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1 (Well-ordering Theorem) Given any set A, there is a well-order on A

2 (Axiom of Choice) If {Xt | t ∈ I} is a family of non-empty sets then Πt∈IXt 6= 0 where

Πt∈IXt = {f : I → ∪t∈IXt | ∀t ∈ I, f(A) ∈ Xt}.

3 (Cantor-Schr̈ıder-Bernstein) If card(A) ≤ card(B) and card(B) ≤ card(A) then

card(A) = card(B).

4 (Zorn’s Lemma) Assume (X,≤) is a partially ordered set. Assume every limiting order

subset (i.e. chain) of X has an upper bound. Then X has a maximal element.

5 (Hausdorff Maximal Principle) Let (X,≤) be a partially ordered set. Then there

exists a maximal chain in X

i.e. if Y ⊆ X such that (Y,≤) is linearly ordered and if Z ⊆ X with Z linearly ordered and

Z ⊇ Y then Z = Y .

6 (Caratheodory) Suppose µ∗ is an outer measure on X and set M = Mµ∗ = all

µ∗-measurable subsets of X. Then M is a σ-algebra and µ∗|M is a complete measure.

7 (monotone convergence) If 0 ≤ f1 ≤ f2 ≤ . . . with fn ∈ L+ and f = limn fn
pointwise, then

∫
fndµ→

∫
fdµ.

8 (Fatou’s Lemma) For fn ∈ L+ then

∫
lim inf fn ≤ lim inf

∫
fn

9 (Dominated Convergence Theorem, v1) If 0 ≤ fn ≤ g are all measurable and

fn →X f ,
∫
g <∞ then

∫
fn →

∫
f .
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10 (Dini’s Theorem) For fn ∈ C([0, 1]), f1 ≥ f2 ≥ . . . , fn →[0,1] 0 then fn converges to

0 uniformly on [0, 1].

11 (Generalized Dominated Convergence Theorem) Let g, gn ∈ L+ be measurable,

|fn| ≤ gn µ-a.e., fn → f and gn → g µ-a.e. with
∫
gn →

∫
g <∞.

Then
∫
fn →

∫
f . Moreover,

∫
|f − fn| → 0

12 (Egoroff’s Theorem) Suppose fn → f a.e. and µ(D) < ∞. Then χDfn → χDf

almost uniformly.

13 (types of convergence)

(A) fn ⇒ f (uniform)

i.e. ‖fn − f‖sup → 0

(B) fn → f pointwise

i.e. fn(x)→ f(x) for all x

(C) fn → f a.e.

i.e. µ({x | fn(x) 9 f(x)}) = 0 (this is not a topological mode of convergence)

(D) fn → f (µ) (in measure)

i.e. ∀ε > 0, limn µ[|f − fn| > ε] = 0

(E) L1(µ) convergence

i.e. ‖fn − f‖1 → 0

(F) fn → f almost uniformly

i.e. ∀ε > 0, ∃E such that µ(EC) < ε and fn ⇒E f

The following diagram shows the implications where blue arrows mean on any measure space

and gray arrows mean it only holds on finite measure spaces.

(A) (B) (C)

(D)

(E)
(F)

(F) 9 (E) and (D) → (C) for a subsequence.

(C) or (D) + (dominated or monotonicity) → (E)

fn → f in L1 ⇔ every subsequence of fn has a further subsequence which converges to f in

L1.
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14 (Tonelli) Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces, and f : X × Y →
[0,∞] be a measurable function. Then

1. Define fx : Y → [0,∞] by y 7→ f(x, y). Then fx is measurable for all x ∈ X
2. x 7→

∫
f(x, y)dν(y) is a measurable function on X

3.
∫
fd(µ× ν) =

∫
(
∫
f(x, y)dν(y))dµ(x)

15 (Fubini) Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces, f ∈ L1(µ× ν). Then

1. for µ-a.e. x ∈ X, f(x, ·) ∈ L1(ν)

2. x 7→
∫
Y
f(x, y)dν(y) ∈ L1(µ)

3.
∫
fdµ× ν =

∫
(
∫
f(x, y)dν(y))dµ(x)

If f is measurable on X × Y then |f | is measurable on X × Y .

16 (Approximation properties of mn) We let mn be the completion of m × · · · ×m
where m is the Lebesgue measure on R. So Ln is the Lebesgue measurable sets on Rn.

Take E ∈ Ln. Then

1. mn(E) = inf{mn(O) | E ⊆ O and O is open}
= sup{mn(K) | K ⊆ E and K is compact}.

2. E = A1\N1 where A1 is Gδ and mn(N1) = 0

E = A2 ∪N2 where A2 is Fσ and mn(N2) = 0

3. mn(E) < ∞ implies ∀ε > 0, ∃(Rj)
N
j=1 of disjoint open rectangles such that mn(E 4

(∪Rj)) = 0

17 (Hahn-Decomposition Theorem) Let ν be a signed measure on (X,M). Then

there exists P ∈M which is positive for ν and N = PC is negative for ν.

Moreover, the decomposition X = P ∪ N is essentially unique: if P1 is positive for ν and

N1 = PC
1 is negative for ν, then P 4 P1 = N 4N1 is null for ν.

18 (Jordan Decomposition) Take the Hahn decomposition and let ν+(E) := ν(E ∩P ),

ν−(E) := −ν(E ∩N) so that ν = ν+ − ν−. Note that ν+ ⊥ ν−.

Note that the Jordan Decomposition is unique.

The total variation of ν is defined to be |ν|(E) = ν+(E) + ν−(E).

19 (Lebesgue Decomposition Theorem) Let µ be a measure on (X,M) and ν a σ-finite

signed measure. Then ν = ν1 + ν2 where ν1 ⊥ µ, ν2 � µ. Moreover, this decomposition is

unique.

20 (Radon-Nikodyn Theorem) If (X,M) is a measurable space, µ a σ-finite measure

3



on M and ν a σ-finite signed measure on M with ν � µ, then there exists an extended

µ-integrable f such that ν = νf where νf (E) =
∫
E
fdµ.

Moreover, we have uniqueness. If νf = νg then f = g µ-a.e.

21 (Lebesgue Differential Theorem) Fix x ∈ Rn. We say {Er} ⊆ BRn shrinks nicely

to x if

• Er ⊆ B(r, x) ∀r > 0

• ∃α > 0 such that ∀r > 0, m(Er) ≥ αm(B(r, x))

Lebesgue Differential Theorem: For f ∈ L1
loc(Rn), then for all x ∈ Lf and for all {Er}

shrinking nicely to x, we have

lim
r→0+

∫
Er
|f(y)− f(x)|dy
m(Er)

= 0

f(x) = lim
r→0+

∫
Er
f(y)dy

m(Er)

22 (Urysohn’s Lemma) Let (X, T ) be normal. If A,B are disjoint closed sets and a 6= b

in R. Then there exists some f ∈ C(X, [a, b]) such that f |A ≡ a and f |B ≡ b.

proof uses nastay lemma

23 (Tiktze Theorem) Version 1: Let (X, T ) be normal. If A ⊆ X is closed and

f ∈ C(A, (a, b)) then there exists some F ∈ C(X, [a, b]) such that F |A = f .

Version 2: Let (X, T ) be normal. If A ⊆ X is closed and f ∈ C(A, (a, b)) then there

exists some F ∈ C(X,R) such that F |A = f .

24 (Tychonoff Theorem) If (Xα) are compact topological spaces, then X = Πα∈AXα

(with the product topology) is compact.

Theorem: Axiom of Choice ⇔ Tychonoff

25 (Arzela-Ascoli) We say a metric space X is totally bounded if for any r > 0, X can

be covered by a finite number of balls of radius r.

Arzela-Ascoli Let X be a compact Hausdorff space. If F is an equicontinuous, pointwise

bounded subset of C(X) then F is totally bounded in the uniform metric and the closure of

F in C(X) is compact.

Alternative version 1: Let X be a σ-compact LCH space. If {fn} is an equicontinuous,

pointwise bounded sequence in C(X), then there exists a f ∈ C(X) and a subsequence of
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{fn} that converges to f uniformly on compact sets.

Alternative version 2: Let X be compact and F ⊆ C(X). Then F is compact in C(X)

IFF

1. F is equicontinuous

2. F is pointwise bounded

26 (Stone-Weierstrass) A is called an algebra if it is a real vector subspace of C(X)

such that fg ∈ A whenever f, g ∈ A.

Let X be a compact, Hausdorff space and B ⊆ C(X,R) a subalgebra such that B separates

points (that is, for x 6= y,∃f ∈ B with f(x) 6= f(y)). Then if there exists some x0 ∈ X such

that f(x0) = 0 for all f ∈ B, then B = {f ∈ C(X,R) | f(x0) = 0}. Otherwise, B = C(X).

27 (Hahn-Banach) For a real vector space X, we say p : X → R is a sublinear mapping

if p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) when λ ≥ 0.

Hahn-Banach: Let X be a real vector space, p a sublinear functional on X, M a subspace

of X, and f a linear functional on M such that f |M ≤ p|M . Then there exists a linear

functional F on X such that F ≤ p on X and F |M = f .

For the complex case, we require |f(x)| ≤ p(x) and we get |F (x)| ≤ p(x).

28 (Baire Category) We say C is nowhere dense if (C)◦ = ∅.

Theorem: Let X be a complete metric space. Then if {Un} is a sequence of open dense

sets, ∩Un is dense. Thus, X is not a countable union of nowhere dense sets.

A set that is a countable union of nowhere dense sets is said to be of first category (and it’s

complement is called residual). A set which is not a countable union of nowhere dense sets

is called second category.

29 (uniform boundedness principle) Let X be a Banach space and Y a normed space,

S ⊆ L(X, Y ) where S is pointwise bounded (i.e. ∀x ∈ X, sup{‖Tx‖ | T ∈ S} <∞).

Then S is uniformly bounded (i.e. supT∈S ‖T‖ <∞.

30 (Banach-Steinhaus) Suppose X is a Banach space and Y is a normed space, and

{Tn} ⊆ L(X, Y ) and for all x ∈ X, Tnx→ Tx in Y . Then T ∈ L(X, Y ).

31 (open mapping theorem) little open mapping theorem: Suppose X is a Banach

space and Y is a normed space, T ∈ L(X, Y ) and r > 0. Then if T (B(0, 1)) ⊇ B(0, r) then

T (B(0, 1)) ⊇ B(0, r).

open mapping theorem: Suppose X, Y are Banach spaces and T ∈ L(X, Y ) is surjective.

Then T is an open mapping.
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Remark: For a linear map T , T is open ⇔ ∃r > 0 such that T (B(0, 1)) ⊇ B(0, r).

32 (closed graph) For Banach spaces X, Y and T : X → Y linear, then T ⊆ X × Y is

closed ⇔ T is a bounded linear operator.

33 (Separation Theorem / Geometric Hahn-Banach) Say X is a LCTVS over R
and U,C ⊆ X are convex sets such that U ∩ C = ∅ and U◦ 6= ∅. Then there exists some

non-zero f ∈ X∗ and some α ∈ R such that U ⊆ [f < α] and C ⊆ [f ≥ α]

Corollary 1: If (X, T ) is Hausdorff LCTVS, then X∗ separates points of X

Corollary 2: If (X, T ) is a LCTVS, C ⊆ X is convex, then C
weak

= C
T

.

Corollary 3: If X is a normed space and A ⊆ X, then A is norm bounded ⇔ A is weakly

bounded (where A is weakly bounded if for all x∗ ∈ X∗, supx∈X |〈x∗, x〉| <∞

34 (Banach-Alaoglu) If X is a normed space, then BX∗ = {x∗ ∈ X∗ | ‖x∗‖ ≤ 1} is

weak∗-compact.

Corollary: If X is reflexive, then BX∗ is weakly compact.

X is reflexive if and only if BX is weakly compact.

35 (Goldstine) Suppose X is normed. Then B̂X is weak∗-dense in BX∗∗ , B̂X ⊆ BX∗∗

where we have equality IFF X is reflexive.

36 (Riesz-Fisher) For 1 ≤ p <∞, Lp is complete

37 (Hölder’s inequality) Let q be the conjugate exponent of p so 1
p

+ 1
q

= 1 (i.e. q = p
p−1)

For measurable f, g and 1 < p <∞ then ‖fg‖1 ≤ ‖f‖p‖g‖q.

If f ∈ Lp and g ∈ Lq if and only if f = 0 a.e. OR g = 0 a.e. OR |f |p is a scalar multiple of

|g|q.

If f ∈ Lp then ‖f‖p = max
{∫

fgdµ | ‖g‖q ≤ 1
}

(maximum is achieved! by g = sgn(f)).

Alternate Hölder’s inequality: For 0 < λ < 1, then
∫
|f |λ|g|1−λ ≤

(∫
|f |
)λ (∫ |g|)1−λ.

38 (Minkowski) For 1 ≤ p <∞, ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

39 (Riesz-Thorin) If 1 ≤ p0, p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞ and 0 < t < 1 with

1

pt
:=

t

p0
+

1− t
p1

1

qt
:=

t

q0
+

1− t
q1

Suppose X0 = Lp0(µ), X0 = Lp1(µ) and Y0 = Lq0(ν), Y1 = Lq1(ν) (compatible couple).
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Then for 0 < t < 1, Lpt(µ) + Lqt(ν) is an exact interpolation pair for X̃ = (X0, X1), Ỹ =

(Y0, Y1).

40 (Marcinkiewicz Interpolation) Let (X,M, µ) be a measure space and D a subspace

of L0(µ). We say T : D → L0(ν) is sublinear if

1. |T (f + g)| ≤ |Tf |+ |Tg|
2. |T (cf)| = c|Tf | if c ≥ 0

T is said to be of strong type (p, q) if T (Lp(µ)) ⊆ Lq(ν) and ‖T |Lp(µ)‖Lp(µ)→Lq(ν) <∞.

T is said to be of weak type (p, q) if T (Lp(µ)) ⊆ Lq,∞(ν) and ‖T |Lp(µ)‖Lp(µ)→Lq,∞(ν) =:

sup‖x‖Lp(µ)≤1[Tx]q,∞ < ∞ where for q < ∞, Lq,∞(ν) = {f ∈ L0(ν) | supt t
1/qν[|f | > t] =:

[f ]q,∞ <∞}.

Weak type (p,∞) is the same as strong type (p,∞).

Marcinkiewicz Interpolation Theorem: 1 ≤ p0 ≤ q0 ≤ ∞ and 1 ≤ p1 ≤ q1 ≤ ∞,

q0 6= q1 and 0 < t < 1,

1

pt
:=

1− t
p0

+
t

p1

1

qt
:=

1− t
q0

+
t

q1

If T : Lp0(µ)+Lp1(µ)→ L0(ν) is sublinear, and is of weak type (p0, q0 and weak type (p1, q1)

then T is of strong type (pt, qt) for all 0 < t < 1 and

‖T‖Lpt→Lqt ≤
C
(
‖T‖Lp0→Lp0,∞ ∨ ‖T‖Lp1→Lp1,∞

)
t(1− t)

where C = C(p0, p1, q0, q1) is some constant <∞.

41 (Krein-Milman) If C is a convex set in a real vector space, then x ∈ C is said to

be an extreme point provided whenever y, z ∈ C and 0 < λ < 1, x = λy + (1 − λ)z then

x = y = z.

Krein-Milman Lemma: If X is a Hausdorff LCTVS, and C ⊆ X is a non-empty,

compact, convex set then ext(C) 6= ∅.

Krein-Milman Theorem: If X is a Hausdorff LCTVS, C ⊆ X is a non-empty, compact,

convex set, then C = conv(ext(C)), where ext(C) = { all extreme points of C }.

42 (Banach-Stone) Suppose K1, K2 are compact Hausdorff. Then C(K1) is isometrically

isomorphic to C(K2) if and only if K1 is homeomorphic to K2.

43 (Milman) If X is Hausdorff LCTVS and M ⊆ X is compact with C = conv(M)
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compact. Then ext(C) ⊆M .

44 (Kakatani fixed point theorem) We say T is an affine transformation if T (αx +

(1− α)y) = αTx+ (1− α)Ty for 0 ≤ α ≤ 1, x, y ∈ K.

G is equicontinuous if for all neighborhoods U of 0, there exists a neighborhood V of 0 such

that for x, y ∈ K, if x− y ∈ V then for all T ∈ G, Tx− Ty ∈ U .

We call p a fixed point of G if G(p) = {Tp | T ∈ G} = {p}.

Theorem: Suppose X is a LCTVS and K ⊆ X is convex compact, and G is an equicontin-

uous group (under composition) of affine transformations on K. Then G has a fixed point.
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