Real Variables
Named Theorems

Kari Eifler

July 10, 2017

1 (Well-ordering Theorem) Given any set A, there is a well-order on A

2 (Axiom of Choice) If {X; |t € I} is a family of non-empty sets then Il;c; X; # 0 where
HteIXt = {f I — UteIXt ’ YVt € ],f(A) c Xt}

3 (Cantor-Schrider-Bernstein) If card(A) < card(B) and card(B) < card(A) then
card(A) = card(B).

4 (Zorn’s Lemma) Assume (X, <) is a partially ordered set. Assume every limiting order
subset (i.e. chain) of X has an upper bound. Then X has a maximal element.

5 (Hausdorff Maximal Principle) Let (X, <) be a partially ordered set. Then there
exists a maximal chain in X

i.e. if Y C X such that (Y, <) is linearly ordered and if Z C X with Z linearly ordered and
Z2OY thenZ =Y.

6 (Caratheodory) Suppose p* is an outer measure on X and set M = M, = all
w*-measurable subsets of X. Then M is a o-algebra and p*|, is a complete measure.

7 (monotone convergence) If 0 < f; < fo < ... with f, € Lt and f = lim, f,
pointwise, then [ f,dp — [ fdu.

8 (Fatou’s Lemma) For f, € L then

/ liminf f,, < liminf / fn

9 (Dominated Convergence Theorem, vl) If 0 < f, < g are all measurable and

fo—x [, [g<oothen [ f,— [f.



10 (Dini’s Theorem) For f, € C([0,1]), fi > fo > ..., fu =01 0 then f, converges to
0 uniformly on [0, 1].

11 (Generalized Dominated Convergence Theorem) Let g,g, € L™ be measurable,
|ful < gn prace., fo — f and g, — g prae. with [ g, = [ g < oc.

Then [ f, — [ f. Moreover, [|f — f,| =0

12 (Egoroff’s Theorem) Suppose f, — f a.e. and pu(D) < oco. Then Xpf, — Xpf
almost uniformly.

13 (types of convergence)

(A) f, = f (uniform)
ie. || fo — fllsup =0
(B) fn. — f pointwise
ie. fu(x) — f(z) for all x
(C) fu— fae.
Le. u({z | fu(x) = f(x)}) = 0 (this is not a topological mode of convergence)
(D) fn — f (n) (in measure)
ie. Ve >0, lim, pl|f — fu| > € =0
(E) L'(n) convergence

ie. |[fn—=1flli—=0
(F) f. — f almost uniformly

i.e. Ve > 0, 3F such that u(E) < eand f, =g f

The following diagram shows the implications where blue arrows mean on any measure space
and gray arrows mean it only holds on finite measure spaces.

(F) - (E) and (D) — (C) for a subsequence.
(C) or (D) + (dominated or monotonicity) — (E)

fn — fin L' & every subsequence of f, has a further subsequence which converges to f in
L.



14 (Tonelli) Let (X, M,pu) and (Y,N,v) be o-finite measure spaces, and f : X x Y —
[0, 0] be a measurable function. Then

1. Define f, : Y — [0,00] by y — f(x,y). Then f, is measurable for all x € X
2. z— [ f(z,y)dv(y) is a measurable function on X

3ffd,u><u ([ flx,y)dv(y))du(x)
15 (Fubini) Let (X, M, u) and (Y, N, v) be o-finite measure spaces, f € L'(u x v). Then

1. for prae. v € X, f(x,-) € L' (v)

2. x> [y flz,y)dv(y) € L' (p)
3. [ fduxv=[([ f(z,y)dv(y))du(z)

If f is measurable on X X Y then |f| is measurable on X x Y.
16 (Approximation properties of m™) We let m™ be the completion of m x --- x m
where m is the Lebesgue measure on R. So £" is the Lebesgue measurable sets on R".

Take F € L™. Then

1. m™(E) = inf{m"(O) | E C O and O is open}

= sup{m"(K) | K C E and K is compact}.
2. E = A;\N; where A; is Gs and m™(N;) =0

E = Ay U Ny where A, is F, and m"(Ny) =0
3. m"(E) < oo implies Ve > 0, 3(R;)}., of disjoint open rectangles such that m"(E A
(UR;)) =0

17 (Hahn-Decomposition Theorem) Let v be a signed measure on (X, M). Then
there exists P € M which is positive for v and N = P is negative for v.

Moreover, the decomposition X = P U N is essentially unique: if P; is positive for v and
Ny = P1 is negative for v, then P A P, = N A Ny is null for v.

18 (Jordan Decomposition) Take the Hahn decomposition and let v (E) := v(E N P),
v (E):= —v(ENN) so that v = v+ —v~. Note that v+ L v~.

Note that the Jordan Decomposition is unique.

The total variation of v is defined to be |v|(F) = v (E) + v~ (F).

19 (Lebesgue Decomposition Theorem) Let x be a measure on (X, M) and v a o-finite
signed measure. Then v = 11 + 15 where v; 1 u, vy < pu. Moreover, this decomposition is
unique.

20 (Radon-Nikodyn Theorem) If (X, M) is a measurable space, y a o-finite measure
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on M and v a o-finite signed measure on M with v < p, then there exists an extended
p-integrable f such that v = vy where vy (E) = [, fdpu.

Moreover, we have uniqueness. If vy = v, then f = g p-a.e.

21 (Lebesgue Differential Theorem) Fix z € R". We say {E,} C Bgn shrinks nicely
to x if

e £.C B(r,x) Vr >0
e Jo > 0 such that Vr > 0, m(E,) > am(B(r,z))

Lebesgue Differential Theorem: For f € L} (R"), then for all z € L; and for all {E,}
shrinking nicely to x, we have

e i)~ f@ldy

rllm m(E,) 0
- fEr f(y)dy

22 (Urysohn’s Lemma) Let (X,7) be normal. If A, B are disjoint closed sets and a # b
in R. Then there exists some f € C(X, [a,b]) such that f|4 = a and f|p = b.

proof uses nastay lemma

23 (Tiktze Theorem) Version 1: Let (X,7) be normal. If A C X is closed and
f € C(A,(a,b)) then there exists some F' € C(X, [a,b]) such that F|4 = f.

Version 2: Let (X,7) be normal. If A C X is closed and f € C(A, (a,b)) then there
exists some F' € C(X,R) such that F|4 = f.

24 (Tychonoff Theorem) If (X,) are compact topological spaces, then X = I, 41X,
(with the product topology) is compact.

Theorem: Axiom of Choice < Tychonoff

25 (Arzela-Ascoli) We say a metric space X is totally bounded if for any » > 0, X can
be covered by a finite number of balls of radius r.

Arzela-Ascoli Let X be a compact Hausdorff space. If F is an equicontinuous, pointwise
bounded subset of C(X) then F is totally bounded in the uniform metric and the closure of
F in C(X) is compact.

Alternative version 1: Let X be a o-compact LCH space. If {f,} is an equicontinuous,
pointwise bounded sequence in C(X), then there exists a f € C(X) and a subsequence of
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{fn} that converges to f uniformly on compact sets.

Alternative version 2: Let X be compact and F C C(X). Then F is compact in C(X)
IFF

1. F is equicontinuous
2. F is pointwise bounded

26 (Stone-Weierstrass) A is called an algebra if it is a real vector subspace of C'(X)
such that fg € A whenever f,g € A.

Let X be a compact, Hausdorff space and B C C(X,R) a subalgebra such that B separates
points (that is, for = # y,3f € B with f(x) # f(y)). Then if there exists some xg € X such
that f(xg) =0 for all f € B, then B={f € C(X,R) | f(zo) = 0}. Otherwise, B = C(X).

27 (Hahn-Banach) For a real vector space X, we say p : X — R is a sublinear mapping
if p(z +vy) < p(x) + p(y) and p(Az) = Ap(z) when A > 0.

Hahn-Banach: Let X be a real vector space, p a sublinear functional on X, M a subspace
of X, and f a linear functional on M such that f|y; < ply. Then there exists a linear
functional F' on X such that F < pon X and F|y = f.

For the complex case, we require |f(z)| < p(z) and we get |F(z)| < p(z).

28 (Baire Category) We say C is nowhere dense if (C)° = 0.
Theorem: Let X be a complete metric space. Then if {U,} is a sequence of open dense
sets, NU, is dense. Thus, X is not a countable union of nowhere dense sets.

A set that is a countable union of nowhere dense sets is said to be of first category (and it’s
complement is called residual). A set which is not a countable union of nowhere dense sets
is called second category.

29 (uniform boundedness principle) Let X be a Banach space and Y a normed space,
S C L(X,Y) where S is pointwise bounded (i.e. Vo € X, sup{||Tz| | T € S} < o).

Then § is uniformly bounded (i.e. suppcg ||T]] < 0.

30 (Banach-Steinhaus) Suppose X is a Banach space and Y is a normed space, and
{T,} CL(X,)Y)and forallz € X, T,x - TxinY. Then T € L(X,Y).

31 (open mapping theorem) little open mapping theorem: Suppose X is a Banach
space and Y is a normed space, T' € L(X,Y) and r > 0. Then if T(B(0,1)) D B(0,r) then
T(B(0,1)) 2 B(0,r).

open mapping theorem: Suppose X, Y are Banach spaces and T' € L(X,Y) is surjective.
Then T is an open mapping.



Remark: For a linear map 7', T is open < Jr > 0 such that T'(B(0,1)) 2 B(0,r).

32 (closed graph) For Banach spaces X,Y and T': X — Y linear, then 7' C X X Y is
closed < T is a bounded linear operator.

33 (Separation Theorem / Geometric Hahn-Banach) Say X is a LCTVS over R
and U,C C X are convex sets such that U N C' = () and U° # (). Then there exists some
non-zero f € X* and some a € R such that U C [f < a] and C C [f > «f

Corollary 1: If (X,7) is Hausdorff LCTVS, then X* separates points of X

—weak

Corollary 2: If (X,7) isa LCTVS, C C X is convex, then C" " = o’

Corollary 3: If X is a normed space and A C X, then A is norm bounded < A is weakly
bounded (where A is weakly bounded if for all z* € X*, sup,y [(z*,7)| < o0

34 (Banach-Alaoglu) If X is a normed space, then By- = {* € X* | ||l2*|| < 1} is
weak*-compact.
Corollary: If X is reflexive, then By« is weakly compact.

X is reflexive if and only if By is weakly compact.

35 (Goldstine) Suppose X is normed. Then é} is weak*-dense in By, 1/5’; C By~
where we have equality IFF X is reflexive.

36 (Riesz-Fisher) For 1 <p < oo, L? is complete

37 (Holder’s inequality) Let ¢ be the conjugate exponent of p so %+% =1(ie. ¢ = ]%)
For measurable f,g and 1 < p < oo then || fgll1 < || fll»llgllq-

If fe LP and g € L7 if and only if f =0 a.e. OR g =0 a.e. OR |f|? is a scalar multiple of
lg]?.

If f € L? then | f||, = max { [ fgdu | |g]ly <1} (maximum is achieved! by g = sgn(f)).

Alternate Holder’s inequality: For 0 < A <1, then [|f[}|g|'™* < ([ |f|))‘ (f |g|)1_/\.
38 (Minkowski) For 1< p <oo, |[f+gll, < [Ifll, + llgllp-

39 (Riesz-Thorin) If 1 < pg,p; <00, 1< qo, 1 < o0 and 0 <t < 1 with

1 t 1—t 1 t 1—-t

Dt Po b1 qt qo0 q1

Suppose Xo = LP(u), Xo = LP*(p) and Yy = L®(v), Yy = L9 (v) (compatible couple).



Then for 0 < t < 1, LP(u) + L%(v) is an exact interpolation pair for X = (Xg, X;),Y =
(Yo, Y1).

40 (Marcinkiewicz Interpolation) Let (X, M, 1) be a measure space and D a subspace
of L%(u). We say T : D — L°(v) is sublinear if

LAT(f +9)l <ITf[ +[Ty]
2. T(cf)| =T f|ifc>0

T is said to be of strong type (p, q) if T(LP(u)) € LU (v) and ||| ze(w || e ()= L) < 00

T is said to be of weak type (p,q) if T(LP(n)) € L2®(v) and ||T|zr(w|lcr(my—ra=@w) =:
SUD ) 1oy <1 [L Tlgo0 < 00 Where for ¢ < oo, L?®(v) = {f € L°(v) | sup, Y| f| > t] =
[flge0 < 00}

Weak type (p, 00) is the same as strong type (p, 00).
Marcinkiewicz Interpolation Theorem: 1 < py < gy <ocand1l < p; < ¢ < o0,
qgo#qrand 0 <t <1,

11—t ¢t 11—t t

P Do D % ¢

If T : LPo(p) + LP* (1) — LO(v) is sublinear, and is of weak type (po, go and weak type (p1, q1)
then T is of strong type (p¢, q;) for all 0 <t < 1 and

C(IT Mg prnoe VTl gm0 )
=)

||THLPt—>L‘1t S

where C' = C(po, p1, 90, 1) 18 some constant < oc.

41 (Krein-Milman) If C is a convex set in a real vector space, then z € C' is said to
be an extreme point provided whenever y,z € C and 0 < A < 1, x = Ay + (1 — \)z then
r=y==z.

Krein-Milman Lemma: If X is a Hausdorff LCTVS, and ¢' C X is a non-empty,
compact, convex set then ext(C) # ().

Krein-Milman Theorem: If X is a Hausdorft LCTVS, C' C X is a non-empty, compact,
convex set, then C' = conv(ext(C)), where ext(C') = { all extreme points of C' }.

42 (Banach-Stone) Suppose K, K, are compact Hausdorff. Then C'(K7) is isometrically
isomorphic to C'(Ks) if and only if K is homeomorphic to K.

43 (Milman) If X is Hausdorff LCTVS and M C X is compact with C' = conv(M)



compact. Then ext(C) C M.

44 (Kakatani fixed point theorem) We say 7T is an affine transformation if 7'(ax +
(l-—a)y)=alz+(1-a)lyfor0<a<l1, zyeckK.

G is equicontinuous if for all neighborhoods U of 0, there exists a neighborhood V' of 0 such
that for x,y € K,ifx —y €V thenforall T e G, Tx — Ty € U.

We call p a fixed point of G if G(p) ={Tp|T € G} = {p}.

Theorem: Suppose X is a LCTVS and K C X is convex compact, and G is an equicontin-
uous group (under composition) of affine transformations on K. Then G has a fixed point.



