Real Variables Named Theorems

Kari Eifler

July 10, 2017

1 (Well-ordering Theorem) Given any set A, there is a well-order on A

2 (Axiom of Choice) If $\{X_t \mid t \in I\}$ is a family of non-empty sets then $\Pi_{t \in I} X_t \neq 0$ where $\Pi_{t \in I} X_t = \{f : I \to \bigcup_{t \in I} X_t \mid \forall t \in I, f(A) \in X_t\}.$

3 (Cantor-Schröder-Bernstein) If $card(A) \leq card(B)$ and $card(B) \leq card(A)$ then card(A) = card(B).

4 (Zorn's Lemma) Assume (X, \leq) is a partially ordered set. Assume every limiting order subset (i.e. chain) of X has an upper bound. Then X has a maximal element.

5 (Hausdorff Maximal Principle) Let (X, \leq) be a partially ordered set. Then there exists a maximal chain in X

i.e. if $Y \subseteq X$ such that (Y, \leq) is linearly ordered and if $Z \subseteq X$ with Z linearly ordered and $Z \supseteq Y$ then Z = Y.

6 (Caratheodory) Suppose μ^* is an outer measure on X and set $\mathcal{M} = \mathcal{M}_{\mu^*} =$ all μ^* -measurable subsets of X. Then \mathcal{M} is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is a complete measure.

7 (monotone convergence) If $0 \leq f_1 \leq f_2 \leq \ldots$ with $f_n \in L^+$ and $f = \lim_n f_n$ pointwise, then $\int f_n d\mu \to \int f d\mu$.

8 (Fatou's Lemma) For $f_n \in L^+$ then

$$\int \liminf f_n \le \liminf \int f_n$$

9 (Dominated Convergence Theorem, v1) If $0 \le f_n \le g$ are all measurable and $f_n \to_X f, \int g < \infty$ then $\int f_n \to \int f$.

10 (Dini's Theorem) For $f_n \in \mathcal{C}([0,1])$, $f_1 \ge f_2 \ge \ldots$, $f_n \rightarrow_{[0,1]} 0$ then f_n converges to 0 uniformly on [0,1].

11 (Generalized Dominated Convergence Theorem) Let $g, g_n \in L^+$ be measurable, $|f_n| \leq g_n \ \mu\text{-a.e.}, \ f_n \to f \text{ and } g_n \to g \ \mu\text{-a.e.}$ with $\int g_n \to \int g < \infty$.

Then $\int f_n \to \int f$. Moreover, $\int |f - f_n| \to 0$

12 (Egoroff's Theorem) Suppose $f_n \to f$ a.e. and $\mu(D) < \infty$. Then $\chi_D f_n \to \chi_D f$ almost uniformly.

13 (types of convergence)

(A) $f_n \rightrightarrows f$ (uniform) i.e. $||f_n - f||_{\sup} \to 0$ (B) $f_n \to f$ pointwise i.e. $f_n(x) \to f(x)$ for all x(C) $f_n \to f$ a.e. i.e. $\mu(\{x \mid f_n(x) \not \to f(x)\}) = 0$ (this is not a topological mode of convergence) (D) $f_n \to f$ (μ) (in measure) i.e. $\forall \epsilon > 0$, $\lim_n \mu[|f - f_n| > \epsilon] = 0$ (E) $L^1(\mu)$ convergence i.e. $||f_n - f||_1 \to 0$ (F) $f_n \to f$ almost uniformly i.e. $\forall \epsilon > 0$, $\exists E$ such that $\mu(E^C) < \epsilon$ and $f_n \rightrightarrows_E f$

The following diagram shows the implications where blue arrows mean on any measure space and gray arrows mean it only holds on finite measure spaces.

(F) \rightarrow (E) and (D) \rightarrow (C) for a subsequence.

(C) or (D) + (dominated or monotonicity) \rightarrow (E)

 $f_n \to f$ in $L^1 \Leftrightarrow$ every subsequence of f_n has a further subsequence which converges to f in L^1 .

14 (Tonelli) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, and $f : X \times Y \to [0, \infty]$ be a measurable function. Then

- 1. Define $f_x: Y \to [0,\infty]$ by $y \mapsto f(x,y)$. Then f_x is measurable for all $x \in X$
- 2. $x \mapsto \int f(x,y) d\nu(y)$ is a measurable function on X
- 3. $\int f d(\mu \times \nu) = \int (\int f(x, y) d\nu(y)) d\mu(x)$

15 (Fubini) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, $f \in L^1(\mu \times \nu)$. Then

1. for μ -a.e. $x \in X$, $f(x, \cdot) \in L^1(\nu)$ 2. $x \mapsto \int_Y f(x, y) d\nu(y) \in L^1(\mu)$ 3. $\int f d\mu \times \nu = \int (\int f(x, y) d\nu(y)) d\mu(x)$

If f is measurable on $X \times Y$ then |f| is measurable on $X \times Y$.

16 (Approximation properties of m^n) We let m^n be the completion of $m \times \cdots \times m$ where m is the Lebesgue measure on \mathbb{R} . So \mathcal{L}^n is the Lebesgue measurable sets on \mathbb{R}^n .

Take $E \in \mathcal{L}^n$. Then

- 1. $m^n(E) = \inf\{m^n(\mathcal{O}) \mid E \subseteq \mathcal{O} \text{ and } \mathcal{O} \text{ is open}\}\$ = $\sup\{m^n(K) \mid K \subseteq E \text{ and } K \text{ is compact}\}.$
- 2. $E = A_1 \setminus N_1$ where A_1 is G_{δ} and $m^n(N_1) = 0$

 $E = A_2 \cup N_2$ where A_2 is F_{σ} and $m^n(N_2) = 0$

3. $m^n(E) < \infty$ implies $\forall \epsilon > 0, \exists (R_j)_{j=1}^N$ of disjoint open rectangles such that $m^n(E \bigtriangleup (\cup R_j)) = 0$

17 (Hahn-Decomposition Theorem) Let ν be a signed measure on (X, \mathcal{M}) . Then there exists $P \in \mathcal{M}$ which is positive for ν and $N = P^C$ is negative for ν .

Moreover, the decomposition $X = P \cup N$ is essentially unique: if P_1 is positive for ν and $N_1 = P_1^C$ is negative for ν , then $P \bigtriangleup P_1 = N \bigtriangleup N_1$ is null for ν .

18 (Jordan Decomposition) Take the Hahn decomposition and let $\nu^+(E) := \nu(E \cap P)$, $\nu^-(E) := -\nu(E \cap N)$ so that $\nu = \nu^+ - \nu^-$. Note that $\nu^+ \perp \nu^-$.

Note that the Jordan Decomposition is unique.

The total variation of ν is defined to be $|\nu|(E) = \nu^+(E) + \nu^-(E)$.

19 (Lebesgue Decomposition Theorem) Let μ be a measure on (X, \mathcal{M}) and ν a σ -finite signed measure. Then $\nu = \nu_1 + \nu_2$ where $\nu_1 \perp \mu$, $\nu_2 \ll \mu$. Moreover, this decomposition is unique.

20 (Radon-Nikodyn Theorem) If (X, \mathcal{M}) is a measurable space, μ a σ -finite measure

on \mathcal{M} and ν a σ -finite signed measure on \mathcal{M} with $\nu \ll \mu$, then there exists an extended μ -integrable f such that $\nu = \nu_f$ where $\nu_f(E) = \int_E f d\mu$.

Moreover, we have uniqueness. If $\nu_f = \nu_g$ then $f = g \ \mu$ -a.e.

21 (Lebesgue Differential Theorem) Fix $x \in \mathbb{R}^n$. We say $\{E_r\} \subseteq \mathcal{B}_{\mathbb{R}^n}$ shrinks nicely to x if

- $E_r \subseteq B(r, x) \qquad \forall r > 0$
- $\exists \alpha > 0$ such that $\forall r > 0, m(E_r) \ge \alpha m(B(r, x))$

Lebesgue Differential Theorem: For $f \in L^1_{loc}(\mathbb{R}^n)$, then for all $x \in L_f$ and for all $\{E_r\}$ shrinking nicely to x, we have

$$\lim_{r \to 0^+} \frac{\int_{E_r} |f(y) - f(x)| dy}{m(E_r)} = 0$$
$$f(x) = \lim_{r \to 0^+} \frac{\int_{E_r} f(y) dy}{m(E_r)}$$

22 (Urysohn's Lemma) Let (X, \mathcal{T}) be normal. If A, B are disjoint closed sets and $a \neq b$ in \mathbb{R} . Then there exists some $f \in C(X, [a, b])$ such that $f|_A \equiv a$ and $f|_B \equiv b$.

proof uses nastay lemma

23 (Tiktze Theorem) Version 1: Let (X, \mathcal{T}) be normal. If $A \subseteq X$ is closed and $f \in C(A, (a, b))$ then there exists some $F \in C(X, [a, b])$ such that $F|_A = f$.

Version 2: Let (X, \mathcal{T}) be normal. If $A \subseteq X$ is closed and $f \in C(A, (a, b))$ then there exists some $F \in C(X, \mathbb{R})$ such that $F|_A = f$.

24 (Tychonoff Theorem) If (X_{α}) are compact topological spaces, then $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ (with the product topology) is compact.

Theorem: Axiom of Choice \Leftrightarrow Tychonoff

25 (Arzela-Ascoli) We say a metric space X is totally bounded if for any r > 0, X can be covered by a finite number of balls of radius r.

Arzela-Ascoli Let X be a compact Hausdorff space. If \mathcal{F} is an equicontinuous, pointwise bounded subset of $\mathcal{C}(X)$ then \mathcal{F} is totally bounded in the uniform metric and the closure of \mathcal{F} in $\mathcal{C}(X)$ is compact.

Alternative version 1: Let X be a σ -compact LCH space. If $\{f_n\}$ is an equicontinuous, pointwise bounded sequence in $\mathcal{C}(X)$, then there exists a $f \in \mathcal{C}(X)$ and a subsequence of

 $\{f_n\}$ that converges to f uniformly on compact sets.

Alternative version 2: Let X be compact and $\mathcal{F} \subseteq \mathcal{C}(X)$. Then $\overline{\mathcal{F}}$ is compact in $\mathcal{C}(X)$ IFF

- 1. \mathcal{F} is equicontinuous
- 2. \mathcal{F} is pointwise bounded

26 (Stone-Weierstrass) \mathcal{A} is called an algebra if it is a real vector subspace of C(X) such that $fg \in \mathcal{A}$ whenever $f, g \in \mathcal{A}$.

Let X be a compact, Hausdorff space and $\mathcal{B} \subseteq \mathcal{C}(X, \mathbb{R})$ a subalgebra such that \mathcal{B} separates points (that is, for $x \neq y, \exists f \in \mathcal{B}$ with $f(x) \neq f(y)$). Then if there exists some $x_0 \in X$ such that $f(x_0) = 0$ for all $f \in \mathcal{B}$, then $\overline{\mathcal{B}} = \{f \in \mathcal{C}(X, \mathbb{R}) \mid f(x_0) = 0\}$. Otherwise, $\overline{\mathcal{B}} = \mathcal{C}(X)$.

27 (Hahn-Banach) For a real vector space X, we say $p: X \to \mathbb{R}$ is a sublinear mapping if $p(x+y) \leq p(x) + p(y)$ and $p(\lambda x) = \lambda p(x)$ when $\lambda \geq 0$.

Hahn-Banach: Let X be a real vector space, p a sublinear functional on X, M a subspace of X, and f a linear functional on M such that $f|_M \leq p|_M$. Then there exists a linear functional F on X such that $F \leq p$ on X and $F|_M = f$.

For the complex case, we require $|f(x)| \le p(x)$ and we get $|F(x)| \le p(x)$.

28 (Baire Category) We say C is nowhere dense if $(\overline{C})^{\circ} = \emptyset$.

Theorem: Let X be a complete metric space. Then if $\{U_n\}$ is a sequence of open dense sets, $\cap U_n$ is dense. Thus, X is not a countable union of nowhere dense sets.

A set that is a countable union of nowhere dense sets is said to be of first category (and it's complement is called residual). A set which is not a countable union of nowhere dense sets is called second category.

29 (uniform boundedness principle) Let X be a Banach space and Y a normed space, $S \subseteq L(X, Y)$ where S is pointwise bounded (i.e. $\forall x \in X, \sup\{||Tx|| \mid T \in S\} < \infty$).

Then \mathcal{S} is uniformly bounded (i.e. $\sup_{T \in \mathcal{S}} ||T|| < \infty$.

30 (Banach-Steinhaus) Suppose X is a Banach space and Y is a normed space, and $\{T_n\} \subseteq L(X,Y)$ and for all $x \in X$, $T_n x \to T x$ in Y. Then $T \in L(X,Y)$.

31 (open mapping theorem) little open mapping theorem: Suppose X is a Banach space and Y is a normed space, $T \in L(X, Y)$ and r > 0. Then if $\overline{T(B(0, 1))} \supseteq B(0, r)$ then $T(B(0, 1)) \supseteq B(0, r)$.

open mapping theorem: Suppose X, Y are Banach spaces and $T \in L(X, Y)$ is surjective. Then T is an open mapping. *Remark:* For a linear map T, T is open $\Leftrightarrow \exists r > 0$ such that $T(B(0,1)) \supseteq B(0,r)$.

32 (closed graph) For Banach spaces X, Y and $T : X \to Y$ linear, then $T \subseteq X \times Y$ is closed $\Leftrightarrow T$ is a bounded linear operator.

33 (Separation Theorem / Geometric Hahn-Banach) Say X is a LCTVS over \mathbb{R} and $U, C \subseteq X$ are convex sets such that $U \cap C = \emptyset$ and $U^{\circ} \neq \emptyset$. Then there exists some non-zero $f \in X^*$ and some $\alpha \in \mathbb{R}$ such that $U \subseteq [f < \alpha]$ and $C \subseteq [f \ge \alpha]$

Corollary 1: If (X, \mathcal{T}) is Hausdorff LCTVS, then X^* separates points of X

Corollary 2: If (X, \mathcal{T}) is a LCTVS, $C \subseteq X$ is convex, then $\overline{C}^{\text{weak}} = \overline{C}^{\mathcal{T}}$.

Corollary 3: If X is a normed space and $A \subseteq X$, then A is norm bounded $\Leftrightarrow A$ is weakly bounded (where A is weakly bounded if for all $x^* \in X^*$, $\sup_{x \in X} |\langle x^*, x \rangle| < \infty$

34 (Banach-Alaoglu) If X is a normed space, then $\overline{B_{X^*}} = \{x^* \in X^* \mid ||x^*|| \le 1\}$ is weak*-compact.

Corollary: If X is reflexive, then $\overline{B_{X^*}}$ is weakly compact.

X is reflexive if and only if $\overline{B_X}$ is weakly compact.

35 (Goldstine) Suppose X is normed. Then \widehat{B}_X is weak*-dense in $B_{X^{**}}$, $\widehat{B}_X \subseteq B_{X^{**}}$ where we have equality IFF X is reflexive.

36 (Riesz-Fisher) For $1 \le p < \infty$, L^p is complete

37 (Hölder's inequality) Let q be the conjugate exponent of p so $\frac{1}{p} + \frac{1}{q} = 1$ (i.e. $q = \frac{p}{p-1}$) For measurable f, g and $1 then <math>||fg||_1 \le ||f||_p ||g||_q$.

If $f \in L^p$ and $g \in L^q$ if and only if f = 0 a.e. OR g = 0 a.e. OR $|f|^p$ is a scalar multiple of $|g|^q$.

If $f \in L^p$ then $||f||_p = \max\left\{\int fgd\mu \mid ||g||_q \le 1\right\}$ (maximum is achieved! by $g = \operatorname{sgn}(f)$).

Alternate Hölder's inequality: For $0 < \lambda < 1$, then $\int |f|^{\lambda} |g|^{1-\lambda} \leq \left(\int |f|\right)^{\lambda} \left(\int |g|\right)^{1-\lambda}$.

38 (Minkowski) For $1 \le p < \infty$, $||f + g||_p \le ||f||_p + ||g||_p$.

39 (Riesz-Thorin) If $1 \le p_0, p_1 \le \infty, 1 \le q_0, q_1 \le \infty$ and 0 < t < 1 with

$$\frac{1}{p_t} := \frac{t}{p_0} + \frac{1-t}{p_1} \qquad \frac{1}{q_t} := \frac{t}{q_0} + \frac{1-t}{q_1}$$

Suppose $X_0 = L^{p_0}(\mu)$, $X_0 = L^{p_1}(\mu)$ and $Y_0 = L^{q_0}(\nu)$, $Y_1 = L^{q_1}(\nu)$ (compatible couple).

Then for 0 < t < 1, $L^{p_t}(\mu) + L^{q_t}(\nu)$ is an exact interpolation pair for $\widetilde{X} = (X_0, X_1), \widetilde{Y} = (Y_0, Y_1)$.

40 (Marcinkiewicz Interpolation) Let (X, \mathcal{M}, μ) be a measure space and D a subspace of $L^0(\mu)$. We say $T: D \to L^0(\nu)$ is sublinear if

1. $|T(f+g)| \leq |Tf| + |Tg|$

2. |T(cf)| = c|Tf| if $c \ge 0$

T is said to be of strong type (p,q) if $T(L^p(\mu)) \subseteq L^q(\nu)$ and $||T|_{L^p(\mu)}||_{L^p(\mu) \to L^q(\nu)} < \infty$.

T is said to be of weak type (p,q) if $T(L^{p}(\mu)) \subseteq L^{q,\infty}(\nu)$ and $||T|_{L^{p}(\mu)}||_{L^{p}(\mu)\to L^{q,\infty}(\nu)} =:$ $\sup_{||x||_{L^{p}(\mu)}\leq 1}[Tx]_{q,\infty} < \infty$ where for $q < \infty$, $L^{q,\infty}(\nu) = \{f \in L^{0}(\nu) \mid \sup_{t} t^{1/q}\nu[|f| > t] =: [f]_{q,\infty} < \infty\}.$

Weak type (p, ∞) is the same as strong type (p, ∞) .

Marcinkiewicz Interpolation Theorem: $1 \le p_0 \le q_0 \le \infty$ and $1 \le p_1 \le q_1 \le \infty$, $q_0 \ne q_1$ and 0 < t < 1,

$$\frac{1}{p_t} := \frac{1-t}{p_0} + \frac{t}{p_1} \qquad \frac{1}{q_t} := \frac{1-t}{q_0} + \frac{t}{q_1}$$

If $T : L^{p_0}(\mu) + L^{p_1}(\mu) \to L^0(\nu)$ is sublinear, and is of weak type $(p_0, q_0$ and weak type (p_1, q_1) then T is of strong type (p_t, q_t) for all 0 < t < 1 and

$$||T||_{L^{p_t} \to L^{q_t}} \le \frac{C\Big(||T||_{L^{p_0} \to L^{p_0,\infty}} \vee ||T||_{L^{p_1} \to L^{p_1,\infty}}\Big)}{t(1-t)}$$

where $C = C(p_0, p_1, q_0, q_1)$ is some constant $< \infty$.

41 (Krein-Milman) If C is a convex set in a real vector space, then $x \in C$ is said to be an extreme point provided whenever $y, z \in C$ and $0 < \lambda < 1$, $x = \lambda y + (1 - \lambda)z$ then x = y = z.

Krein-Milman Lemma: If X is a Hausdorff LCTVS, and $C \subseteq X$ is a non-empty, compact, convex set then $ext(C) \neq \emptyset$.

Krein-Milman Theorem: If X is a Hausdorff LCTVS, $C \subseteq X$ is a non-empty, compact, convex set, then $C = \overline{\text{conv}(\text{ext}(C))}$, where $\text{ext}(C) = \{ \text{ all extreme points of } C \}$.

42 (Banach-Stone) Suppose K_1, K_2 are compact Hausdorff. Then $C(K_1)$ is isometrically isomorphic to $C(K_2)$ if and only if K_1 is homeomorphic to K_2 .

43 (Milman) If X is Hausdorff LCTVS and $M \subseteq X$ is compact with $C = \overline{\operatorname{conv}(M)}$

compact. Then $ext(C) \subseteq M$.

44 (Kakatani fixed point theorem) We say T is an affine transformation if $T(\alpha x + (1 - \alpha)y) = \alpha Tx + (1 - \alpha)Ty$ for $0 \le \alpha \le 1, x, y \in K$.

G is equicontinuous if for all neighborhoods U of 0, there exists a neighborhood V of 0 such that for $x, y \in K$, if $x - y \in V$ then for all $T \in G$, $Tx - Ty \in U$.

We call p a fixed point of G if $G(p) = \{Tp \mid T \in G\} = \{p\}.$

Theorem: Suppose X is a LCTVS and $K \subseteq X$ is convex compact, and G is an equicontinuous group (under composition) of affine transformations on K. Then G has a fixed point.