}).$$

5 Spring 2015

- 1. Let $a_n(z)$ be an analytic sequence in a domain D such that $\sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\sum_{n=0}^{\infty} |a'_n(z)|$ converges uniformly on bounded and closed sub-regions of D.
- 2. Let f_n , f be analytic functions on the unit disk \mathbb{D} . Show that the following are equivalent.
 - (i) $f_n(z)$ converges to f(z) uniformly on compact subsets in \mathbb{D} .

(ii)
$$\int_{|z|=r} |f_n(z) - f(z)| |dz|$$
 converges to 0 if $0 < r < 1$.

- 3. Let f and g be non-zero analytic functions on a region Ω . Assume |f(z)| = |g(z)| for all z in Ω . Show that $f(z) = e^{i\theta}g(z)$ in Ω for some $0 \le \theta < 2\pi$.
- 4. Suppose f is analytic in an open set containing the unit disc \mathbb{D} and |f(z)| = 1 when |z|=1. Show that either $f(z) = e^{i\theta}$ for some $\theta \in \mathbb{R}$ or there are finite number of $z_k \in \mathbb{D}$, $k \leq n$ and $\theta \in \mathbb{R}$ such that $f(z) = e^{i\theta} \prod_{k=1}^{n} \frac{z - z_k}{1 - \overline{z}_k z}$.

Also cf. Stein et al, 1.4.7, 3.8.17

- 5. (1) Let p(z) be a polynomial, R > 0 any positive number, and $m \ge 1$ an integer. Let $M_R = \sup\{|z^m p(z) 1| : |z| = R\}$. Show that $M_R > 1$.
 - (2) Let $m \ge 1$ be an integer and $K = \{z \in \mathbb{C} : r \le |z| \le R\}$ where r < R. Show (i) using (1) as well as, (ii) without using (1) that there exists a positive number $\varepsilon_0 > 0$ such that for each polynomial p(z),

$$\sup\{|p(z) - z^{-m}| : z \in K\} \ge \varepsilon_0.$$

6. Let $f(z) = \frac{1}{z} + \frac{1}{z^2 - 1}$. Find all the Laurent series of f and describe the largest annuli in which these series are valid.

- 7. Suppose f is entire and there exist A, R > 0 and natural number N such that $|f(z)| \le A|z|^N$ for $|z| \ge R$. Show that (i) f is a polynomial and (ii) the degree of f is at most N.
- 8. Suppose f is entire and there exist A, R > 0 and natural number N such that $|f(z)| \ge A|z|^N$ for $|z| \ge R$. Show that (i) f is a polynomial and (ii) the degree of f is at least N.
- 9. (1) Explicitly write down an example of a non-zero analytic function in |z| < 1 which has infinitely zeros in |z| < 1.
 - (2) Why does not the phenomenon in (1) contradict the uniqueness theorem?
- 10. (1) Assume u is harmonic on open set O and z_n is a sequence in O such that $u(z_n) = 0$ and $\lim z_n \in O$. Prove or disprove that u is identically zero. What if O is a region?
 - (2) Assume u is harmonic on open set O and u(z) = 0 on a disc in O. Prove or disprove that u is identically zero. What if O is a region?
 - (3) Formulate and prove a Schwarz reflection principle for harmonic functions

cf. Theorem 5.6 on p.60 of Stein et al.

Hint: Verify the mean value property for your new function obtained by Schwarz reflection principle.

11. Let f be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s < r, there exists a constant c > 0 such that

$$||f||_{(\infty,s)} \le c||f||_{(1,r)},$$

where
$$|f||_{(\infty,s)} = \sup_{z \in D_s(z_0)} |f(z)|$$
 and $||f||_{(1,r)} = \int_{D_r(z_0)} |f(z)| dx dy.$

Note: Exercise 3.8.20 on p.107 in Stein et al is a straightforward consequence of this stronger result using the integral form of the Cauchy-Schwarz inequality in real analysis.

- 12. (1) Let f be analytic in $\Omega : 0 < |z a| < r$ except at a sequence of poles $a_n \in \Omega$ with $\lim_{n \to \infty} a_n = a$. Show that for any $w \in \mathbb{C}$, there exists a sequence $z_n \in \Omega$ such that $\lim_{n \to \infty} f(z_n) = w$.
 - (2) Explain the similarity and difference between the above assertion and the Weierstrass-Casorati theorem.
- 13. Compute the following integrals.

$$\begin{aligned} \text{(i)} & \int_{0}^{\infty} \frac{1}{(1+x^{n})^{2}} \, dx, \, n \ge 1 \text{ (ii)} \, \int_{0}^{\infty} \frac{\cos x}{(x^{2}+a^{2})^{2}} \, dx, \, a \in \mathbb{R} \text{ (iii)} \, \int_{0}^{\pi} \frac{1}{a+\sin\theta} \, d\theta, \, a > 1 \\ \text{(iv)} & \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{a+\sin^{2}\theta}, \, a > 0. \quad \text{(v)} \, \int_{|z|=2}^{\infty} \frac{1}{(z^{5}-1)(z-3)} \, dz \text{ (v)} \, \int_{-\infty}^{\infty} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} e^{-ix\xi} \, dx, \\ 0 < a < 1, \, \xi \in \mathbb{R} \text{ (vi)} \, \int_{|z|=1}^{\infty} \cot^{2} z \, dz. \end{aligned}$$

14. Compute the following integrals.

(i)
$$\int_0^\infty \frac{\sin x}{x} dx$$
 (ii) $\int_0^\infty (\frac{\sin x}{x})^2 dx$ (iii) $\int_0^\infty \frac{x^{a-1}}{(1+x)^2} dx$, $0 < a < 2$

(i)
$$\int_0^\infty \frac{\cos ax - \cos bx}{x^2} dx$$
, $a, b > 0$ (ii) $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx$, $0 < a < n$
(iii) $\int_0^\infty \frac{\log x}{1+x^n} dx$, $n \ge 2$ (iv) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$ (v) $\int_0^\pi \log |1 - a \sin \theta| d\theta$, $a \in \mathbb{C}$

15. Let 0 < r < 1. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1}$ have no zeros in |z| < r for all sufficiently large n's.

16. Let f be an analytic function on a region Ω . Show that f is a constant if there is a simple closed curve γ in Ω such that its image $f(\gamma)$ is contained in the real axis.

17. (1) Show that
$$\frac{\pi^2}{\sin^2 \pi z}$$
 and $g(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$ have the same principal part at each integer point.

(2) Show that
$$h(z) = \frac{\pi^2}{\sin^2 \pi z} - g(z)$$
 is bounded on \mathbb{C} and conclude that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$.

- 18. Let f(z) be an analytic function on $\mathbb{C}\setminus\{z_0\}$, where z_0 is a fixed point. Assume that f(z) is bijective from $\mathbb{C}\setminus\{z_0\}$ onto its image, and that f(z) is bounded outside $D_r(z_0)$, where r is some fixed positive number. Show that there exist $a, b, c, d \in \mathbb{C}$ with $ad bc \neq 0, c \neq 0$ such that $f(z) = \frac{az+b}{cz+d}$.
- 19. Assume f(z) is analytic in \mathbb{D} : |z| < 1 and f(0) = 0 and is not a rotation (i.e. $f(z) \neq e^{i\theta}z$). Show that $\sum_{n=1}^{\infty} f^n(z)$ converges uniformly to an analytic function on compact subsets of \mathbb{D} , where $f^{n+1}(z) = f(f^n(z))$.
- 20. Let f be a non-constant analytic function on \mathbb{D} with $f(\mathbb{D}) \subseteq \mathbb{D}$. Use $\psi_a(f(z))$ (where a = f(0), $\psi_a(z) = \frac{a-z}{1-\bar{a}z}$) to prove that $\frac{|f(0)| |z|}{1+|f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1-|f(0)||z|}$.
- 21. Find a conformal map
 - 1. from $\{z: |z-1/2| > 1/2, \operatorname{Re}(z) > 0\}$ to \mathbb{H}
 - 2. from $\{z : |z 1/2| > 1/2, |z| < 1\}$ to \mathbb{D}
 - 3. from the intersection of the disk $|z+i| < \sqrt{2}$ with \mathbb{H} to \mathbb{D} .
 - 4. from $\mathbb{D}\setminus[a,1)$ to $\mathbb{D}\setminus[0,1)$ (0 < a < 1). Short solution possible using Blaschke factor
 - 5. from $\{z : |z| < 1, \operatorname{Re}(z) > 0\} \setminus (0, 1/2]$ to \mathbb{H} .
- 22. Let C and C' be two circles and let $z_1 \in C$, $z_2 \notin C$, $z'_1 \in C'$, $z'_2 \notin C'$. Show that there is a unique fractional linear transformation f with f(C) = C' and $f(z_1) = z'_1$, $f(z_2) = z'_2$.
- 23. Assume $f_n \in H(\Omega)$ is a sequence of holomorphic functions on the region Ω that are uniformly bounded on compact subsets and $f \in H(\Omega)$ is such that the set $\{z \in \Omega : \lim_{n \to \infty} f_n(z) = f(z)\}$ has a limit point in Ω . Show that f_n converges to f uniformly on compact subsets of Ω .
- 24. Let $\psi_{\alpha}(z) = \frac{\alpha z}{1 \overline{\alpha}z}$ with $|\alpha| < 1$ and $\mathbb{D} = \{z : |z| < 1\}$. Prove that

- $\frac{1}{\pi} \iint_{\mathbb{D}} |\psi'_{\alpha}|^2 dx dy = 1.$ • $\frac{1}{\pi} \iint_{\mathbb{D}} |\psi'_{\alpha}| dx dy = \frac{1 - |\alpha|^2}{|\alpha|^2} \log \frac{1}{1 - |\alpha|^2}.$
- 25. Prove that $f(z) = -\frac{1}{2}\left(z + \frac{1}{z}\right)$ is a conformal map from half disc $\{z = x + iy : |z| < 1, y > 0\}$ to upper half plane $\mathbb{H} = \{z = x + iy : y > 0\}.$
- 26. Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function and $|f(z)| \leq M$ for all $z \in \gamma$. Prove that $|f(z)| \leq M$ for all $z \in U$.
- 27. Compute the following integrals. (i) $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx$, 0 < a < n (ii) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$
- 28. Let 0 < r < 1. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1}$ have no zeros in |z| < r for all sufficiently large *n*'s.
- 29. Let f be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s < r, there exists a constant c > 0 such that

$$\|f\|_{(\infty,s)} \leq c \|f\|_{(1,r)},$$
 where $\|f\|_{(\infty,s)} = \sup_{z \in D_s(z_0)} |f(z)|$ and $\|f\|_{(1,r)} = \int_{D_r(z_0)} |f(z)| dx dy.$

30. Let $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$ with $|\alpha| < 1$ and $\mathbb{D} = \{z : |z| < 1\}$. Prove that

•
$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi'_{\alpha}|^2 dx dy = 1.$$

•
$$\frac{1}{\pi} \iint_{\mathbb{D}} |\psi'_{\alpha}| dx dy = \frac{1 - |\alpha|^2}{|\alpha|^2} \log \frac{1}{1 - |\alpha|^2}$$

Prove that $f(z) = -\frac{1}{2}\left(z + \frac{1}{z}\right)$ is a conformal map from half disc $\{z = x + iy : |z| < 1, y > 0\}$ to upper half plane $\mathbb{H} = \{z = x + iy : y > 0\}.$

31. Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function and $|f(z)| \leq M$ for all $z \in \gamma$. Prove that $|f(z)| \leq M$ for all $z \in U$.

32. Compute the following integrals. (i) $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx$, 0 < a < n(ii) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$

- 33. Let 0 < r < 1. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1}$ have no zeros in |z| < r for all sufficiently large n's.
- 34. Let f be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s < r, there exists a constant c > 0 such that

$$||f||_{(\infty,s)} \le c ||f||_{(1,r)},$$

where $||f||_{(\infty,s)} = \sup_{z \in D_s(z_0)} |f(z)|$ and $||f||_{(1,r)} = \int_{D_r(z_0)} |f(z)| dx dy.$

6 Fall 2016

- 1. Let u(x, y) be harmonic and have continuous partial derivatives of order three in an open disc of radius R > 0.
 - (a) Let two points (a, b), (x, y) in this disk be given. Show that the following integral is independent of the path in this disk joining these points:

$$v(x,y) = \int_{a,b}^{x,y} \left(-\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy\right)$$

(b)

- (i) Prove that u(x, y) + iv(x, y) is an analytic function in this disc.
- (ii) Prove that v(x, y) is harmonic in this disc.
- 2. (a) f(z) = u(x, y) + iv(x, y) be analytic in a domain $D \subset \mathbb{C}$. Let $z_0 = (x_0, y_0)$ be a point in D which is in the intersection of the curves $u(x, y) = c_1$ and $v(x, y) = c_2$, where c_1 and c_2 are constants. Suppose that $f'(z_0) \neq 0$. Prove that the lines tangent to these curves at z_0 are perpendicular.
 - (b) Let $f(z) = z^2$ be defined in \mathbb{C} .
 - (c) Describe the level curves of $\operatorname{Re}(f)$ and of $\operatorname{Im}(f)$.
 - (ii) What are the angles of intersections between the level curves $\operatorname{Re}(f) = 0$ and $\operatorname{Im}(f)$? Is your answer in agreement with part a) of this question?
- 3. (a) $f: D \to \mathbb{C}$ be a continuous function, where $D \subset \mathbb{C}$ is a domain.Let $\alpha : [a, b] \to D$ be a smooth curve. Give a precise definition of the *complex line integral*

$$\int_{\alpha} f.$$

(b) Assume that there exists a constant M such that $|f(\tau)| \leq M$ for all $\tau \in \text{Image}(\alpha)$. Prove that

$$\left|\int_{\alpha} f\right| \le M \times \operatorname{length}(\alpha).$$

- (c) Let C_R be the circle |z| = R, described in the counterclockwise direction, where R > 1. Provide an upper bound for $\left| \int_{C_R} \frac{\log(z)}{z^2} \right|$, which depends only on R and other constants.
- 4. (a) Let Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Assume the existence of a non-negative integer m, and of positive constants L and R, such that for all z with |z| > R the inequality

$$|f(z)| \le L|z|^r$$

holds. Prove that f is a polynomial of degree $\leq m$.

(b) Let $f:\mathbb{C}\to\mathbb{C}$ be an entire function. Suppose that there exists a real number M such that for all $z\in\mathbb{C}$

$$\operatorname{Re}(f) \leq M.$$

Prove that f must be a constant.

5. Prove that all the roots of the complex polynomial

$$z^7 - 5z^3 + 12 = 0$$

lie between the circles |z| = 1 and |z| = 2.

6. (a) Let F be an analytic function inside and on a simple closed curve C, except for a pole of order $m \ge 1$ at z = a inside C. Prove that

$$\frac{1}{2\pi i} \oint_C F(\tau) d\tau = \lim_{\tau \to a} \frac{d^{m-1}}{d\tau^{m-1}} \big((\tau - a)^m F(\tau)) \big).$$

(b) Evaluate

$$\oint_C \frac{e^\tau}{(\tau^2 + \pi^2)^2} d\tau$$

where C is the circle |z| = 4.

- 7. Find the conformal map that takes the upper half-plane comformally onto the half-strip $\{w = x + iy: -\pi/2 < x < \pi/2 \ y > 0\}.$
- 8. Compute the integral $\int_{-\infty}^{\infty} \frac{e^{-2\pi i x\xi}}{\cosh \pi x} dx$ where $\cosh z = \frac{e^z + e^{-z}}{2}$.