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1 AUGUST 2019 Kari Eifler

1 August 2019

Problem 1. Let (X,M, µ) be a measure space and f a measurable non-negative function on X.

Define ν :M→ [0,∞] by

ν(E) =

∫
E

fdµ.

(a) Prove that ν is a measure

Proof. Indeed, it’s clear that ν(E) =
∫
E
fdµ ≥ 0 for all E since f is assumed to be non-

negative. It’s equally clear that ν(∅) =
∫
∅ fdµ = 0.

We are only left to prove countable additivity. Take a countable collection {Ei} of pairwise dis-

joint sets in M, so we see for finitely many

ν
(
∪Nk=1Ek

)
=

∫
∪Nk=1Ek

fdµ =

∫
χ∪Nk=1Ek

fdµ =

N∑
k=1

∫
χEkfdµ =

N∑
k=1

∫
Ek

fdµ =

N∑
k=1

ν(Ek).

By the monotone convergence theorem (the finite sums of characteristic functions form an in-

creasing sequence that converges to the infinite sum pointwise), then ν is countably additive.

Hence, ν is a measure.

(b) Prove that g ∈ L1(ν) if and only if gf ∈ L1(µ) and in that case
∫
X
gdν =

∫
X
gfdµ.

Proof. First we show that ν � µ. Indeed, if µ(E) = 0 then choose an increasing sequence of

simple functions fn such that fn → f . Then by monotone convergence theorem and the defini-

tion of integral for simple functions, we have

ν(E) =

∫
E

fdµ =

∫
E

(lim fn)dµ = lim

∫
E

fndµ = 0.

Then we may apply Radon-Nikodym theorem to see that f = dν
dµ and see that g ∈ L1(ν) if

and only if
∫
X
|g|dν < ∞ which is equivalent to

∫
X
|g|fdµ =

∫
X
|g| dνdµdµ < ∞. Since f is

non-negative, this is equivalent to having
∫
X
|gf |dµ < ∞. Radon-Nikodym also tells us that∫

X
gdν =

∫
X
gfdµ.

Problem 2. (a) State Fatou’s lemma

Proof. For fn ∈ L+ then ∫
lim inf fn ≤ lim inf

∫
fn

(b) State the dominated convergence theorem
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1 AUGUST 2019 Kari Eifler

Proof. Let g, gn ∈ L+ be measurable, |fn| ≤ gn µ-a.e., fn → f and gn → f µ-a.e. with
∫
gn →∫

g <∞. Then
∫
fn →

∫
f . Moreover,

∫
|f − fn| → 0.

(c) Let fn, gn, hn, f, g, h be measurable functions on Rn satisfying fn ≤ gn ≤ hn, fn → f a.e.,

gn → g a.e., and hn → h a.e. Suppose moreover that f, h ∈ L1 and
∫
fn →

∫
f ,
∫
hn →

∫
h.

Prove that g ∈ L1 and
∫
gn →

∫
g.

Proof. here

Problem 3. Let {Ak}∞k=1 be measurable subsets of a measure space and define Bm to be the set of

all points which are contained in at least m of the sets {Ak}∞k=1. Prove that Bm is measurable and

µ(Bm) ≤ 1

m

∞∑
k=1

µ(Ak).

Proof. Let C = {F ⊆ N | |F | = m} which is a countable infinite set. Then we may express

Bm =
⋃
F∈C

⋂
i∈F

Ai.

Therefore, each Bm is measurable.

here

Problem 4. Let E be a subset of R which is not Lebesgue measurable. Prove that there exists an

η > 0 such that for any two Lebesgue measurable sets A,B satisfying A ⊆ E ⊆ B one has λ(B\A) >

η, where λ denotes Lebesgue measure.

Proof. here

Problem 5. Let {Ak}∞k=1 be Lebesgue measurable sets in Rn equipped with Lebesgue measure λ.

(a) Prove that if Ak ⊆ Ak+1 for all k then λ(∪∞k=1Ak) = limk→∞ λ(Ak)

Proof. We will assume that λ is subadditive, so λ(∪∞1 Ak) ≤
∑∞

1 λ(Ak).Then by setting Ak = ∅,
we have

λ (∪∞1 Ak) =

∞∑
1

λ(Aj\Aj−1) = lim
n→∞

n∑
1

λ(Aj\Aj−1) = lim
n→∞

λ(An).

(b) Prove that if Ak+1 ⊆ Ak for all k and λ(A1) <∞ then λ(∩∞k=1Ak) = limk→∞ λ(Ak)

Proof. Let Bj = A1\Aj so B1 ⊂ B2 ⊂ . . ., and λ(A1) = λ(Bj) + λ(Aj), and ∪∞1 Bj =

E1\(∩∞1 Aj). Then by part (a), we have
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2 JANUARY 2019 Kari Eifler

λ(A1) = λ

(∞⋂
1

Aj

)
+ lim
j→∞

λ(Bj) = λ (∩∞1 Aj) + lim
j→∞

(λ(A1)− λ(Aj)).

Since λ(A1) <∞, we may subtract it from both sides to yield the desired result.

(c) Give an example showing that without assuming λ(A1) < ∞ the conclusion of the previous part

does not hold.

Proof. Consider Aj = [j,∞) so that for each j, λ(Aj) =∞ but ∩∞1 Aj = ∅ so λ(∩∞1 Aj) = 0.

Problem 6. Let X and Y be Banach spaces. Show that the linear space X ⊕ Y is a Banach space

under the norm ‖(x, y)‖ = ‖x‖+ ‖y‖. Also determine (with justification) the dual (X ⊕ Y )∗.

Proof. here

Problem 7. For each n ∈ N define on `∞ the linear functional ϕn(x) = n−1
∑n
k=1 x(k). Let ϕ be

the weak* cluster point of the sequence {ϕn}. Show that ϕ does not belong to the image of `1 under

the canonical embedding `1 ↪→ (`∞)∗.

Proof. here

Problem 8. Let T : X → Y be a surjective linear map between Banach spaces and suppose that

there is a λ > 0 such that ‖Tx‖ ≥ λ‖x‖ for all x ∈ X. Show that T is bounded.

Proof. here

Problem 9. Let X be a compact metric space and µ a regular Borel measure on X. Let f : X →
[0,∞) be a continuous function and for each n ∈ N set fn(x) = f(x)1/n for all x ∈ X. Show that∫
fndµ→ µ(supp f) as n→∞ where supp f = {x ∈ X | f(x) > 0}.

Proof. here

Problem 10. Let X be a compact metric space and let x ∈ X. Suppose that the point mass δx is

the weak* limit of a sequence of atomless Radon measures on X (viewing all of these measures as

elements of C(X)∗). Show that every neighborhood of x is uncountable.

Proof. here

2 January 2019

Problem 1. True or false (prove or give a counter example)

(a) Let E ⊆ R be a Borel set, then {(x, y) ∈ R2 | x− y ∈ E} is a Borel set in R2.
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2 JANUARY 2019 Kari Eifler

Proof. TRUE.

Define f(x, y) = x− y : R2 → R. This is continuous. Let

A := {S ⊆ R | f−1(S) is a Borel set of R2}

Then A is a σ-algebra (easy to check). If S is open, then f−1(S) is open in R2, thus Borel. So

{open sets} ⊆ A and so the Borel algebra is a subset of A. In particular, E ∈ A.

(b) Let E ⊆ Q := [0, 1]× [0, 1]. Assume that for every x, y ∈ [0, 1] the sets Ex = {y ∈ [0, 1] | (x, y) ∈
E} and Ey = {x ∈ [0, 1] | (x, y) ∈ E} are Borel. Then E is Borel.

Proof. FALSE.

Consider a non-Borel set A ⊂ [0, 1]. Set E = {(x, x) | x ∈ A}. Then each Ey and Ex is a

singleton which is Borel, but E is not.

(c) A function f : R → R is called Lipschitz if there exits a M > 0 such that ∀x, y ∈ R, |f(x) −
f(y)| ≤ M |x − y|. If A ⊆ R is Lebesgue measureable and f is Lipschitz then f(A) is Lebesgue

measurable.

Proof. TRUE.

Since A is Lebesgue measurable, then we can write A = (∪jKj)∪N where each Kj is a compact

set and N has Lebesgue measure zero. Then f(A) = (∪jf(Kj)) ∪ f(N). It’s clear that each

f(Kj) is Lebesgue measurable, since f is Lipschitz. We are only left to see that f(N) is also

Lebesgue measurable.

Indeed, for every ε > 0 we can write N ⊆ ∪kBk where each Bk is a ball of radius rk and∑
km(Bk) < ε. But then by Lipschitz continuity, f(Bk) is contained in a ball of radius Mrk

where M is the Lipschitz constant of f . Thus, m(f(Bk)) ≤ Mm(Bk) so that m(f(N)) ≤
M
∑
km(Bk) < Mε. Let ε → 0 so f(N) must have outer measure equal to zero, hence it is a

null set.

Problem 2. Let (X,F , µ) be a measure space. is it true that for every measurable essentially bounded

f : X → R we have limp→∞ ‖f‖p = ‖f‖∞? Give an answer both in the case that µ is finite and the

case that µ is σ-finite.

Proof. If µ is finite: By Hölder, we know that ‖f‖p ≤ ‖f‖q when p ≤ q. Also, ‖f‖p ≤ ‖f‖∞ for all p.

Therefore, ‖f‖p ↗≤ ‖f‖∞ and so limp ‖f‖p ≤ ‖f‖∞.

On the other hand, for every ε > 0, let E = {x | |f(x)| > ‖f‖∞ − ε} and 0 < µ(E) ≤ 1 since ‖f‖∞ =

esssup |f(x)| <∞. Then ‖f‖pp ≥
∫
E
|f |p >

(
‖f‖∞ − ε

)p
µ(E). Take p→∞ so limp ‖f‖p ≥ ‖f‖∞ − ε,

implying limp ‖f‖p ≥ ‖f‖∞.

If µ is σ-finite: No, this is not true. Consider f(x) = 1
x on [1,∞). Then limp ‖f‖p = 0 6= ‖f‖∞ =

1.

Problem 3. Let f : R→ R Lebesgue integrable and for n ∈ N define

gn(x) = n

∫
(x,x+1/n)

fdλ.

6
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(a) Prove that limn→∞ gn = f λ-a.e.

Proof. This is Lebesgue Differentiation Theorem, with Er = (x, x+ r).

(b) Prove that for every n ∈ N,
∫
R |gn|dλ ≤

∫
R |f |dλ.

Proof. here!

(c) Prove limn→∞
∫
R |gn|dλ =

∫
R |f |dλ.

Proof. Apply dominated convergence theorem with parts (a) and (b).

Problem 4. Let f ∈ L1((0, 1]2, λ2) such that
∫
(0,x]×(0,y] fdλ2 = 0 for every x, y ∈ (0, 1]. Prove that

f = 0 λ2-a.e.

Proof. First note that

(a, b)× (c, d) =
⋃
n

((0, b− 1/n]× (0, d− 1/n]) \ ((0, a]× (0, 1] ∪ (0, 1]× (0, b])

And since all open rectangles generate all Borel sets in R2, then we have that for every Borel set

B ⊆ R2,
∫
B
fdλ2 = 0.

Since every Lebesgue set A is of the form A = B ∪N where B is a Borel measurable set and N is a

set of measure zero. Hence,
∫
A
fdλ2 = 0 for any Lebesgue measurable set A.

Now consider A+ = {x | f(x) > 0} and A− = {x | f(x) < 0}. Since both are measurable, then∫
A+ fdλ2 = 0 =

∫
A−

fdλ2. Hence, f = 0 λ2-a.e.

Problem 5. Let λ be the Lebesgue measure on R. Let E ⊆ R be Lebesgue measurable such that

0 < λ(E) <∞. Prove that for all 0 ≤ γ < 1 there exists an open interval I ⊆ R such that

λ(E ∩ I) ≥ γλ(I).

Proof. Choose an open set O ⊃ E such that λ(E) ≥ γλ(O). We can write O = ∪iOI for open and

disjoint intervals Oi. Hence

E = E ∩O = E ∩
⋃
i

Oi =
⋃
i

(E ∩Oi)

Suppose to the contrary that λ(E ∩Oi) < γλ(Oi) for all i. Then

λ(E) = λ
(⋃

(E ∩Oi)
)

=
∑
i

λ(E ∩Oi) < γ
∑
i

λ(Oi) = γλ(O)

which is a contradiction with the fact that λ(E) ≥ γλ(O). Hence, it must be that for some k, λ(E ∩
Ok) ≥ γλ(Ok).
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Problem 6. Let X be a compact metrizable space and {µn} a sequence of Borel measures on X

with µn(X) = 1 for every n. Consider the linear map ϕ : C(X) → `∞(N) defined by ϕ(f) =(∫
X
fdµn

)
n

. What conditions on the sequence {µn} are equivalent to ϕ being an isometry? Provide

justification.

Proof. We would require, for all f ∈ C(X)

sup
x∈X
|f(x)| = ‖f‖∞ =

∥∥∥∥(∫ fdµn

)∥∥∥∥
∞

= sup
n

∣∣∣∣∫ fdµn

∣∣∣∣
here

Problem 7. Let X be a compact metric space and {fn} a sequence in C(X). Prove that {fn} con-

verges weakly in C(X) if and only if it converges pointwise and supn ‖fn‖ <∞. Also, give an exam-

ple of an X and a sequence {fn} in C(X) which converges weakly but not uniformly.

Proof. By considering fn − f , we may assume without loss of generality that fn converges to 0.

⇒) We know C[0, 1]∗ = M[0, 1]. Then fn → 0 weakly implies
∫
fndµ → 0 for all µ ∈ M[0, 1].

Choose µ = δt so

∫
fndδt = fn(t)→ 0 ∀t ∈ [0, 1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

χ : C[0, 1]→ C[0, 1]∗∗ =M[0, 1]∗

χ(fn)(µ) = µ(fn)

Since µ(fn) → 0 then χ(fn)(µ) → 0 for all µ ∈ M[0, 1]. Since convergent sequences are bounded,

then supn |χ(fn)(µ)| ≤M .

By the uniform boundedness theorem, supn ‖χ(fn)‖ <∞. By isometry, ‖fn‖ = ‖χ(fn)‖ so supn ‖fn‖ <
∞.

⇐) By Dominated Convergence Theorem, fn → 0 in L1(µ). So therefore, |
∫
fndµ| ≤

∫
|fn|d|µ| → 0.

So fn → 0 weakly.

Example: Take X = [0, 1] and consider the functions

fn(x) =


nx x ∈ [0, 1/n]

−nx+ 2 x ∈ (1/n, 2/n]

0 x ∈ (2/n, 1]

Then they converge to 0 weakly, but not strongly.

8
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Problem 8. Let X be a Banach space. Show that if X∗∗ is separable then so is X. Also, give an

example, with justification, to show that the converse is false.

Proof. We will show the weaker result that states that if the dual X∗ is separable, then so is X.

Let X∗ be separable. Consider the unit sphere SX∗ = {ϕ ∈ X∗ | ‖ϕ‖ = 1}. Then SX∗ is separable

and so we can let {ϕn} be a countable dense subset of SX∗ .

For each n ∈ N, choose xn ∈ N with ‖xn‖ = 1 such that |ϕn(xn)| > 1/2. Let D = span{x1, x2, . . .}.

Then D is countable; ex. we can consider the following set countable and dense subset of D:

⋃
n∈N


n∑
j=1

(aj + ibj)xj | aj , bj ∈ Q


We want to show that D = X. Suppose it were not, then there ewould be some ϕ ∈ SX∗ with

ϕ|D = 0. Since {ϕn} is dense, there exists some n such that ‖ϕ− ϕn‖ < 1/4. Therefore,

1

2
≤ |ϕn(xn)| = |ϕn(xn)− ϕ(xn)| ≤ ‖ϕn − ϕ‖‖xn‖ <

1

4
.

This is a contradiction and hence, D = X.

example. c0 is separable, but `∞ = c∗∗0 is not separable.

Problem 9. (a) Let X be a compact metrizable space. Describe the dual of C(X) according to the

Riesz representation theorem.

Proof. For every ϕ ∈ C(X)∗, there exists a unique finite regular signed measure µ on the Borel

subsets of X such that

ϕ(f) =

∫
X

fdµ

for each f ∈ C(X). Moreover, ‖ϕ‖ = |µ|(X).

(b) Consider the spaces X = {1/n | n ∈ N} ∪ {0} and Y = [0, 1] with the topologies inherited from

R. Prove that there does not exist a bijective bounded linear map from C(X) to C(Y ).

Proof. By contradiction. Suppose there exists a bijective bounded linear map T : C(X) →
C(Y ). Then by the Open Mapping Theorem (or more accurately, the corollary that is the Bounded

Inverse Theorem), then T−1 is a bijective bounded linear map from C(Y ) to C(X). This says

that the two spaces are isomorphic.

Therefore, the duals of these two spaces should also be isomorphic, C(X)∗ ∼= C(Y )∗. But by the

Riesz-representation theorem, here!

Problem 10. Let X be a Banach space and Y a subspace of X. Show that ‖x+ Y ‖ = inf{‖x+ y‖ |
y ∈ Y } defines a norm on X/Y if and only if Y is closed.

9
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Proof. ⇐) Suppose Y is closed. It’s easy to see ‖x + Y ‖ is well-defined and a semi-norm. Suppose

‖x + Y ‖ = 0. Then there exists yn ∈ Y such that ‖x − yn‖ → 0. Since Y is closed, then x ∈ Y .

Therefore, x+ Y = Y = 0 + Y which is the zero vector in X/Y .

⇒) Suppose this is a norm. Take any convergent sequence yn in Y with yn → y′. Then infy∈Y ‖y −
y′‖ ≤ ‖yn − y′‖ → 0 and so ‖y′ + Y ‖ = 0. Since this is a norm, then y′ + Y = 0 + Y = Y and so

y′ ∈ Y . Hence Y must be closed.

3 August 2018

(Solve any 10 of the following 12 problems)

Problem 1. Let µ and ν be positive measures on the same measurable space with ν finite and abso-

lutely continuous with respect to µ. Show that for every ε > 0, there exists δ > 0 such that µ(E) < δ

implies ν(E) < ε.

Proof. Suppose for contradiction that ∃ε > 0 such that µ(E) < δ then ν(E) ≥ ε for all δ > 0 adn

for some E. We’ll construct the set En to be some set with µ(En) < 2−n. Let Fk = ∪∞n=kEn so

µ(Fk) < 2−k+1.

Let F = ∩∞k=1Fk so µ(F ) = 0. Since ν � µ, then ν(F ) = 0.

However, since Fk is a decreasing sequence, we have

ν(F ) = lim
n
ν (∩nk=1Fk) = lim

n
ν(Fn) ≥ ε.

Contradiction!

Problem 2. Let µ be a positive measure. Suppose that (fn)∞n=1 is a Cauchy sequence in L1(µ).

Show that for all ε > 0 there exists a δ > 0 such that µ(E) < δ implies

∀n ≥ 1

∣∣∣∣∫
E

fndµ

∣∣∣∣ < ε.

You may use without proof the result of problem #1.

Proof. Let ε > 0. Since {fn} is Cauchy in L1(µ), there exists f ∈ L1(mu) such that fn → f in

L1(µ) as n→∞, since L1(µ) is a Banach space.

Define ν(E) :=
∣∣∫
E
fdµ

∣∣.
Then by Problem 1, there exists some δ > 0 such that ν(E) =

∣∣∫
E
fdµ

∣∣ < ε/2 when µ(E) < δ, thenf

or large enough n (say n ≥ N) we have

∣∣∣∣∫
E

fndµ

∣∣∣∣ =

∣∣∣∣∫
E

(fn − f + f)dµ

∣∣∣∣ ≤ ∣∣∣∣∫
E

fn − fdµ
∣∣∣∣+

∣∣∣∣∫
E

fdµ

∣∣∣∣ < ε

2
+
ε

2
= ε

10
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for µ(E) < δ.

For each i,N , we can find δi such that
∣∣∫
E
fidµ

∣∣ < ε when µ(E) < δi. By the same reasoning as

above, if we set δ̃ = min{δ1, . . . , δN−1, δ} then
∣∣∫
E
fndµ

∣∣ < ε whenever µ(E) < δ̃ for all n ∈ N.

Problem 3. Let f : [0, 1]→ [0,∞) be Lebesgue measurable. For n ∈ N define

gn =
fn

1 + fn
.

(a) Explain why
∫ 1

0
gn(t)dt exists and is finite for all n.

Proof. Since gn = fn

1+fn ≤ 1 for all n, then
∫ 1

0
gndx ≤

∫ 1

0
1dx = 1 for all n.

(b) Prove that limn

∫ 1

0
gn(t)dt exists and find an expression for it. Make sure to state which major

theorems you are using in your proof.

Proof. Define E1 = {x | 0 ≤ f(x) < 1}, E2 = {x | f(x) = 1} and E3 = {x | f(x) > 1}.
If x ∈ E1 then gn(x) = fn(x)

1+fn(x) → 0. So by DCT, limn

∫
E1
gndx =

∫
E1

0dx = 0.

If x ∈ E2 then gn(x) = fn(x)
1+fn(x) = 1

2 for all n and so

lim
n

∫
E2

gndx =

∫
E2

1

2
dx =

1

2
m(E2).

If x ∈ E3 then gn(x) = fn(x)
1+fn(x) → 1 and so by DCT,

lim
n

∫
E3

gndx =

∫
E3

dx = m(E3).

Thus,

lim
n

∫ 1

0

gndx = lim
n

∫
E1

gndx+

∫
E2

gndx+

∫
E3

gndx =
1

2
m(E2) +m(E3).

Problem 4. Consider C([0, 1]) endowed with its usual uniform norm. Prove or disprove that there

is a bounded linear functional ϕ on C([0, 1]) such that for all polynomials p, we have ϕ(p) = p′(0),

where p′ is the derivative of p.

Proof. DISPROVE.

Consider pn = 1 − (x − 1)n so then ‖pn‖∞ = 1 but p′n(0) = n → ∞. If such a ϕ existed, then

n = |ϕ(pn)| = ‖ϕ(pn)‖ ≤ c‖pn‖ which cannot happen.

Problem 5. (a) Define the product topology on the Cartesian product Πα∈AXα of a family of topo-

logical spaces (Xα)α∈A

Proof. here!

11
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(b) State Tychonoff’s compactness theorem.

Proof. If {Xα} is a family of compact topological spaces then Πα∈AXα is compact.

(c) State and prove the Banach-Alaoglu theorem (Hint: Use Tychonoff’s theorem)

Proof. Thoerem: Let X be a normed vector space. The closed unit ball {f ∈ X∗ | ‖f‖ ≤ 1} is

compact in the weak*-topology.

For all x ∈ X, let Dx := {ξ | |ξ| ≤ ‖x‖} ⊆ C. Then Dx is compact, and by Tychonoff’s theorem,

D := Πx∈XDx is comapct. Define complex function ϕ with ϕ(x) ≤ ‖x‖.

We define B∗ ⊆ D to consist of linear functions of D. We claim B∗ is closed. Indeed, let {fα}
be a net in B∗ that converges to f . Then

f(ax+ by) = lim fα(ax+ by) = lim(afα(x) + bfα(y)) = a lim fα(x) + b lim fα(y) = af(x) + bf(y).

So f ∈ B∗. Since closed subsets of comapct spaces are compact, then B∗ is compact in the

weak*-topology.

Problem 6. Let (X, d) be a compact metric space.

(a) Show that X has a countable, dense set {xn | n ∈ N}.

Proof. If X is countable, we are done. So suppose X is uncountable. Since X is compact, for

all n ∈ N, X can be covered by finitely many balls of radius 1
n . For each n, choose such a finite

cover with balls centered at the points {xnj }
Nn
j=1. Then the collection E := ∪n{xnj }

Nn
j=1 is count-

able.

For x ∈ X, for all n ∈ N, x ∈ B(1/n, xnj ) for some xnj ∈ E so E is dense.

(b) Let fn : X → [0,∞) be fn(x) = d(x, xn). Show that if x, y ∈ X and fn(x) = fn(y) for all n ∈ N,

then x = y.

Proof. We then have that d(x, xn) = d(y, xn) for all n. We know for all m ∈ N we can find xm
such that d(x, xm) < 1/m so d(y, xm) < 1/m. So we can find a sequence {xm}∞m=1 such that

xm → x and xm → y as m → ∞. But X is a metric space and thus Hausdorff, so limits are

unique. Therefore, x = y.

Problem 7. Let K > 0 and let LipK be the set of functions f : R → R satisfying |f(x) − f(y)| ≤
K|x− y|.

(a) Prove that

d(f1, f2) =

∞∑
j=0

2−j sup
x∈[−j,j]

|f1(x)− f2(x)|

defines a metric on LipK

12
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Proof. First, suppose d(f1, f2) = 0. Then
∑∞
j=0 2−j supx∈[−j,j] |f1(x)−f2(x)| = 0 so supx∈[−j,j] |f1(x)−

f2(x)| = 0 for all j. Thus, f1(x) = f2(x) for all x.

It’s trivial to see that d(f1, f2) = d(f2, f1).

Finally,we’ll show the triangle inequality. This again follows directly: |f1(x) − f2(x)| ≤ |f1(x) −
f3(x)| + |f3(x) − f2(x)| for all x. Taking sup on both sodies and multiplying by 2−j we get

d(f1, f2) ≤ d(f1, f3) + d(f1, f2).

(b) Prove that LipK is a complete metric space

Proof. Suppose (fn) is a Cauchy sequence in LipK . Then for every ε > 0 there exists N ∈ N
such that d(f1, fm) =

∑∞
j=1 2−j supx∈[−j,j] |f1(x) − f2(x)| < ε. Then for each j and x ∈ [−j, j]

we have |fn(x)− fm(x)| < ε′.

Thus, {fn(ξ)} is Cauchy sequence on [−j, j] for each ξ. But we can find f(x) such that fn(x)→
f(x).

We want to show that d(fn, f) → 0. Since fn(x) → f(x), then for all ε > 0 we can find some

N ∈ N such that for all n ≥ N , |fn(x)− f(x)| < ε. THen

d(fn, f) =

∞∑
j=1

2−j sup
x∈[−j,j]

|fn(x)− f(x)| <
∞∑
j=1

2−jε = ε

So d(fn, f)→ 0. To see f ∈ LipK ,

|f(x)− f(y)| =
∣∣∣lim
n
fn(x)− lim

n
fn(y)

∣∣∣ = lim
n
|fn(x)− fn(y)| ≤ K lim

n
|x− y| = K|x− y|.

Problem 8. Let X,Y be topological spaces. A map f : X → Y is said to be proper if for every

compact subset K ⊆ Y , the inverse image f−1(K) is compact.

(a) Suppose X is a compact space and Y is Hausdorff. Prove that every continuous map f : X → Y

is proper.

Proof. Let K ⊆ Y be compact. Since Y is Hausdorff, then K is closed. Since f is continuous,

and Y \K is open in Y then f−1(Y \K) is open in X. So f−1(K) = X\f−1(Y \K) is closed.

Since X is compact, f−1(K) is compact.

(b) Give an example of a continuous map which is not proper.

Proof. Consider the constant function 1 : R→ R which sends x 7→ 1. So 1−1({1}) = R.

(c) Suppose f : Rm → Rn is a proper continuous map. Prove that f is a closed map, ie. f(C) is

closed in Rn whenever C is a closed subset of Rm.

Proof. Let {yn} ⊆ f(C) with yn → y. Define A = {y} ∪ {yn} (compact). Then f−1(A) is

compact, so there exists xn ∈ f−1(A) ∩ C such that f(xn) = yn. Find a convergent subsequence

xnk with xnk → x for x ∈ C ∩ f−1(A). By continuity of f , we have f(x) = y.

13
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Problem 9. Consider the interval [−π, π] equipped with Lebesgue measure µ. For n ∈ Z, consider

the functions fn ∈ C([−π, π]) given by fn(t) = eint.

(a) Prove that spanC{fn | n ∈ Z} is dense in the space

A := {f ∈ C([−π, π]) | f(−π) = f(π)}

with respect to the uniform norm.

Proof. Let B = spanC{fn} ⊆ A ⊆ C([−π, π]). Note that B separates points and is closed under

complex conjugates. By Stone-Weierstrass, B is dense in C[−π, π] hence also dense in B.

(b) Show that
{

fn√
2π
| n ∈ Z

}
is an orthonormal basis for the Hilbert space L2([−π, π], µ).

Proof. Note that

‖〈fn, fn〉‖2 =

∣∣∣∣∫ π

−π
einte−intdt

∣∣∣∣1/2 =
√

2π

For n 6= m,

〈fn, fm〉 =

∫ π

−π
einte−intdt =

ei(n−m)t

n−m
|π−π = 0.

So they are orthonormal.

(c) Is the following statement true or false?:

“For every f ∈ A, f = limN→∞
1
2π

∑N
n=−N 〈f, fn〉fn with respect to the uniform norm.”

Give a brief explanation why or why not.

Proof. TRUE.

Claim:
∑∞
−∞〈f, fn〉fn exists. By Pythagorean theorem,

∥∥∑∞
−∞〈f, fn〉fn

∥∥ =
∑∞
−∞ ‖〈f, fn〉fn‖.

By Bessel’s inequality,
∑∞
−∞〈f, fn〉fn is bounded so it exists.

Let g := f −
∑∞
−∞〈f, fn〉fn so that

〈g, fm〉 = 〈f, fm〉 −
∞∑
−∞
〈〈f, fn〉fn, fm〉 = 〈f, fm〉 − 〈f, fm〉 = 0.

By completeness of Hilbert spaces, g = 0. So f =
∑∞
−∞〈f, fn〉fn.

Problem 10. Let (X, ‖ · ‖) be a normed linear space and let (X∗, ‖ · ‖X∗) denote its dual Banach

space of bounded linear functionals. Recall that ‖ϕ‖X∗ = sup‖x‖=1 |ϕ(x)| for ϕ ∈ X∗

(a) Prove that for each x ∈ X, there exits ϕ ∈ X∗ with ‖ϕ‖X∗ = 1 and ‖x‖ = ϕ(x).

14
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Proof. We will prove the more general case: let M be closed and x ∈ X\M . Then there exists

φ ∈ X∗ such that φ(x) = infy∈M ‖x− y‖ and ‖φ‖ = 1 and φ|M = 0.

Restrict to the space M+Cx and define φ(y+λx) = λ infy∈M ‖x−y‖. Then φ(x) = infy∈M ‖x−
y‖ and φ|M = 0.

Since φ(x) = ‖x‖, then 1 = ‖x‖
‖x‖ = |φ(x)|

‖x‖ ≤ ‖φ‖ and

|φ(y + λx)| ≤ |φ(y)|+ |φ(λx)| = 0 + |λ||φ(x)| = |λ| inf
y∈M
‖x− y‖ ≤ |λ|‖x− λ−1y‖ = ‖λx+ y‖.

Therefore, ‖φ‖ = supy+λx
|φ(y+λx)|
‖λx+y‖ ≤ 1 so ‖φ‖ = 1.

Finally, if we define p(x) = ‖x‖ for x ∈ M + Cx then by Hahn-Banach, φ can be extended to ψ

on all x with ψ|M+Cx = φ. To prove the result, set M = {0}.

(b) Prove that the linear map ι : X → X∗∗ given by

ι(x)(ϕ) = ϕ(x) x ∈ X,ϕ ∈ X∗

is an isometry.

Proof. Fix x ∈ X, so

‖ι(x)‖ =
|ι(x)(φ)|
‖φ‖X∗

= sup
φ∈X∗

|φ(x)|
‖φ‖X∗

By part (a), there exists φ ∈ X∗ such that ‖φ‖X∗ = 1 and φ(x) = ‖x‖, which implies that

‖x‖ ≤ ‖ι(x)‖X∗ .
Also, for any φ ∈ X∗, |φ(x)| ≤ ‖φ‖X∗‖x‖ and so

‖ι(x)‖ ≤ sup
φ∈X∗

|φ(x)|
‖φ‖X∗

≤ ‖φ‖‖x‖
‖φ‖

= ‖x‖.

So ‖ι(x)‖ = ‖x‖ and so ι is an isometry.

(c) A Banach space X is called reflexive if ι(X) = X∗∗. Prove that the Banach space

`1 = {f ∈ N→ C | ‖f‖1 =
∑
k

|f(k)| <∞}.

is not reflexive.

Hint: Consider a weak-∗ cluster point of the sequence (ι(fn))n∈N ⊆ (`1)∗∗, where fn ∈ `2 is the

unit vector

fn(k) =

{
1/n k ≤ n
0 k > n

Proof. here!

15
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Problem 11. Let (gn)n∈N ⊆ C([0, 1]) be a sequence of non-negative continuous functions. Assume

that for each k = 0, 1, 2, . . . the limit

lim
n→∞

∫ 1

0

xkgn(x)dx exists.

Prove that there exists a unique finite positive Radom measure µ on [0, 1] such that

∫ 1

0

f(x)dµ(x) = lim
n→∞

∫ 1

0

f(x)gn(x)dx for all f ∈ C([0, 1]).

Proof. Define M := limn

∫ 1

0
gn(x)dx < ∞. Let A = span{xk | k ∈ N}. For each φ ∈ A, by linearity,

limn

∫ 1

0
φ(x)gn(x)dx exists.

By Stone-Weierstrass, A is dense in C[0, 1], so for every f ∈ C[0, 1], limn

∫ 1

0
f(x)gn(x)dx.

Next, let φ : C[0, 1] → C be defined by φ(f) = lim
∫ 1

0
f(x)gn(x)dx. Linearity is obvious. Moreover,

for every f ∈ C[0, 1],

|φ(f)| =
∣∣∣∣limn

∫ 1

0

fgn(x)dx

∣∣∣∣ ≤ lim
n

∫ 1

0

|f(x)||gn(x)|dx ≤ ‖f‖n lim
n

∫ 1

0

gn(x)dx = M‖f‖∞

Hence, φ is a bounded linear functional on C[0, 1].

By Riesz-Representation, there exists a positive Radon measure µ such taht

lim
n

∫ 1

0

f(x)gn(x)dx = φ(f) =

∫ 1

0

f(x)dµ(x) ∀f ∈ C[0, 1].

Problem 12. Let X be a locally compact Hausdorff space equipped with a Radon probability mea-

sure µ. Let E ⊆ L2(X,µ) be a closed linear subspace and assume that E is contained in C0(X). The

goal of this problem is to prove that dim(E) <∞ by justifying the following steps:

(a) There exists a constant 1 ≤ K <∞ such that

‖f‖2 ≤ ‖f‖u ≤ K‖f‖2 for all f ∈ E,

where ‖ · ‖u denotes the uniform norm. Hint: us the closed graph theorem for one of the inequal-

ities.

(b) For each x ∈ X, there exists a unique gx ∈ E such that ‖gx‖2 ≤ K and

f(x) = 〈f, gx〉 for all f ∈ E.

(c) Let (fi)i∈I be any orthonormal basis for E. Then

16
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∑
i∈I
|fi(x)|2 = ‖gx‖22 ≤ K2 for all x ∈ X.

(d) dim(E) = |I| ≤ K2.

Proof. See January 2017, Problem #5 for a solution to a similar question.

4 January 2018

Problem 1. Suppose U1, U2, . . . are open subsets of [0, 1]. In each case, either prove the statement

or disprove it.

(a) If λ
(
∩∞n=1 Un) = 0 then for some n ≥ 1, we have λ(Un) < 1, where λ is Lebesgue measure and

Un is the closure of Un in the usual topology on [0, 1].

Proof. FALSE. Let rm be an enumeration of the rationals on [0, 1], and set an,m = 1/2n+m. Set

Un := ∪m(rm − an,m, rm + an,m)

These are open since they are a union of open intervals. Moreover, since Q ⊆ Un then λ(Un) =

λ([0, 1]) = 1. But by upper continuity of the Lebesgue measure, then

λ (∩Un) = lim
m
λ (∪(rn − an,m, rn + an,m)) = 0.

(b) If ∩∞n=1Un = ∅, then for some n ≥ 1, the set [0, 1]\Un contains a non-empty open interval.

Proof. TRUE. Recall that the Baire Category Theorem states that under these assumptions, if

each Un is dense in [0, 1] then ∩∞n=1Un is also dense in [0, 1]. Then since we have that ∩∞n=1Un
is not dense, then there must be some n such that [0, 1]\Un is not dense. This precisely means

that Un contains a non-empty open interval.

Problem 2. Let X be a separable compact metric space and show that C(X) is separable.

Proof. Remark: If X is a compact metric space, then X is separable. So the separable assumption

is superfluous.

Suppose d is the metric on X and (xn) is a dense countable subset of X. For each n ∈ N, de-

fine the functional fn by fn(x) := d(x, xn). Then each fn is a continuous functional. Consider

F = {1, f1, f2, . . .} and consider the subalgebra generated by the rational span of F , call it Q[F ]

(this is still countable, we can consider the span, then cosider the set where two elements of it are

multiplied together, then the set where three elements are multiplied together, etc). This is count-

able and dense in A := R[F ]. so it is sufficient to show that A is dense in C(X).

17
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We will attempt to use the Stone Weierstrass Theorem:

By definition, R[F ] contains the constant function 1. We are left to show it separates points. Take

two points x 6= y in X. Since {xn} is dense, then there must exist some m such that d(x, xm) ≤
1
3d(x, y) 6= 0. If d(y, xm) = d(x, xm) then

d(x, y) ≤ d(x, xm) + d(y, xm) = 2d(x, xm) ≤ 2

3
d(x, y).

This cannot be true under our assumption d(x, y) 6= 0. So then fm(y) = d(y, xm) 6= d(x, xm) =

fm(x). So fm separates x and y.

Therefore, by Stone-Weierstrass, A is dense in C(X). But Q[F ] is countable and dense in A, so

therefore C(X) is separable.

Problem 3. Let f : [0, 1]→ R be a bounded Lebesgue measurable function such that

∫ 1

0

f(t)entdt = 0

for every n ∈ {0, 1, 2, . . .}. Prove that f(t) = 0 for almost every t ∈ [0, 1].

Proof. Let f(t) = 0 on t = 0, 1. Using Stone-Weierstrass to show we can pass to the case
∫ 1

0
f(t)g(t) =

0 for all g ∈ C[0, 1].

By a standard density argument, we may pass to the case where g is a step function. We claim that

f = 0 a.e.

Assume not. WLOG there exists some E = {x ∈ [0, 1] | f(x) > 0} with m(E) > 0 (else consider

−f).

Since f is bounded, then E∞ := {x ∈ [1, 2] | f(x) = ∞} is a null set. Define En := {x ∈ [0, 1] |
1/n < f(x) < n}. We can write E = (

⋃
nEn)∪E∞. So there exists some N such that m(EN ) = a >

0.

We can write A as a finite disjoint union of open intervals, A = tmi=1Ii, such that m(EN4A) < ε

and A ⊆ EN .

Put g =
∑m
i=1

χIi , then
∫ 2

1
g(x)f(x) =

∫
EN

f(x)dx. Since

∣∣∣∣∫
EN

f(x)−
∫
A

f(x)

∣∣∣∣ ≤ Nm(EN4A) < Nε

If we choose ε small enough, we see the contradiction since
∫ 1

0
g(x)f(x) > 0.

Problem 4. (a) Prove that every compact subset of a Hausdorff space is closed.

Proof. Let A be a compact subset of the Hausdorff space X. To show A is closed, we’ll show

Ac = X\A is open. Take x ∈ X\A. Then for every y ∈ A, there are disjoint sets Uy and Vy with

x ∈ Vy and y ∈ Uy.

18
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The collection of open sets {Uy | y ∈ A} forms an open cover of A. Since A is compact, this

open cover has a finite subcover, Uy1 , Uy2 , . . . , Uyn . Let

U := ∪ni=1Uyi V := ∩ni=1Vyi

Since each Uyi and Vyi are disjoint, then U and V are disjoint. Also, A ⊆ U and x ∈ V .

Thus, for every point x ∈ X\A we have found an open set V containing x which is disjoint from

A. So X\A is open and A is closed.

(b) Let f : X → Y be a bijective continuous function between topological spaces. Suppose that X is

compact and Y is Hausdorff and prove that f is a homeomorphism.

Proof. Let g = f−1. We need to show that g is continuous.

For every V ⊆ X, we have g−1(V ) = f(V ). We want to show that if V is closed in X then

g−1(V ) is closed in Y .

Suppose V is closed in X. Since X is compact, V is compact by part (a). So f(V ) is compact

since the continuous image of a compact space is compact.

Since Y is Hausdorff, f(V ) is closed by the fact that a compact subspace of Hausdorff space is

closed. But f(V ) = g−1(V ) so g−1(V ) is closed. So g is continuous and f is a homeomorphism.

(c) Prove or disprove that if X is a dense subset of a topological space Y and if X is Hausdorff in

the relative topology, then Y is also Hausdorff.

Proof. FALSE. Consider Y = {a, b} with discrete topology τ = {∅, {a, b}}. Let X = {a} with

relative topology τX = {∅, {a}}.

Then it’s easy to see X is dense in Y (since every open set containing an element of Y has nonempty

intersection with X, trivially). Since X has only a single element, it’s Hausdorff in the relative

topology trivially. But Y is not Hausdorff.

Problem 5. Prove that the following limit exists and compute its value:

lim
n→∞

∫ n

0

(
n∑
k=0

(−1)kx2k

(2k)!

)
e−2xdx.

Proof. Solution from Sheagan John

Let us first note an important simplification of the integrand, by considering the Taylor series ex-

pansion of cosx around a neighbourhood of 0.

cosx =

∞∑
k=0

(−1)k

(2k)!
x2k

Letting f(x) := (cosx)e−2x and fk(x) := e−2x (−1)k
(2k)! x

2k then it’s clear that {fk} is a convergent

sequence which converges to f(x).
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Now, since | cosx| ≤ 1 we further have that for some positive constant c < 2

|fn(x)| ≤ c|f(x)| = c| cosxe−2x| = c| cosx|e−2x ≤ ce−2x

Since g(x) = ce−2x is integrable on the positive half line

∫ ∞
0

ce−2x dx =
−c
2
e−2x

∣∣∣∣∞
0

=
c

2

the dominated convergence theorem can be applied to the original Lebesgue integral limit, with

fn −→ f , and with g as the dominating function.

lim
n−→∞

∫ n

0

( ∞∑
k=0

(−1)k

(2k)!
x2k

)
e−2x dx = lim

n−→∞

∫ n

0

fn(x) dx =

∫ ∞
0

f(x) dx =

∫ ∞
0

e−2x cosx dx

Recall that the Laplace transform of cosx is
∫∞
0
e−st cos atdt = L{cos ax}(s) = s

s2+a2 . Therefore,

the last integral is equal to 2
22+1 = 2/5.

Problem 6. Let X and Y be Banach spaces (over C)

(a) A linear map T : X → Y is called adjointable if T ∗f ∈ X∗ for every f ∈ Y ∗. Prove that T is

adjointable if and only if T ∈ B(X,Y ).

Proof. ⇐) if T ∈ B(X,Y ) then by definition, for every f ∈ Y ∗, we have T ∗f ∈ X∗

⇒) Suppose T ∗f ∈ X∗ for every f ∈ Y ∗. We will use the Closed Graph Theorem. Suppose

xn → x in X and that Txn → y in Y . Then since T ∗f ∈ X∗ for every f ∈ Y ∗ we can apply this

to the convergence to see that

f(Txn) = (T ∗f)(xn)→ (T ∗f)(x) = f(Tx) ∀f ∈ Y ∗

By the Hahn-Banach theorem, Y ∗ separates points in Y so therefore, Txn → Tx. Uniqueness

of limits implies Tx = y and so the graph of T is closed. By the Closed Graph Theorem, T is

bounded.

(b) Suppose a bounded linear functional ψ : X∗ → C is weak*- continuous. Show (from the defini-

tions) that there exists x ∈ X such that ψ(φ) = φ(x).

Proof. Define the functional

evx : X∗ → C
f 7→ f(x)
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We want to show that every bounded, linear, weak*-continuous functional ψ : X∗ → C is of this

form.

Indeed, since ψ is weak*-continuous, then it is weak* continuous at 0. Thus, the set {f ∈ X∗ |
|ψ(f)| < 1} is weak* open and must containa neighborhood of 0. By definition of weak* topol-

ogy, there must exist x1, . . . , xn ∈ X such that

V (x1, . . . , xn) := {f ∈ X∗ | |f(xi)| ≤ 1, i = 1, . . . , n} ⊆ {f ∈ X∗ | |ψ(f)| < 1}.

Then we will next show that ∩ni=1 ker(evxi) ⊆ ker(ψ).

Indeed, let f ∈ ker(evxi) so |f(xi)| = 0 for all i = 1, . . . , n. Take ε > 0 and conser g = 1
ε f , so

|g(xi)| = 1
ε |f(xi)| = 0 for all i = 1, . . . , n. In particular, g ∈ V (x1, . . . , xn) and so then we have

if |ψ(g)| < 1 then |ψ(f)| < ε. But ε is arbitrary so ψ(f) = 0, i.e. f ∈ ker(ψ).

Now recall the linear algebra trick that says if for linear functionals ker(T ) ⊆ ker(S) then S is a

scalar multiple of T . In this case, we get that ψ is a linear combination of the evxi , i.e. is of the

form evx where x is a linear combination of the xi’s.

Moreover, because the weak* topology is Hausdorff, x is necessarily unique.

(c) Let S ∈ B(Y ∗, X∗). Prove that S is weak*-weak*-continuous if and only if S = T ∗ for some

T ∈ B(X,Y ).

Proof. ⇐) If S = T ∗ then if fα → f is a weak* convergent net in Y ∗ then for any y ∈ Y ,

fα(y)→ f(y). Therefore,

(Sfα − Sf)︸ ︷︷ ︸
∈X∗

(x) = (Tx) (fα − f)︸ ︷︷ ︸
→0

→ 0.

So S is weak*-weak* continuous.

⇒) Suppose S : Y ∗ → X∗ is weak*-weak* continuous. Then the evaluation function on x,

evx(S) is weak* continuous on Y ∗ (where evx(S) : Y ∗ → C, (evx(S))(f) = (Sf)(x)).

By part (b), we know that evx(S) is of the form evT (x) for some unique T (x) ∈ Y . Since T (x) is

uniquely determined, it follows that T is linear.

We will now check that T is continuous by the closed graph theorem: if xn → x adn Txn → y

in norm then for each φ ∈ Y ∗ we have

〈φ, y〉 = lim〈φ, Txn〉 = lim〈Sφ, xn〉 = 〈Sφ, x〉 = 〈φ, Tx〉.

And so y = Tx as desired. So T is bounded and therefore, S = T ∗ is bounded as well.

Problem 7. Let (fn)∞n=1 be a sequence of functions fn : [0, 1]→ R.

NOTE: I think we also require continuous....

(a) What does it mean for {fn | n ≥ 1} to be equicontinuous?

Proof. {fn | n ≥ 1} is said to be equicontinuous if for every ε > 0, there exists a δ > 0 such that

for all x, y ∈ [0, 1], if |x− y| < δ then |f(x)− f(y)| < ε.
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(b) Suppose that for every n, fn is differentiable and |f ′n(t)| ≤ 1 for all t. Prove that {fn | n ≥ 1} is

equicontinuous.

Proof. Since |f ′n(t)| ≤ 1 for all t, then for all n, we have by the mean value theorem that

|fn(x)− fn(y)|
|x− y|

≤ 1.

Hence, for any fixed ε > 0, setting δ = ε and for |x− y| < δ then

|fn(x)− fn(y)| ≤ |x− y| < δ = ε.

(c) Suppose the hypothesis of (b) holds and assume in addition that |fn(0)| ≤ 1 for every n ≥ 1.

Prove that there exists a continuous function f : [0, 1] → R and a subsequence (fn(k))
∞
k=1 con-

verging uniformly to f .

Proof. This is essentially the Arzela-Ascoli Theorem. Since |fn(0)| ≤ 1 for all n and since

|f ′n(t)| ≤ 1 for all t, then |fn(t)| ≤ 2 for all t ∈ [0, 1] and for all n. That is, {fn} is uniformly

bounded. It’s also equicontinuous by part (b). Therefore, Arzela-Ascoli theorem states that

there is a subsequence {fnk} which converges uniformly. Let f be the limit, and we finish by

recalling that the uniform convergence of continuous functions is also continuous.

Note: it might be good to know the Arzela-Ascoli Theorem.

(d) Show by example that the limit function f need not be differentiable.

Proof. Take fn(x) =
√
x2 + 1/n so fn(0) = 1√

n
≤ 1 for all n and so {fn} is uniformly bounded.

Next, we can see that f ′n(x) = x√
x2+1/n

so that for x ∈ [0, 1] we have |f ′n(x)| ≤
√

n
n+1 ≤ 1 as

desired.

However, it’s also clear that the limit must be f = |x| which is not differentiable.

Problem 8. Let H be a complex Hilbert space. Given a non-empty set E ⊆ H and x ∈ H, put

dist(x,E) = inf{‖x− y‖ | y ∈ E} and E⊥ = {x ∈ H | 〈x, y〉 = 0 ∀y ∈ E}.

(a) Let H0 ⊆ H be a closed subspace and x ∈ H. Prove that there exists x0 ∈ H0 such that ‖x −
x0‖ = dist(x,H0).

Proof. Let δ = dist(x,H0). Then there exists a sequence (yn) ∈ H0 such that δn := ‖x − yn‖ →
δ. We will show that (yn) is Cauchy. Indeed,

0 ≤ ‖yn − ym‖2 = −‖yn + ym − 2x‖2 + 2(‖yn − x‖2 + ‖ym − x‖2) ≤ −4δ2 + 2(δ2n + δ2m)→ 0.

where we use the fact that
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‖yn + ym − 2x‖2 = 4

∥∥∥∥∥∥∥∥
yn + ym

2︸ ︷︷ ︸
∈H0

−x

∥∥∥∥∥∥∥∥
2

≤ 4δ.

Thus, (yn) is a Cauchy sequence and so because we are in a Hilbert space, (yn) converges to

some point x0 ∈ H. Since H0 is closed and yn ∈ H0 for all n then we get that x0 ∈ H0. Finally,

‖x− x0‖ = lim ‖x− yn‖ = lim δn = δ.

Exercise: it can be shown if H0 is convex, then the choice of x0 is unique!

(b) With x and x0 as above, prove that x− x0 is orthogonal to H0.

Proof. Let y ∈ H0 be an arbitrary vector with ‖y‖ = 1, set α := 〈x − x0, y〉. Then since α〈x −
x0, y〉 = αα = |α|2 and α〈y, x− x0〉 = αα = |α|2, we have

‖x−(x0+αy)‖2 = ‖x−x0−αy‖2 = ‖x−x0‖2−α〈x−x0, y〉−α〈y, x−x0〉+ |α|2 = ‖x−x0‖2−|α|2.

So since x0 + αy ∈ H0 then ‖x− x0 − αy‖ ≥ ‖x− x0‖. Hence α = 0.

Therefore, for any nonzero y ∈ H0 we can write

〈x− x0, y〉 = ‖y‖〈x− x0, y/‖y‖〉 = ‖y‖0 = 0.

So 〈x− x0, y〉 = 0 for all y ∈ H0 so x− x0 ⊥ H0.

(c) Prove that H = H0 ⊕H⊥0 (the algebraic direct sum)

Proof. This follows immediately from parts (a) and (b). Take some arbitrary x ∈ H. We can

find the appropriate x0 as above, so x = x0 + (x− x0) ∈ H0 ⊕H⊥0 .

The fact that it is a direct sum follows from the fact that H0 ∩H⊥0 = {0}.

(d) Let E ⊆ H be non-empty. Prove that (E⊥)⊥ = E if and only if E is a closed subspace.

Proof. If E is closed, then the above parts (a),(b), and (c) apply and prove that (Eperp)⊥ =

E. To see the converse, we will instead show that (E⊥)⊥ = E. The desired result will then

immediately follow.

Since E ⊆ E then E
⊥ ⊆ E⊥ and therefore, (E⊥)⊥ ⊆ (E

⊥
)⊥. Since E is closed, then (E

⊥
)⊥ =

E so (E⊥)⊥ ⊆ E.

Conversely, since E⊥ is closed for every E (independent of whether E is closed or not) then

(E⊥)⊥ is closed and so since E ⊆ (E⊥)⊥, then by the monotonicity of topological closure we

have that E ⊆ (E⊥)⊥ = (E⊥)⊥.

Therefore, (E⊥)⊥ = E.

Problem 9. Let V be a vector space over R or C. Recall that a Hamel basis for V is a linearly in-

dependent subset of V whose linear span equals V .
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(a) Let S ⊆ V and suppose the linear span of S equals V . Show that V has a Hamel basis that is a

subset of S.

Proof. Choose a Hamel basis B of S. Then it is easy to check that B is a Hamel basis of V .

(b) Suppose V has an infinite Hamel basis and show that all hamel bases of V have the same cardi-

nality.

Proof. Suppose that {vi}i∈I and {uj}j∈J are two infinite bases for V . For each i ∈ I, then vi is

in the linear span of {uj}j∈J . Therefore, there exists a finite subset Ji ⊆ J such that vi is in the

linear span of the vectors {uj}j∈Ji . Therefore, V = span({vi}i∈I) ⊆ span{uj}j∈∪Ji . Since no

proper subset of {uj}j∈J can span V , it follows that J = ∪i∈IJi. Therefore |J | ≤ |I|.

A symmetric argument shows that |I| ≤ |J |.

Problem 10. Suppose (X,M, ρ) is a finite measure space and A ⊆ M is an algebra of sets with a

finitely additive complex measure µ : A → C such that |µ(E)| ≤ ρ(E) for all E ∈ A. Show that there

exists a complex measure ν :M→ C whose restriction to A is µ and such that |ν(E)| ≤ ρ(E) for all

E ∈M.

Hint: you may want to consider the subspace V ⊆ L1(ρ) that is spanned by the set of characteristic

functions χE for E ∈ A, and a certain linear functional on V .

Proof. Solution from Minh Kha.

For each subalgebra U of M, we define SU to be the set of all simple functions of the form
∑n
i=1 ciχEi

where ci ∈ R, Ei ∈ U . Then SA is a vector subspace of SM.

Now define p : SM → R such that

p(f) = sup

{
n∑
i=1

|ci|ρ(Ei) | f =

n∑
i=1

ciχEi , Ei ∩ Ej = ∅ ∀i 6= j, Ei ∈M, ci ∈ R

}
∀f ∈ SM

It’s not difficult to check that p satisfies p(f + g) ≤ p(f) + p(g) for all f, g ∈ SM and p(tf) = tp(f)

for all t ∈ R+, f ∈ SM. Thus, p is a seminorm and is just an extension of the total variation of the

measure p when you apply to the function f = 1.

Define a linear map T : SA → R defined by

T (f) =

∫
X

fdµ ∀f ∈ SA

This is linear because of the finite additive property of µ. Then |T (f)| ≤ p(f) for all f ∈ SA. By

Hahn-Banach, we get a linear extension of T on SM, which we denote by T̃ . Moreover, this exten-

sion T̃ : SM → R satisfies |T̃ (f)| ≤ p(f) for all f ∈ SM.

Now, we define a finite additive measure ν on M by letting ν(E) = T̃ (χE) for all E ∈ M. Thus,

ν|A = µ and |ν(E)| ≤ p(E) for all E ∈M.

24



5 AUGUST 2017 Kari Eifler

To check the countably additive property of ν, consider any countable collection of disjoint measur-

able subsets Ei ∈ M and so χ∪iEi =
∑
i
χEi . Thus, ν(∪iEi) =

∑
i ν(Ei) since the series

∑
i T̃ (Ei)

converges (use |T̃ (f)| ≤ p(f) for all f ∈ SM and properties of the measure p).

For the complex case, repeat the trick by proving the complex version of the Hahn-Banach theorem

from the real version.

5 August 2017

Problem 1. Let (Ω,A, µ) be a measure space and let {fn} be a sequence of measurable functions

on X. Prove, directly from the definition of convergence almost everywhere, that if
∑
n µ[|fn| >

1/n] < ∞, then the sequence {fn} converges almost everywhere to zero. Deduce that every sequence

of measurable functions that converges in measure to zero has a subsequence that converges almost

everywhere to zero.

Proof. Let E = {x ∈ Ω | limn |fn(x)| = 0}. We want µ(Ec) = 0. Let

M =

∞⋂
m=1

∞⋃
n=m

{x ∈ Ω | |fn(x)| > 1/n}

Since

µ

( ∞⋃
n=m

{
x ∈ Ω | |fn(x)| > 1

n

})
≤
∞∑
n=m

µ

({
x ∈ Ω | |fn(x)| > 1

n

})
→ 0.

Therefore, µ(M) = 0 and

M c =

∞⋃
m=1

∞⋂
n=m

{x ∈ Ω | |fn(x)| ≤ 1/n}.

Note: fn(x)→ 0 if and only if ∀ε > 0, ∃N s.t. ∀n > N , |fn(x)| < ε.

So for any x ∈M c choose 1/N < ε s.t. ∀n > N we have |fn(x)| ≤ 1
n <

1
N < ε.

Therefore M c ⊆ E, so Ec ⊆ M , implying µ(Ec) = 0. So then {fn} converges almost everywhere to

zero.

Step 2: We will show that if fn → 0 in measure, then there exists a subsequence that converges to 0

pointwise almost everywhere.

Suppose for every ε > 0, µ({x | |fn(x)| ≥ ε})→ 0. Choose a subsequence {fnk} such that if

Ej = {x | |fnj (x)− fnj+1
(x)| > 2−j}
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satisfies µ(Ej) < 2−j . Let Fk = ∪∞j=kEj so µ(Fk) ≤
∑∞
j=k 2−j ≤ 21−k. Let F = ∩kFk so µ(F ) = 0.

For x /∈ Fk and for i ≥ j ≥ k then

|fni(x)− fnj (x)| ≤
i−1∑
`=j

|fn`(x)− fn`+1
(x)| ≤

i−1∑
`=j

2` ≤ 2−j → 0 as k →∞.

So fnk is pointwise Cauchy on x /∈ F , so let

f(x) =

{
lim fnk(x) x /∈ F
0 otherwise

So fnk → 0 almost everywhere and fn → f in measure since

µ({x | |fn(x)− f(x)| ≥ ε}) ≤ µ({x | |fn(x)− fn`(x)| ≥ ε/2})︸ ︷︷ ︸
→0

+µ({x | |fn`(x)− f(x)| ≥ ε})︸ ︷︷ ︸
→0

and

µ({x | |f(x)| ≥ ε}) ≤ µ({x | |f(x)− fn(x)| ≥ ε/2}︸ ︷︷ ︸
→0

+µ({x | |fn(x)| ≥ ε/2})︸ ︷︷ ︸
→0

so f = 0 almost everywhere. Thus, {fnk} converges to 0 almost everywhere.

Problem 2. Show that there is a sequence of nonnegative functions {fn} in L1(R) such that ‖fn‖L1(R) →
0, but for any x ∈ R, lim supn fn(x) =∞.

Proof. We will explicitely construct such a sequence. Consider the following pattern:

To cover [−1, 1] let

f1 =
√

1χ[−1,0], f2 =
√

1χ[0,1].

so that ‖f1‖L1(R) = 1 = ‖f2‖L1(R). To cover [−2, 2], next let

f3 =
√

2χ[−2,−1.5], f4 =
√

2χ[−1.5−1] . . . , f10 =
√

2χ[1.5,2]

so then 1√
2

= ‖f3‖L1(R) = ‖f4‖L1(R) = . . . = ‖f10‖L1(R). Next, we cover [−3, 3] so that

f11 =
√

3χ[−3,−2.666], . . . f28 =
√

3χ[2.666,3]

so that 1√
3

= ‖f11‖L1(R) = . . . = ‖f28‖L1(R). If we continue in this fashion, we get the desired

functions.
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Explicitely, for n =
∑N−1
i=1 2i2 + k = 1

3 (N − 1)(N)(2N − 1) + k where N ∈ N, 0 ≤ k < 2N2, then we

set

fn =
√
Nχ[−N+k/N,−N+(k+1)/N ]

so that ‖fn‖L1(R) = 1√
N

but for every x ∈ R, it’s clear that lim supn fn(x) =∞.

Problem 3. Construct a sequence of nonnegative Lebesgue measurable functions {fn} on [0, 1] such

that

(a) fn → 0 almost everywhere, and

(b) for any interval [a, b] ⊆ [0, 1],

lim
n→∞

∫ b

a

fn(x)dx = b− a.

Proof. Claim. For any f ≥ 0 that is continuous on [0, 1], n
∫
[x,x+ 1

n2 ]
(f(y)− f(x))dy = o( 1

n ).

For any ε > 0, ∃N ∈ N such that 0 < x < 1
N then f(x)−f(0) < ε. Hence for n > N , n

∫
[0, 1

n2 ]
(f(x)−

f(0)) < nε 1
n2 .

A clear extension to this is that
∫
[x,x+ 1

n ]
(f(y)− f(x))dy = o( 1

n ).

Let fn(x) :=
∑n−1
k=0 nχ[ kn ,

k
n+ 1

n2 ], and let ε,N be as above. Clearly fn is measurable and satisfies (a)

above. To prove (b), observe that, for n > N ,

Ik :=

∣∣∣∣∣
∫ k+1

n

k
n

nfχ[ kn ,
k
n+ 1

n2 ] − f

∣∣∣∣∣
=

∣∣∣∣∣n
∫ k

n+ 1
n2

k
n

f −
∫ k+1

n

k
n

f

∣∣∣∣∣
= o

(
1

n

)
.

Hence |
∫

(ffn − f)| ≤
∑n−1
k=0 Ik = o(1).

This holds for all f ∈ C([0, 1]), so in particular, it will hold for f = χ[a,b].

Problem 4. In this problem the measure is Lebesgue measure on [0, 1]. The norm on L∞[0, 1] is

the essential supremum norm, which for a continuous function is the same as the supremum norm.

(a) Prove or disprove that L∞[0, 1] is separable in the norm topology.

Proof. L∞[0, 1] is not separable in the norm topology. Consider the collection of functions fr =
χ[−r,r] for real 1 ≥ r > 0. Since there are uncountably many such r and since ‖fr − fr′‖∞ = 1

for any r 6= r′, it’s impossible to have a countable subset of L∞[0, 1] that is dense in it.
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(b) Recall that L∞[0, 1] = (L1[0, 1])∗. What is the weak* closure in L∞[0, 1] of the unit ball of

C[0, 1]? Prove your assertion.

Proof. More general claim: For X an infinite dimensional Banach space, SX∗
w∗

= BX∗ .

We know for any x1, x2, . . . , xn ∈ X, there exists some x∗0 6= 0 such that x∗0(xi) = 0. Indeed,

if this were not true then otherwise, x∗0(xi) 6= 0 for some i, let ϕ : X∗ → Rn be ϕ(x∗) =

(x∗(x1), . . . , x∗(xn)) then ϕ is injective so dim(X∗) ≤ dim(Rn) = n. Contradiction, so true.

Now for any x∗ ∈ BX∗ , consider it’s neighborhood (open under the w∗-neighborhood)

V = ∩ni=1{y∗ ∈ X∗ | |x̂i(x∗ − y∗)| = |x∗(xi)− y∗(xi)| < ε}

for each {xi}ni=1 choose such an x∗0 6= 0 from the claim.

Consider the line {x∗ + tx∗0 | t ∈ R} in X∗.

Since for any x̂i,

x̂i(x
∗ + tx∗0 − x∗) = tx̂i(x

∗
0) = tx∗0(xi) = 0 < ε.

Then {x∗ + tx∗0 | t ∈ R} ⊆ V . Since ‖x∗ + tx∗0‖ is continuous about t, then we can find t0 such

that ‖x∗ + t0x
∗
0‖ = 1 ⇒ V ∩ SX∗ 6= ∅.

Since any neighborhood of x∗ contains a neighborhood of the form V as above (i.e. these V ’s

are a neighborhood basis) then BX∗ ⊆ SX∗
w∗

.

On the other hand, for any x∗0 ∈ BX∗ , by Hahn-Banach separation Theorem, we know there

exists x ∈ X and c ∈ R such that x∗(x) < c < x∗0(x) for all x∗ ∈ BX∗ .

Then for all {x∗n} ⊆ BX∗ , x
∗
n(x) ≤ c < x∗0(x). Therefore, x∗0 isn’t an accumulation point of BX∗

which implies BX∗
w∗

= BX∗ . Thus, SX∗
w∗ ⊆ BX∗

w∗

= BX∗ so BX∗ = SX∗
w∗

.

Problem 5. Prove that if a1, a2, . . . , aN are complex numbers, then

(a)
∫ 1

0
|
∑N
k=1 ak exp(2πikt)|pdt ≤

∑N
k=1 |ak|p, if 1 ≤ p ≤ 2, and

(b)
∫ 1

0
|
∑N
k=1 ak exp(2πikt)|pdt ≥

∑N
k=1 |ak|p, if 2 ≤ p <∞.

Proof. Note first the following facts:

• {exp(2πikt)} is orthonormal in L2

• For a finite measure space and p ≤ q, then

‖f‖p ≤ µ(X)1/p−1/q‖f‖q

• For a discrete X and p ≤ q, ‖f‖q ≤ ‖f‖p.
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Since {exp(wπikt)} is orthonormal, then

∥∥∥∥∥
N∑
k=1

ak exp(2πikt)

∥∥∥∥∥
2

2

=

N∑
k=1

|ak|2.

Then if we let a = (a1, . . . , aN ) and f =
∑N
k=1 ak exp(2πikt), we see that for 1 ≤ p ≤ 2, we have

∫ 1

0

∣∣∣∣∣
N∑
k=1

ak exp(2πikt)

∣∣∣∣∣
p

dt = ‖f‖pp ≤ ‖f‖
p
2 = ‖a‖p2 ≤ ‖a‖pp.

To see (b), then similarly for 2 ≤ p <∞,

∫ 1

)

∣∣∣∣∣
N∑
k=1

ak exp(2πikt)

∣∣∣∣∣
p

dt = ‖f‖pp ≥ ‖f‖
p
2 = ‖a‖p2 ≥ ‖a‖pp.

Problem 6. Prove that if X is an infinite dimensional Banach space and X∗ is separable in the

norm topology, then there is a sequence {xn} of norm one vectors in X such that {xn} converges

weakly to zero.

Proof. Suppose {x∗n} is a dense, countable subset of X∗.

Claim: For every n, then ∩nk=1 ker(x∗k) is non-trivial.

Indeed, assume to the contrary that ∩nk=1 ker(x∗k) = {0}. Then the map

F : X → Fn

x 7→ (x∗1(x), . . . , x∗n(x))

is linear and injective. Let {e1, . . . , em} be a basis for F (X). Choose yk ∈ F−1({ek}). For all x ∈
X, we can write F (x) =

∑m
i=1 aiei. so F (x−

∑
aiyi) =

∑
aiei −

∑
aiei = 0 so x is in the span and

then X must be finite dimensional, contradiction! So the claim holds.

Now, choose xn ∈ SX ∩ (∩nk=1 ker(xk)). Fix x∗ ∈ X∗, ε > 0, so ∃N ∈ N such that ‖x∗ − x∗N‖ < ε.

Then for all n ≥ N , xn ∈ ker(x∗N ) so

|x∗(xn)| = |(x∗ − x∗n)(xn)| ≤ ‖x∗ − x∗N‖ < ε

So then x∗(xn)→ 0.

Problem 7. Prove or disprove each of the following statements.

(a) If {fn} is a sequence in C[0, 1] that converges weakly, then also {f2n} converges weakly.
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Proof. YES. Recall that fn ∈ C[0, 1] converges weakly if and only if it converges pointwise and

is uniformly bounded.

Suppose fn → f weakly, let M := supn ‖fn‖ <∞. Then fn → f pointwise so f2n → f2 pointwise

and supn ‖f2n‖ = M2 <∞. So f2n → f2 weakly.

(b) If {fn} is a sequence in L2[0, 1] that converges weakly, then also {f2n} converges weakly. (Lebesgue

measure on [0, 1])

Proof. NO. Take fn(x) = x−1/3χ[1/n,1](x), so fn → f = x−1/3 in norm but f2n(x) = x−2/3χ[1/n,1](x)

but

∫ 1

0

f2n(x)x−1/3dx =

∫ 1

0

x−1χ[1/n,1] = log(n)→∞.

Problem 8. Let {fn} be a sequence of continuous functions on R that converges pointwise to a real

valued function f . Prove that for each a < b, the function f is continuous at some point of [a, b].

Hint: Let En,m,k = [|fn − fm| ≤ 1/k].

Proof. Fix some [a, b] ⊆ [0, 1]. By Egoroff’s Theorem, fn → f uniformly outside a set of measure
b−a
2 . Then f must be continuous outside of this set.

Note: Likely, the question was meant to prove Egoroff’s theorem, see Folland for that proof!

Problem 9. Let X and Y be compact Hausdorff spaces and let S be the set of all real functions on

X × Y of the form h(x, y) = f(x)g(y) with f in C(X) and g in C(Y ).

Prove or disprove that the linear span of S is dense in C(X × Y ).

Proof. We will use Stone-Weirstrass theorem here. Note that if h1(x, y) = f1(x)g1(y) and h2(x, y) =

f2(x)g2(y) are two functions in S, then

(h1h2)(x, y) = h1(x, y)h2(x, y) = f1(x)g1(y)f2(x)g2(y) = (f1f2)(x)(g1g2)(y)

where if f1, f2 ∈ C(X) then so is f1f2 (and similarly, g1g2 ∈ C(Y )). So then S is an algebra. Thus,

it follows that span(S) is an algebra as well.

Next, S separates points. Indeed, suppose (x, y) 6= (x′, y′) in X × Y . If x 6= x′ then choose some

f ∈ C(X) that separates x and x′. Take g ∈ C(Y ) to be the constant function g = 1. Then letting

h(x, y) := f(x)g(y) = f(x), h separates the two points. If x = x′ then y 6= y′ so the same trick

works, setting f = 1 ∈ C(X) and choosing g to separate y and y′, letting h(x, y) := f(x)g(y) = g(y)

to then separate points.

Therefore, by the Stone-Weierstass theorem, span(S) is dense in C(X × Y ).

Problem 10. Let X be a Hilbert space and assume that {xn} is a sequence in X that converges

weakly to zero. Prove that there is a subsequence {yk} of {xn} such that the sequence ‖N−1
∑N
k=1 yk‖

converges to zero.
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Caution: the same statement is NOT true in all Banach spaces, not even in all reflexive Banach

spaces.

Proof. Note: This is the Banach-Saks Theorem

We shall successively choose the nk in the following manner. Beginning for definiteness with n1 = 1,

let n2 be the first index such that |〈f1, fn〉| ≤ 1 (this choice is possible since 〈f1, fn〉 → 0 as n →
∞). In general, after having chosen fn1 , fn2 , . . . , fnk , we choose nk+1 so that

|〈fn1
, fnk+1

〉| ≤ 1

k
, . . . , |〈fnk , fnk+1

〉| ≤ 1

k

Since {fn} converges weakly, then it is bounded and so ‖fn‖ forms a bounded sequence, say ‖fn‖ ≤
M so by expanding the inner product, we get

∥∥∥∥fn1 + fn2 + . . .+ fnk
k

∥∥∥∥2 ≤ kM2 + 2× 1 + 4× 1
2 + . . .+ 2(k − 1)× 1

k−1
k2

<
M2 + 2

k

which then implies

∥∥∥∥fn1 + fn2 + . . .+ fnk
k

∥∥∥∥2 → 0.

Problem 11. Let F ⊆ C([0, 1]) be a family of continuous functions such that

(a) the derivative f ′(t) exists for all t ∈ (0, 1) and f ∈ F .

(b) supf∈F |f(0)| <∞ and supf∈F supt∈(0,1) |f ′(t)| <∞.

Prove that F is precompact in the Banach space C([0, 1]) equipped with the norm ‖f‖ = supt∈[0,1] |f(t)|.

Proof. We will use the Arzela-Ascoli Theorem.

To see F is equicontinuous, fix some ε > 0, and let δ = ε
M where M = supf∈F supt∈(0,1) |f ′(t)| < ∞.

Then by the mean value theorem, for any a < b, there exists some c ∈ (a, b) such that f ′(c) =
f(b)−f(a)

b−a so that |f(b)− f(a)| ≤ |f ′(c)||b− a| ≤M |b− a| < Mδ = ε.

To see F is pointwise bounded, we see that for any b ∈ [0, 1], then for some c ∈ [0, b], we have f(b) =

f ′(c)b+ f(0), so that

|f(b)| ≤M + sup
f∈F
|f(0)|.

That is, F is uniformly bounded!

Then by Arzela-Ascoli, F is compact.
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Problem 12. Let {xn} be a weakly Cauchy sequence in a normed linear space X. Prove that

(a) xn is norm bounded in X

Proof. Let c denote the space of convergent sequences, and consider the map

T : X∗ → c

x∗ 7→ (x∗(xn))

By the Uniform Boundedness Principle, T is closed. Then by the closed graph theorem, T is

continuous, so ‖T‖ <∞. By Hahn-Banach Theorem, ‖T‖ = supn ‖xn‖.

(b) There exists x∗∗ in X∗∗ such that xn converges weak* to x∗∗, and ‖x∗∗‖ ≤ lim inf ‖xn‖.

Proof. Since (xn) is weakly Cauchy, then for every x∗ ∈ X∗ the sequence (x∗(xn)) is Cauchy,

hence convergent. We can define

x∗∗ : X∗∗ → C
x∗ 7→ lim

n
x∗(xn)

Uniform boundedness shows that ‖xn‖ is bounded, hence x∗∗ is bounded. Finally,

|x∗∗(x∗)| = lim inf |x∗(xn)| ≤ lim inf ‖x∗‖‖xn‖ =
(

lim inf ‖xn‖
)(
‖x∗‖

)
.

So then ‖x∗∗‖ ≤ lim inf ‖xn‖.

6 January 2017

Problem 1. Let (Ω,A, µ) be a measure space. Prove directly from the definition of convergence

almost everywhere that if for all n, µ
({
x ∈ Ω | |fn(x)| > 1

n

})
< n−3/2, then fn → 0 µ-a.e.

Proof. Let E = {x ∈ Ω | limn |fn(x)| = 0}. We want µ(Ec) = 0. Let

M =

∞⋂
m=1

∞⋃
n=m

{x ∈ Ω | |fn(x)| > 1/n}

Since

µ

( ∞⋃
n=m

{x ∈ Ω | |fn(x)| > 1

n
}

)
≤
∞∑
n=m

µ

({
x ∈ Ω | |fn(x)| > 1

n

})
<

∞∑
n=m

n−3/2 → 0.
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Therefore, µ(M) = 0 and

M c =

∞⋃
m=1

∞⋂
n=m

{x ∈ Ω | |fn(x)| ≤ 1/n}.

Note: fn(x)→ 0 if and only if ∀ε > 0, ∃N s.t. ∀n > N , |fn(x)| < ε.

So for any x ∈M c choose 1/N < ε s.t. ∀n > N we have |fn(x)| ≤ 1
n <

1
N < ε.

Therefore M c ⊆ E, so Ec ⊆M , implying µ(Ec) = 0.

Problem 2. Find all f in L1(1, 2) such that for every natural number n we have
∫ 2

1
x2nf(x)dx = 0.

Give reasons for all assertions you make.

Proof. Let f(x) = 0 on x = 1, 2. We now consider f ∈ L1[1, 2]. Using Stone-Weierstrass to show we

can pass to the case
∫ 2

1
g(x)f(x) = 0 for all g ∈ C[1, 2].

By a standard density argument, we may pass to the case where g is a step function. We claim that

f = 0 a.e.

Assume not. WLOG there exists some E = {x ∈ [1, 2] | f(x) > 0} with m(E) > 0 (else consider

−f).

Since f ∈ L1[1, 2] then E∞ := {x ∈ [1, 2] | f(x) = ∞} is a null set. Define En := {x ∈ [1, 2] | 1/n <
f(x) < n}. We can write E = (

⋃
nEn) ∪ E∞. So there exists some N such that m(EN ) = a > 0.

We can write A as a finite disjoint union of open intervals, A = tmi=1Ii, such that m(EN4A) < ε

and A ⊆ EN .

Put g =
∑m
i=1

χIi , then
∫ 2

1
g(x)f(x) =

∫
EN

f(x)dx. Since

∣∣∣∣∫
EN

f(x)−
∫
A

f(x)

∣∣∣∣ ≤ Nm(EN4A) < Nε

If we choose ε small enough, we see the contradiction since
∫ 2

1
g(x)f(x) > 0.

Problem 3. A. Prove that there exists a sequence of measurable functions gn on [0, 1] such that

(a) gn(x) ≥ 0 for any x ∈ [0, 1];

(b) limn gn(x) = 0 a.e.;

(c) For any continuous function f ∈ C[0, 1],

lim
n→∞

∫ 1

0

f(x)gn(x)dx =

∫ 1

0

f(x)dx.

Proof. (Solution from Ting Lu, TeX-ed by John Weeks)

It suffices to assume f is non-negative. Any f ∈ C[0, 1] is uniformly continuous since [0, 1] is

compact. The following lemma will then come in handy:

Claim. With f as above, n
∫
[x,x+ 1

n2 ]
(f(y)− f(x))dy = o( 1

n ).
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For any ε > 0, ∃N ∈ N such that 0 < x < 1
N then f(x) − f(0) < ε. Hence for n > N ,

n
∫
[0, 1

n2 ]
(f(x)− f(0)) < nε 1

n2 .

A clear extension to this is that
∫
[x,x+ 1

n ]
(f(y)− f(x))dy = o( 1

n ).

Let gn(x) :=
∑n−1
k=0 nχ[ kn ,

k
n+ 1

n2 ], and let ε,N be as above. Clearly gn is measurable and satisfies

(a) and (b) above. To prove (c), observe that, for n > N ,

Ik :=

∣∣∣∣∣
∫ k+1

n

k
n

nfχ[ kn ,
k
n+ 1

n2 ] − f

∣∣∣∣∣
=

∣∣∣∣∣n
∫ k

n+ 1
n2

k
n

f −
∫ k+1

n

k
n

f

∣∣∣∣∣
= o

(
1

n

)
.

Hence |
∫

(fgn − f)| ≤
∑n−1
k=0 Ik = o(1).

B. If gn is a sequence of measurable functions on [0, 1] such that (a), (b), and (c) are satisfied,

what can you say about
∫ 1

0
supn gn(x)dx?

Proof. here

Problem 4. We say that a sequence {an}∞n=1 in [0, 1] is equidistributed (in [0, 1]) if and only if for

all intervals [c, d] ⊂ [0, 1],

lim
n→∞

|{a1, . . . , an} ∩ [c, d]|
n

= d− c.

(Here |A| denotes the number of elements in the set A.)

Let µN = 1
N

∑
1≤n≤N δan with δan the point measure at an, that is, for any subset S ∈ [0, 1],

δan(S) =

{
1 if an ∈ S
0 if an /∈ S

.

Show that {an} ⊂ [0, 1] is equidistributed if and only if

lim
N→∞

∫ 1

0

fdµN =

∫ 1

0

fdm,

for all continuous functions on [0, 1], where m is Lebesgue measure.

Proof. Note that {an} is equidistributed if and only if

lim
n

|{a1, . . . , an} ∩ [c, d]|
n

= d− c
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if and only if

lim
n

∫ 1

0

fdµN =

∫ 1

0

fdm for f simple functions (since we can take f = χ[c,d])

⇒) It’s easy to see if {an} is equidistributed for f = χ[c,d].

lim
N

∫ 1

0

fdµN = lim
N

|{a1, . . . , aN} ∩ [c, d]|
N

= d− c =

∫ 1

0

fdm

Thus, ”=” holds for step functions.

Using Darboux’s definition of integral for f ∈ C[0, 1], ∀ε > 0 there exists step functions f1, f2 such

that f1 ≤ f ≤ f2 and
∫ 1

0
(f2 − f1)dx < ε where the lower sum is

∫ 1

0

f1(x)dx = lim
N

1

N

N∑
1

f1(an) ≤ lim inf
N

1

N

N∑
1

f(an)

and the upper sum is

∫ 1

0

f2(x)dx = lim
N

1

N

N∑
1

f2(an) ≥ lim sup
N

1

N

N∑
1

f(an)

Then

∣∣∣∣∣lim sup
N

1

N

N∑
1

f(an)− lim inf
N

1

N

N∑
1

f(an)

∣∣∣∣∣ ≤ ε.
Therefore limN

1
N

∑N
1 f(an) exists and by definition must be

∫ 1

0
fdµ.

⇐) If we know limK

∫ 1

0
gndµK =

∫ 1

0
gndµ for all gn ∈ C[0, 1]. Let f = χ[c,d], choose gn → f in L1

and each gn ↘ f positive, gn ∈ C[0, 1] with gn|[c,d] = 1 = f |[c,d].

We want to show limK

∫ 1

0
fdµK =

∫ 1

0
fdm. Indeed,
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∣∣∣∣∫ 1

0

fdµK −
∫ 1

0

fdm

∣∣∣∣ =

∣∣∣∣∣
∫ d

c

fdµK −
∫ d

c

fdm

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

gndµK −
∫ d

c

fdm

∣∣∣∣∣
=

∫ d

c

gndµK −
∫ d

c

fdm

≤
∫ 1

0

gndµK −
∫ 1

0

fdm

≤
∣∣∣∣∫ 1

0

gndµK −
∫ 1

0

gndm

∣∣∣∣+

∣∣∣∣∫ 1

0

gndm−
∫ 1

0

fdm

∣∣∣∣→ 0.

Problem 5. Consider the space C([0, 1]) of real-valued continuous functions on the unit interval

[0, 1]. We denote by ‖f‖∞ := supx∈[0,1] |f(x)| the supremum norm of f ∈ C([0, 1]) and by ‖f‖2 :=

(
∫ 1

0
|f(x)|2dx)

1
2 the L2-norm of f ∈ C([0, 1]). Let S be a closed linear subspace of (C([0, 1]), ‖ · ‖∞).

Show that if S is complete in the norm ‖ · ‖2, then S is finite-dimensional.

Proof. Let T : (S, ‖ · ‖2)→ (S, ‖ · ‖∞) by T (x) = x. Note that both spaces are complete.

Assume xn → x in ‖ · ‖2 and T (xn)→ y in ‖ · ‖∞ then

‖T (xn)− y‖2 ≤ ‖T (xn)− y‖∞ → 0.

So

‖x− y‖2 ≤ ‖x− T (xn)‖2 + ‖T (xn)− y‖2 ≤ ‖x− xn‖2 + ‖T (xn)− y‖∞ → 0

so x = T (x) = y.

Therefore, by closed graph theorem, we know T is bounded. So there exists some C such that ‖f‖∞ ≤
C‖f‖2.

Now let f1, . . . , fn be an orthonormal family in S. Then for all fixed x ∈ [0, 1]

f1(x)2 + · · ·+ fn(x)2 ≤ ‖f1(x)f1 + · · ·+ fn(x)fn‖∞ ≤ C‖f1(x)f1 + · · ·+ fn(x)fn‖2

So then because fn’s are orthogonal and ‖fk‖22 = 1,

(f1(x)2 + · · ·+ fn(x)2)2 ≤ C2
(
f1(x)2‖f1‖22 + · · ·+ fn(x)2‖fn‖22

)
= C2(f1(x)2 + · · ·+ fn(x)2)
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Then f1(x)2 + · · ·+ fn(x)2 ≤ C2. So

n =

∫ 1

0

f1(x)2 + · · ·+ fn(x)2dx ≤
∫ 1

0

C2dx = C2 ⇒ n ≤ C2

Thus, the number of orthogonal family in S is at most C2. So S is finite dimensional.

Problem 6. Prove that if a function f : [0, 1]→ R is Lipschitz, with

|f(x)− f(y)| ≤M |x− y|

for all x, y ∈ [0, 1], then there is a sequence of continuously differentialbe functions fn : [0, 1] → R
such that

(i) |f ′n(x)| ≤M for all x ∈ [0, 1];

(ii) fn(x)→ f(x) for all x ∈ [0, 1].

Proof. It’s easy to prove f is aboslutely continuous ⇒ f is of bounded variable ⇒ f is differentiable

a.e. ⇒ f ′ exists a.e.

Also, when f ′ exists, |f ′(x)| ≤M .

Then there exists simple φ1, φ2, . . . such that 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |φn| ≤ · · · ≤ |f ′| ≤ M and

φn → f ′ uniformly on [0, 1] where f ′ exists. Define

fn(x) :=

∫ x

0

φn(t)dt+ f(0) f(x) :=

∫ x

0

f ′(t)dt+ f(0)

Then |f ′n(x)| = |φn(x)| ≤M and for all x ∈ [0, 1],

|fn(x)− f(x)| ≤
∫ x

0

|φn(t)− f ′(t)|dt→ 0

since φn converges to f ′ uniformly.

Problem 7. Given f : R → R bounded and uniformly continuous and Kn with Kn ∈ L1(R) for

n = 1, 2, 3, . . . such that

(i) ‖Kn‖1 ≤M <∞, n = 1, 2, 3, . . .

(ii)
∫∞
−∞Kn(x)dx→ 1 as n→∞.

(iii)
∫
{x||x|>δ} |Kn(x)| → 0 as n→∞ for all δ > 0.

Show that Kn ∗ f → f uniformly, where
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Kn ∗ f(x) =

∫ ∞
−∞

Kn(y)f(x− y)dy.

Proof. For all x ∈ R,

|Kn ∗ f(x)− f(x)| ≤
∣∣∣∣Kn ∗ f(x)−

∫ ∞
−∞

Kn(y)f(x)dy

∣∣∣∣+

∣∣∣∣∫ ∞
−∞

Kn(y)f(x)dy − f(x)

∣∣∣∣
≤
∫ ∞
−∞
|Kn(y)||f(x− y)− f(x)|dy + ‖f‖∞

∣∣∣∣∫ ∞
−∞

Kn(y)dy − 1

∣∣∣∣
≤
∫ ∞
−∞
|Kn(y)||f(x− y)− f(x)|dy + cε

=

∫
B(0,δ)

|Kn(y)||f(x− y)− f(x)|dy +

∫
B(0,δ)c

|Kn(y)||f(x− y)− f(x)|dy + cε

For
∫
B(0,δ)

|Kn(y)||f(x− y)− f(x)|dy, by uniform continuity we ahve

∫
B(0,δ)

|Kn(y)||f(x− y)− f(x)|dy ≤ ε
∫
B(0,δ)

|Kn(y)|dy ≤ ε‖Kn‖1 < εM

For
∫
B(0,δ)c

|Kn(y)||f(x− y)− f(x)|dy, by the third assumption we have

∫
B(0,δ)c

|Kn(y)||f(x− y)− f(x)|dy ≤ 2‖f‖∞
∫
B(0,δ)c

|Kn(y)|dy ≤ 2Cε

Let ε→ 0, so we’ve got it.

Problem 8. (a) Construct a Lebesgue measurable subset A of R so that for all reals a < b, 0 <

m(A ∩ [a, b]) < b− a where m is Lebesgue measure on R.

Proof. Enumerate all rational intervals I1, I2, . . . . For each In, construct a fat Cantor set Nn ⊆
In with positive measure.

Since Nn is nowhere dense, there exists some interval Ĩn ⊆ In and Ĩn ∩Nn = ∅.

Construct another fat Cantor set Mn ⊆ Ĩn and define A := ∪Mn.

Now, for all I = [a, b] there exists some n such that Nn ⊆ In ⊆ I with Nn ∩ A = ∅ (can be done

by induction). We see m(A ∩ I) ≥ m(Mn) > 0 and

m(A ∩ I) < m(I\Nn) = m(I)−m(Nn) < m(I) = b− a.

(b) Suppose A ⊆ R is a Lebesgue measurable set and assume that

m(A ∩ (a, b)) ≤ b− a
2
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for any a, b ∈ R, a < b. Prove that µ(A) = 0.

Proof. Consider an open set U ⊇ A with m(U\A) < ε. Then U = t∞i=1(ai, bi) and measurable.

So

m(U) = m(A ∩ U) +m(U ∩Ac) < m(A ∩ U) + ε

Since

m(A ∩ U) = m (A ∩ (t∞i=1(ai, bi))) =

∞∑
i=1

m(A ∩ (ai, bi)) ≤
∞∑
i=1

bi − ai
2

=
1

2
m(U)

then

m(U) <
1

2
m(U) + ε ⇒ m(U) < 2ε ⇒ m(A) ≤ m(U)→ 0

Problem 9. Prove or disprove that the unit ball of L7(0, 1) is norm closed in L1(0, 1).

Proof. Let

B :=

{
f |
∫ 1

0

|f |7dx ≤ 1

}
.

Let {fn} ⊆ B such that fn → f in L1. We want to show f ∈ B ⇔
∫ 1

0
|f |7dx ≤ 1.

Since fn → f in L1, then fn → f in measure. Thus, there exists a subsequence fnk such that fnk →
f a.e.

Therefore, |fnk |7 → |f |7 a.e.. By Fatou’s Lemma,

∫ 1

0

|f |7dx ≤ lim inf
k

∫ 1

0

|fnk |7dx ≤ 1.

Problem 10. Let C be the Banach space of convergent sequences of real numbers under the supre-

mum norm. Compute the extreme points of the closed unit ball, B, of C and determine whether B

is the closed convex hull of its extreme points.

Proof. If |x(m)| < 1 for some m then there exists δ > 0 such that |x(m)− δ| ≤ 1, |x(m) + δ| ≤ 1.

Define y1, y2 ∈ B such that

y1(n) = x(n) for n 6= m and y1(m) = x(m) + δ

y2(n) = x(n) for n 6= m and y2(m) = x(m)− δ
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Then y1 6= y2 and x = 1
2 (y1 + y2) so x is not an extreme point.

If |x(n)| = 1 for all n, if x = λy1 + (1− λ)y2 for y1 6= y2 ∈ B then since |yi(n)| ≤ n,

|x(n)| = 1 = |λy1(n) + (1− λ)y2(n)| ≤ λ|y1(n)|+ (1− λ)|y2(n)| ≤ 1

Equality holds only when y1(n) = y2(n) = ±1. So y1 = y2 so x is indeed an extreme point. Also, x

needs to be convergent so

Ext(B) = {x | |x(n)| = 1 ∃N s.t. x(n) = 1 or − 1 for all n > N}.

Problem in my proof of determining whether B is the closed convex hull of it’s extreme points.

Problem 11. Show that every convex continuous function defined on the convex unit ball of a re-

flexive Banach space achieves a minimum. (A convex function on a convex subset A of a normed

space is a real valued function, f , on A s.t. for every x, y ∈ A and every 0 < λ < 1 we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).)

Proof. Recall the following classical result in convex analysis: f is lower-semicontinuous convex ⇔
f is weakly lower-semicontinuous convex ⇒ f can achieve minimum (since the unit ball is weak-

compact).

Then by Alaoglu, closed unit ball of a reflexive Banach space is weak-compact = weak*-compact.

here

7 August 2016

Problem 1. Let A be the set of all real valued functions on [0, 1] for which f(0) = 0 and |f(t) −
f(s)|1/2 ≤ t− s for all 0 ≤ s < t ≤ 1

(a) Prove that A is a compact subset of C[0, 1].

Proof. It should be clear to the reader that this question requires Arezela-Ascoli Theorem. To

see A is equicontinuous, fix x ∈ [0, 1] and ε > 0. Then for y ∈ B(
√
ε, x),

|f(x)− f(y)| ≤ |x− y|2 < ε

For pointwise bounded, for x ∈ [0, 1] then |f(x)|1/2 = |f(x)− f(0)|1/2 ≤ x implies |f(x)| ≤ x2.

To see A is closed, take a sequence {fn} ⊆ A such that fn → f (i.e. for all open U containing

f , there exists N such that for all n ≥ N , fn ∈ U), then

|f(t)− f(s)| ≤ |f(t)− fn(t)|+ |fn(t)− fn(s)|+ |fn(s)− f(s)| < 2ε+ |t− s|2

This holds for all ε > 0 so |f(t)− f(s)| ≤ |t− s|2.
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Clearly, f(0) = 0 so f ∈ A. Thus A is closed so by Arzela-Ascoli, A is compact in C[0, 1].

(b) Prove that A is a compact subset of L1[0, 1]

Proof. Consider the map

id : C[0, 1]→ L1[0, 1]

f 7→ f

Since ‖ id ‖1 =
∫ 1

0
|f |dx ≤ ‖f‖∞, id is a bounded map.

From (a), A is compact in C[0, 1] so id(A) = A ⊆ L1[0, 1] is also compact.

Remark: A is also closed in L1[0, 1] since all compact subsets of a metric space is closed.

Problem 2. (a) Let f(x) be a real valued function on the real line that is differentiable almost ev-

erywhere. Prove that f ′(x) is a Lebesgue measurable function.

Proof. Let

fn9x) =
f(x+ 1/n)− f(x)

1/n

so fn → f ′ almost everywhere. Since f is differentiable almost everywhere, then f is continuous

almost everywhere.

Claim: f is Lebesgue measurable

Let D = {all discontinuities of f} so m(D) = 0 and D is measurable. Let E = Dc = {x |
f is continuous at x} so E is measurable too.

f−1((a,∞)) = f−1((a,∞) ∩ E) ∪ f−1((a,∞) ∩ Ec)

Since f |E is continuous, f−1(a,∞) ∩ E = f |−1E (a,∞) is open in E. So f−1(a,∞) ∩ E = U ∩ E
for some open set U ⊆ R. Then f−1(a,∞) ∩ E is measurable.

Now f−1(a,∞) ∩ Ec ⊆ Ec, so completeness implies f−1(a,∞) ∩ Ec is measurable. Thus, f is

Lebesgue measurable so the claim holds.

So each fn is measurable, thus f ′ = lim fn almost everywhere is also Lebesgue measurable.

(b) Prove that if f is a continuous real valued function on the real line, then the set of points at

which f is differentiable is measurable.

Proof. Let

F (x, h) =
f(x+ h)− f(x)

h

which is continuous on R × (R\{0}). If x is a differentiable point of f , then for all ε > 0, there

exists a δ > 0 and some Y such that for all h with |h| < δ, we have |F (x, h)− Y | < ε. i.e.
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D = {x | differentiable point of f} =
⋂
ε

⋃
δ

⋃
Y

⋂
|h|<ε

{x | |F (x, h)− Y | < ε}

For fixed ε, δ, Y, h then {x | |F (x, h)− Y | < ε} is open, thus Borel.

By taking only rational ε, δ, Y, h we have D Borel measurable.

Problem 3. (a) Let f be a real valued function on the unit interval [0, 1]. Prove that the set of

points at which f is discontinuous is a countable union of closed subsets.

Proof. f is continuous at p if for all n, there exists an open U containing p such that |f(x) −
f(y)| < 1/n for all x, y ∈ U . Fix n and let

Vn =
⋃
p

{p s.t. there exists an appropriate U} =
⋃
{appropriate U}

Hence, Vn is open. Then

{points where f is continuous} =
⋂
n

Vn

So {points where f is discontinuous} =
⋃
n V

c
n where V cn is closed.

(b) Prove that there does not exist a real valued function on [0, 1] that is continuous at all rational

points but discontinuous at all irrational points.

Proof. By (a), the irrational poitns would be a countable union of closed subsets. Note that be-

cause any open set in [0, 1] contains a rational point, then if Qc[0,1] =
⋃
n Fn where Fn is closed

and F ◦n = ∅. Then

[0, 1] = Q[0,1] ∪Qc[0,1] =

⋃
q∈Q
{q}

 ∪(⋃
n

Fn

)

So [0, 1] is a countable union of nowhere dense sets. This contradicts Baire-Category Theorem.

Problem 4. Let (Ω,A, µ) be a finite measure space and let (fn) be a sequence of measurable func-

tions on X that converges pointwise to zero. Prove that (fn) converges in measure to zero. Show

that the converse is false for [0, 1] with Lebesgue measure.

Proof. Fix ε > 0. To show µ({x | |fn(x)| > ε}) → 0, we need ∀m ∃Nm such that ∀n ≥ Nm,

µ({x | fn(x)| > ε}) < 1/m.

By Egoroff’s Theorem, there exists some E ⊆ X with µ(E) < 1/m and fn ⇒ 0 uniformly on Ec.

Thus, ∃Nm such that for n ≥ Nm |fn(x)| < ε for all x ∈ Ec so

µ({x | |fn(x)| > ε}) ≤ µ(E) <
1

m
∀n ≥ Nm
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Thus, µ({x | |fn(x)| > ε})→ 0.

Counterexample: Let f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], . . . , fn = χ
[j/2k,(j+1)/2k] for n =

2k + j, 0 ≤ j < 2k.

So fn does not approach 0 pointwise, but fn → 0 in L1, hence in measure.

Problem 5. If f is Lebesgue integrable on the real line, prove that limh→0

∫
R |f(x+h)−f(x)|dx = 0.

Proof. Recall: the set Cc(R) of continuous, compactly supported functions is dense in L1(R).

Fix ε > 0 and find g ∈ Cc(R) with ‖f − g‖1 < ε. Since g is continuous, limn |g(x + 1/n) − g(x)| = 0

ofr all x.

Since g is compactly supported, then there exists some compact K such that supp(g) ⊆ K.

So there exists a compact K ′ such that supp(g) ∪ supp(g(x+ 1/n)) ⊆ K ′ for all n (this follows from

1/n ≥ 1 for all n since we can take K ′ = {k + x | k ∈ K,x ∈ [0, 1]}).

Dini’s theorem implies that |g(x+ 1/n)− g(x)|⇒ 0 so

∫
R|g(x+ 1/n)− g(x)|dx =

∫
K′
|g(x+ 1/n)− g(x)|dx→ 0

So then

∫
R
|f(x+ 1/n)− f(x)|dx

≤
∫
R
|f(x+ 1/n)− g(x+ 1/n)|dx+

∫
R
|g(x+ 1/n)− g(x)|dx+

∫
R
|g(x)− f(x)|dx

< 2ε+

∫
R
|g(x+ 1/n)− g(x)|dx→ 2ε

Since it holds for all ε > 0 then limn

∫
R |f(x+ 1/n)− f(x)|dx = 0.
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Problem 6. Prove or disprove that there exists a sequence (Pn) of polynomials such that (Pn(t))

converges to one for every t ∈ [0, 1] but
∫ 1

0
Pn(t)dt converges to two as n→∞.

Proof. Consider

fn(x) =


n2x x ∈ [0, 1/n]

−n2x+ 2n+ 1 x ∈ [1/n, 2/n]

1 x ∈ [2/n, 1]

(that is, fn linearly connects the points (0, 1), (1/n, n+ 1), (2/n, 1), (1, 1).)

So fn(x)→ 0 for all x ∈ [0, 1] but
∫ 1

0
fn(x)dx = 2.

Then by Stone-Weierstrass, we can find polynomials Pn such that ‖fn − Pn‖∞ ≤ 2−n. Then ∀x

|Pn(x)− 1| ≤ |Pn(x)− fn(x)|+ |fn(x)− 1| → 0

and
∫ 1

0
|fn(x)− Pn(x)|dx→ 0 so

∫ 1

0
Pn(x)dx→ 2.

Problem 7. Let (fn) be a uniformly bounded sequence of continuous functions on [0, 1] that con-

verges pointwise to zero. Prove that 0 is in the norm closure in C[0, 1] of the convex hull of (fn)

(the norm is of course the sup norm on C[0, 1]).

Proof. By the Geometrical version of the Hahn-Banach,

conv{fn}
weak

= conv{fn}
‖·‖

We just need to show that 0 ∈ conv{fn}
weak

. By Riesz-Representation Theorem, C[0, 1]∗ =M[0, 1].

For all µ ∈M [0, 1],

∣∣∣∣∣
∫
[0,1]

fndµ

∣∣∣∣∣ ≤
∫
[0,1]

|fn|d|µ| → 0

by Dominated Convergence Theorem. Thus, fn → 0 weakly.

Problem 8. Assume that X is a reflexive Banach space and φ is a continuous linear functional on

X. Prove that φ achieves its norm; that is, prove that there is a norm one vector x in X such that

φ(x) = ‖x‖. Show by example that there is a continuous linear functional on the Banach space `1
that does not achieve its norm.

Proof. Recall: X reflexive ⇒ BX is weak-compact ⇒ BX is weak-sequentially compact.

There exists a sequence {xn} ⊆ BX such that φ(xn)↗ ‖φ‖.

Choose a weakly-convergent subsequence {xnk} that converges to x ∈ BX . Then for all ϕ ∈ X∗,

ϕ(xnk)→ ϕ(x).
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In particular,

‖φ‖ = lim
n
φ(xn) = lim

k
φ(xnk) = φ(x).

Alternative Proof. For all φ ∈ X∗, by Hahn-Banach Separation Theorem, there exists some x∗∗ ∈
X∗∗ such that ‖x∗∗‖X∗∗ = 1 and x∗∗(φ) = ‖φ‖X∗ .

Since X is reflexive, ∃x ∈ X such that x̂ = x∗∗ so

‖φ‖X∗ = x∗∗(φ) = x̂(φ) = φ(x).

Counterexample: Choose y = (1− 1/n)n ∈ `∞. Then ∀x ∈ `1,

y(x) =

∣∣∣∣∣
∞∑
n=1

(
1− 1

n

)
x(n)

∣∣∣∣∣ ≤
∞∑
n=1

(
1− 1

n

)
|x(n)| <

∞∑
n=1

|x(n)| = ‖x‖1 = 1 = ‖y‖∞.

Problem 9. Suppose that X is a non separable Banach space. Prove that there is an uncountable

subset A of the unit ball of X such that for all x 6= u in X, ‖x− y‖ > 0.9.

Proof. By transfinite induction, construct (xα)α < ω1 ⊆ BX where ω1 is the uncountable ordinal.

Given α < ω1, let Uα := span{xβ | β < α} which is separable.

Since X is not separable, Uα ( X.

By Riesz-Lemma, there exists ‖xα‖ = 1 such that d(xα, Uα) ≥ 1− ε (put ε > 0.1).

So (xα) satisfies ‖xα − xβ‖ ≥ 0.9 and is uncountable.

Alternative Proof if it were not restricted to BX . Fix r > 0. Zornicate over all subsets A ⊆ X such

that ∀x 6= y, ‖x− y‖ > r.

Find a maximal subset Ar ⊆ X as above. If Ar is uncountable, by scaling of r, we’re done.

Suppose not, so each Ar is countable. Enumerate as {xrn}n. By maximality, for all x ∈ X, ∀ε > 0 if

r > 1/ε then there exists n ∈ N such taht ‖x− xmn ‖ < r < ε (i.e. d(x,Ar) < r,∀x ∈ X).

Let A =
⋃
q∈QAq so A is a countable dense subset of X. Contradiction!

Therefore, there exists q ∈ Q such that Aq is uncountable. Consider A′ = { 0.9q x | x ∈ Aq} so for all

x′, y′ ∈ A,

‖x′ − y′‖ =

∥∥∥∥0.9

q
x− 0.9

q
y

∥∥∥∥ =
0.9

q
‖x− y‖ > 0.9

Thus, there eixsts an uncountable A ⊆ X such that for all x, y ∈ A, ‖x− y‖ > 0.9.
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Problem 10. If A is a Borel subset of the line, then E = {(x, y) | x − y ∈ A} is a Borel subset of

the plane. If the Lebesgue measure of A is 0, then the Lebesgue measure of E is 0.

Proof. Define f(x, y) = x− y : R2 → R. This is continuous. Let

A := {S ⊆ R | f−1(S) is a Borel set of R2}

Then A is a σ-algebra (easy to check). If S is open, then f−1(S) is open in R2, thus Borel. So {open sets} ⊆
A and so the Borel algebra is a subset of A. In particular, A ∈ A.

Let E = f−1(A) which is a Borel set of R2. If m(A) = 0, let

Ey = {x ∈ R | (x, y) ∈ E} = y +A

This is a null set since m(y +A) = m(A) = 0. Thus, (m×m)(E) =
∫
m(Ey)dm(y) = 0.

8 January 2016

Problem 1. Let E be a measurable subset of [0, 1]. Suppose there exists α ∈ (0, 1) such that

m(E ∩ J) ≥ α ·m(J)

for all subintervals J of [0, 1]. Prove that m(E) = 1.

Proof. It’s easy to see that m(E) ≤ 1.

For any open U ⊆ [0, 1], write U = t∞i=1Ii where each Ii is an open interval. Then

m(E ∩ U) =

∞∑
i=1

m(E ∩ Ii) ≥
∞∑
i=1

αm(Ii) = αm(U).

Assume m(E) < 1, so m(Ec) := a > 0. We may find some open U ⊇ Ec such that m(U ∩ E) =

m(U\Ec) < ε. So

ε > m(U ∩ E) ≥ αm(U) ≥ αm(Ec) = αa > 0.

Letting ε→ 0, this leads to a contradiction.

Problem 2. Let f, g ∈ L1([0, 1]). Suppose

∫ 1

0

xnf(x)dx =

∫ 1

0

xng(x)dx
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for all integers n ≥ 0. Prove that f(x) = g(x) a.e.

Proof. See # 2 from January 2017.

Problem 3. Let f, g ∈ L1([0, 1]). Assume for all functions ϕ ∈ C∞[0, 1] with ϕ(0) = ϕ(1) we have

∫ 1

0

f(t)ϕ′(t)dt = −
∫ 1

0

g(t)ϕ(t)dt.

Show that f is absolutely continuous and f ′ = g a.e.

Proof. Fix x ∈ [0, 1] and construct hn via

hn(t) =


nt t ∈ [0, 1/n]

1 t ∈ [1/n, x]

1− n(t− x) t ∈ [x, x+ 1/n]

0 t ∈ [x+ 1/n, 1]

(i.e. hn(t) linearly connects the points (0, 0), (1/n, 1), (x, 1), (x+ 1/n, 0), and (1, 0).

Since C∞[0, 1] is dense in ‖ · ‖∞, we may use this example rather than some ϕ ∈ C∞[0, 1] (i.e. pass

to the continuous case). Then

∫ 1

0

f(t)h′n(t)dt =

∫ 1/n

0

f(t)ndt+ 0 +

∫ x+1/n

x

f(t)(−n)dt+ 0→ f(0)− f(x)

where the limit follows from Lebesgue Differentiation Theorem. Also,

∫ 1

0

g(t)hn(t)dt =

∫ 1/n

0

nt g(t)︸︷︷︸
→0

dt+

∫ x

1/n

g(t)dt+

∫ x+1/n

x

g(t)dt−
∫ x+1/n

x

n (t− x)g(t)︸ ︷︷ ︸
→0 as t→x

dt+ 0

→ 0 +

∫ x+1/n

1/n

g(t)dt− 0

where the limit again follows from Lebesgue Differentiation Theorem. Taking the limit as n → ∞
on both sides, we get

∫ x
0
g(t)dt = limn

∫ x+1/n

1/n
g(t)dt. So

f(0)− f(x) = lim
n

∫ 1

0

f(t)h′n(t) = lim
n
−
∫ 1

0

g(t)hn(t)dt = −
∫ x

0

g(t)dt

Implying f(x) = f(0) +
∫ x
0
g(t)dt. Then
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f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

f(0) +
∫ x+h
0

g(t)dt− f(0)−
∫ x
0
g(t)dt

h
= lim
h→0

∫ x+h
x

g(t)dt

h
= g(x)

and f is absolutely continuous.

Problem 4. Let {gn} be a sequence of measureable functions on [0, 1] such that

(i) |gn(x)| ≤ C, for a.e. x ∈ [0, 1]

(ii) and limn→∞
∫ a
0
gn(x)dx = 0 for every a ∈ [0, 1].

Prove that for each f ∈ L1([0, 1]), we have

lim
n→∞

∫ 1

0

f(x)gn(x)dx = 0.

Proof. Let S = span{χ[0,a] | a ∈ [0, 1]}. Then S is dense in the space of step functions in L1. Step

function space is dense in L1 so S is dense in L1. Then for every f ∈ L1[0, 1] there exists a sequence

hm =
∑Km
i=1 K

(m)
i

χ[0,ai] → f in L1.

For a fixed m,

lim
n

∫ 1

0

hmgndx =

Km∑
i=1

K
(m)
i lim

n

∫ ai

0

gn(x)dx = 0

where the second equality follows from (ii). For every ε > 0, we can choose some m such that ‖hm −
f‖1 < ε.

For that m, choose soem N such that
∣∣∣∫ 1

0
hmgndx

∣∣∣ < ε for all n > N . Then

∣∣∣∣∫ 1

0

f(x)gn(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

(
f(x)− hm(x)

)
gn(x)dx

∣∣∣∣+

∣∣∣∣∫ 1

0

hm(x)gn(x)dx

∣∣∣∣
≤ c‖f − hm‖1 + ε

< (c+ 1)ε

Thus,
∫ 1

0
f(x)gn(x)dx = 0.

Problem 5. (a) Let X be a normed vector space and Y be a closed linear subspace of X. Assume

Y is a proper subspace, that is, Y 6= X. Show that, for all 0 < ε < 1, there is an element x ∈ X
such that ‖x‖ = 1 and

inf
y∈Y
‖x− y‖ > 1− ε
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Proof. Fix some x0 ∈ X\Y , denote infy∈Y ‖x0 − y‖ = d > 0. Now for every ε > 0 choose some

δ > 0 such that d
d+δ > 1− ε.

Choose y0 ∈ Y such that ‖x0 − y0‖ < d+ δ. Let x = x0−y0
‖x0−y0‖ so ‖x‖ = 1 and

inf
y∈Y
‖x− y‖ = inf

y∈Y

∥∥∥∥ x0 − y0
‖x0 − y0‖

− y
∥∥∥∥ =

1

‖x0 − y0‖
inf
y′∈Y

‖x0 − y′‖ >
d

d+ δ
> 1− ε.

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector space, then the unit

ball of X is not compact.

Proof. If we construct a sequence {xn} such that there are no convergent subsequences, we are

done.

Assume we have chosen {x1, x2, . . . , xn−1} ⊆ BX . Let Y = span{x1, x2, . . . , xn−1}. By part (a),

there exists some xn ∈ B such that ‖xn‖ = 1 and infy∈Y ‖xn − y‖ > 1/2.

Then we have a sequence {xn} ⊆ BX such that ‖xn − xm‖ > 1/2 for all n 6= m so no convergent

subsequence may exist.

Problem 6. Let {fk} be a sequence of increasing functions on [0, 1]. Suppose

∞∑
k=1

fk(x)

converges for all x ∈ [0, 1]. Denote the limit function by f , that is,

f(x) =

∞∑
k=1

fk(x).

Prove that

f ′(x) =

∞∑
k=1

f ′k(x), a.e. x ∈ [0, 1].

Proof. It’s easy to see f is increasing, so it’s differentiable almost everywhere. Let FN =
∑N
n=1 fn

so FN → f for all x ∈ [0, 1]. Choose an increasing sequence Nk such taht 0 ≤ f(1) − FNk(1) ≤ 2−k.

Then

∞∑
k=1

(
f(1)− FNk(1)

)
≤
∞∑
k=1

2−k = 1.

Now, let g(x) :=
∑∞
k=1

(
f(x)− FN−k(x)

)
=
∑∞
k=1

∑∞
n=Nk+1 fn(x).

Since
∑∞
n=Nk+1 fn(x) is increasing as x increases, then g is increasing.
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So 0 ≤ g(x) ≤ g(1) ≤ 1 and g is differentiable almost everywhere. Now,

1

h

(
g(x+ h)− g(x)

)
=

1

h

∞∑
k=1

(
f(x+ h)− FNk(x+ h)

)
−
(
f(x)− FNk(x)

)
.

So since f ′(x)−FNk(x) =
∑∞
n=Nk+1 fn(x) is increasing, g′(x) ≥

∑∞
k=1 f

′(x)−F ′Nk(x) ≥ 0. Therefore,∑∞
k=1 f

′(x) − FNk(x) converges. So limk F
′
Nk

(x) = f ′(x), implying f ′(x) =
∑∞
k=1 f

′
k(x) almost

everywhere.

Problem 7. Suppose f, g : [a, b] → R are both continuous and of bounded variation. Show that the

set

{(f(t), g(t)) ∈ R2 | t ∈ [a, b]}

cannot cover the entire unit square [0, 1]× [0, 1].

Proof. Define r(t) = (f(t), g(t)). Since R2 is finite dimensional, `1 ∼ `2. Since f and g have bounded

variation, so does r. Thus, we know that whenever a = x0 < x1 < x2 < . . . < xn = b we have∑n
i=1 ‖r(xi)− r(xi−1)‖2 < M .

Now suppose [0, 1] × [0, 1] can be covered. Divide [0, 1] × [0, 1] into n2 small squares with center zj
and the length of each edge is 1/n. Then choose tj such that r(tj) = zj .

Now relabel/reorder the tj in increasing order so that s1 < s2 < . . . < sn2 . Then since the distance

between two centers is at least 1/n,

n2−1∑
j=1

‖r(sj+1)− r(sj)‖2 ≥
n2−1∑
j=1

1/n =
n2 − 1

n
→∞.

This is a contradiction!

Problem 8. Prove the following two statements:

(a) Suppose f is a measurable function on [0, 1], then

‖f‖L∞ = lim
p→∞

‖f‖Lp

Proof. In [0, 1], by Hölder, we know that ‖f‖p ≤ ‖f‖q when p ≤ q. Also, ‖f‖p ≤ ‖f‖∞ for all p.

Therefore, ‖f‖p ↗≤ ‖f‖∞ and so limp ‖f‖p ≤ ‖f‖∞.

On the other hand, for every ε > 0, let E = {x | |f(x)| > ‖f‖∞ − ε} and 0 < µ(E) ≤ 1 since

‖f‖∞ = esssup |f(x)|. Then ‖f‖pp ≥
∫
E
|f |p >

(
‖f‖∞ − ε

)p
µ(E). Take p → ∞ so limp ‖f‖p ≥

‖f‖∞ − ε, implying limp ‖f‖p ≥ ‖f‖∞.

(b) If fn ≥ 0 and fn → f in measure, then
∫
f ≤ lim inf

∫
fn.
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Proof. Choose a subsequence {fnk} such that limk

∫
fnk = lim inf

∫
fn. Since fn → f in mea-

sure, fnk → f in measure, so there exists a further subsequence {fnk`} → f a.e. Then by Fa-

tou’s Lemma, ∫
f =

∫
lim
`
fnk` ≤ lim inf

`

∫
fnk` = lim

k
inf fnk = lim inf

n

∫
fn.

Problem 9. Suppose {fn} is a sequence of functions in L2([0, 1]) such that ‖fn‖L2 ≤ 1. If f is

measurable and fn → f in measure, then

(a) f ∈ L2([0, 1]);

Proof. fn → f in measure implies {fnk} → f almost everwhere which implies |fnk |2 → |f |2
almost everywhere. By Fatou’s Lemma,

∫ 1

0

|f |2dx ≤ lim
n

∫ 1

0

|fnk |2dx ≤ 1.

So f ∈ L2.

(b) fn → f weakly in L2;

Proof. Let g ∈ L2. We want to show that fng → fg in L1. Now, fn → f in measure, then

fng → fg in measure and thus is Cauchy in measure.

Define Am,n = {x ∈ [0, 1] | |fng(x)− fmg(x)| ≥ ε}. Then

∫ 1

0

|fng−fmg|dx =

∫
Am,n

|fng(x)−fmg(x)|dx+

∫
[0,1]\Am,n

|fng(x)−fmg(x)|dx ≤
∫
Am,n

|fng|+|fmg|dx+ε.

We know for all ε > 0 there exists some δ > 0 such that µ(Am,n) < δ,

∫
Am,n

|fng| ≤

(∫
Am,n

|fn|2dx

)1/2(∫
Am,n

|g|2dx

)1/2

≤

(∫
Am,n

|g|2
)1/2

< ε.

since g ∈ L2. Then since {fng} is Cauchy in measure, there exists some N such that for all

m,n > N , µ(Am,n) < δ. Then
∫ 1

0
|fng − fmg|dx < 3ε implies {fng} is Cauchy in L1.

Therefore, there exists some h ∈ L1 such taht fng → h in L1.

We know fng → fg in measure, so fnkg → fg almost everywhere. Also, ∀ε > 0, ∃δ > 0 such

that
∫
A
|fnkg| < ε for all A such that µ(A) < δ.

Therefore, {fnk} is uniformly integrable. By Viteli Convergence Theorem, fnkg → fg in L1.

Thus, h = fg so fng → fg in L1. So fn → f weakly.

Note: We could also have used the uniqueness of limit in the measure.

(c) fn → f with respect to norm in Lp for 1 ≤ p < 2.
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Proof. Define En = {x | |fn(x) − f(x)| ≥ ε}. From problem 8 on this exam, we know ‖fn‖p ≤
‖fn‖2 ≤ 1 and ‖f‖p ≤ ‖f‖2 <∞. Then∫

|fn − f |p =

∫
En

|fn − f |p +

∫
Ecn

|fn − f |pdx ≤ 2p−1
∫
En

|fn|p + |f |p + ε

where the inequality follows from the fact that |a− b|p ≤ 2p−1(|a|p + |b|p).
Since fn → f in measure and m(En) → 0 as n → ∞, so since f ∈ Lp then

∫
En
|f |pdx → 0 as

n→∞.

For some A ⊆ [0, 1], we have

∫
A

|fn|p =

∫ 1

0

|fn|pχA ≤ ‖|fn|p‖2/p‖χA‖2/2−p = ‖fn‖p2m(A)
2

2−p ≤ m(A)
2

2−p .

So similar to the previous case, we can take m(En) small enough such that
∫
En
|fn|pdx < ε for

any fixed 1 ≤ p < 2.

There are a few hints in the qual

Problem 10. Suppose E is a measurable subset of [0, 1] with Lebesgue measure m(E) = 99
100 .

Show that there exists a number x ∈ [0, 1] such that for all r ∈ (0, 1),

m(E ∩ (x− r, x+ r)) ≥ r

4
.

Hint: Use the Hardy-Littlewood maximal inequality

m({x ∈ R |Mf(x) ≥ α}) ≤ 3

α
‖f‖1

for all f ∈ L1(R). Here Mf denotes the Hardy-Littlewood Maximal function of f .

Proof. The Hardy-Littlewood Maximal function of χA is

MχA = sup
r>0

1

2r

∫ x+r

x−r
χA(x)dx = sup

r>0

1

2r
m(A ∩ (x− r, x+ r)).

Assume the result is not true. Then ∀x ∈ [0, 1], ∃rx ∈ (0, 1) such that m(E ∩ (x− xr, x+ xr)) <
rx
4 .

This happens if and only if 1
2rx

m(E ∩ (x− rx, x+ rx)) < 1/8 which is equivalent to 1
2rx

m(Ec ∩ (x−
rx, x+ rx)) ≥ 7

8 .

Now set A = Ec so MχA(x) ≥ 7
8 . However,

m
(
{x ∈ [0, 1] |MχA(x) ≥ 7

8
}
)
≤ 3

8

7
‖χA‖ =

24

7

1

100
=

24

100
.

But we need it to be equal to 1. Contradiction!
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9 August 2015

Problem 1. Let f : R→ R be a Borel measurable function. For each t ∈ R define

ft(x) = f(t+ x), x ∈ R.

Prove that ft(x) is a Borel measurable function (in x) for each fixed t ∈ R.

Proof. We see that

f−1t (−∞, a) = {x | f(x+ t) ∈ (−∞, a)} = {x | x+ t ∈ f−1(−∞, a)} = f−1((−∞, a))− t = B − t.

Since Tt(x) = x+ t is continuous, then T−1t (B) = B − t is Borel.

Problem 2. Justify the statement that

∫ 1

0

∫ 1

0

(x− y) sin(xy)

x2 + y2
dx dy =

∫ 1

0

∫ 1

0

(x− y) sin(xy)

x2 + y2
dy dx.

Proof. We just need to show that
∫ 1

0

∫ 1

0

∣∣∣ (x−y) sin(xy)x2+y2

∣∣∣ dxdy <∞. But

∫ 1

0

∫ 1

0

∣∣∣∣ (x− y) sin(xy)

x2 + y2

∣∣∣∣ dxdy =

∫ π/2

0

∫ √2

0

∣∣∣∣r cos θ − r sin θ

r2

∣∣∣∣ |r|drdθ ≤ 2

∫ π/2

0

∫ √2

0

drdθ =
√

2π <∞.

So the function is in L1 and Fubini gives us the desired result.

Problem 3. Assume that (fn) is a sequence in C[0, 1].

(a) Show that (fn) converges weakly to 0 if and only if (fn) is bounded in C[0, 1] and limn→∞ fn(t) =

0 for all t ∈ [0, 1].

Proof. ⇒) We know C[0, 1]∗ = M[0, 1]. Then fn → 0 weakly implies
∫
fndµ → 0 for all µ ∈

M[0, 1]. Choose µ = δt so ∫
fndδt = fn(t)→ 0 ∀t ∈ [0, 1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

χ : C[0, 1]→ C[0, 1]∗∗ =M[0, 1]∗

χ(fn)(µ) = µ(fn)
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Since µ(fn) → 0 then χ(fn)(µ) → 0 for all µ ∈ M[0, 1]. Since convergent sequences are

bounded, then supn |χ(fn)(µ)| ≤M .

By the uniform boundedness theorem, supn ‖χ(fn)‖ < ∞. By isometry, ‖fn‖ = ‖χ(fn)‖ so

supn ‖fn‖ <∞.

⇐) By Dominated Convergence Theorem, fn → 0 in L1(µ). So therefore, |
∫
fndµ| ≤

∫
|fn|d|µ| →

0. So fn → 0 weakly.

(b) Show that if (fn) converges weakly in C[0, 1], then it converges in norm in Lp[0, 1] for all 1 ≤
p <∞.

Proof. WLOG fn → 0 weakly. By (a) we know fn(t) → 0 and ‖fn‖∞ is bounded. Thus,

|fn(t)|p → 0 pointwise and ‖|fn|‖∞ is bounded.

By the Dominated Convergence Theorem, we have ‖fn‖p → 0.

Problem 4. Let A be a Lebesgue null set in R. Prove that

B := {ex | x ∈ A}

is also a null set.

Proof. First, assume A ⊆ [0, 1]. Then f(x) = ex is Lipschitz-continuous (i.e. |f(x)−f(y)| ≤M |x−y|
for some M). Since m(A) = 0, we can find ∪∞k=1Bk where Bk are open intervals such that A ⊆
∪∞k=1Bk and m (∪∞k=1Bk) < ε. Then

m(f(A)) ≤ m (f (∪∞k=1Bk)) ≤
∞∑
k=1

Mm(Bk) < Mε.

So m(f(A)) = 0. Now we can write A = ∪∞n=−∞A ∩ [n, n + 1] so m(f(A)) =
∑∞
−∞m(f(A ∩ [n, n +

1])) = 0.

Problem 5. (a) Define absolute continuity of a function f : R → R and of a function f : [a, b] →
R.

Proof. The function f : [a, b] → R is absolutely continuous if ∀ε > 0, ∃δ > 0 such that when-

ever a finite sequence of disjoint subintervals (xk, yk) ⊆ I satisfies
∑N
k=1(yk − xk) < δ then∑∞

k=1 |f(yk)− f(xk)| < ε.

(b) Show that if f and g are absolutely continuous on [a, b], a, b ∈ R, a < b, then f · g is absolutely

continuous on [a, b].

Proof. Since f and g are continuous on [a, b], then they achieve a maximum so we can let Mf =

sup{f(x) | a ≤ x ≤ b} <∞, Mg = sup{g(x) | a ≤ x ≤ b}.

Fix ε > 0. Then there exists some δf , δg > 0 such that
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∑
(yk − xk) < δf ⇒

∑
|f(yk)− f(xk)| < ε

2Mg∑
(yk − xk) < δg ⇒

∑
|f(yk)− f(xk)| < ε

2Mf

Choose finite and disjoint such that
∑
yk − xk < min(δf , δg). Then

∑
|f(yk)g(yk)− f(xk)g(xk)| ≤

∑
|f(yk)g(yk)− f(yk)g(xk)|+

∑
|f(yk)g(xk)− f(xk)g(xk)|

≤
∑
|f(yk)||g(yk)− g(xk)|+

∑
|g(xk)||f(yk)− f(xk)|

≤Mf

∑
|g(yk)− g(xk)|+Mg

∑
|f(yk)− f(xk)|

≤Mf
ε

2Mf
+Mg

ε

2Mg

= ε

This is what we wanted.

(c) Give an example to show that (b) is false if [a, b] is replaced by R.

Proof. Take f(x) = g(x) = x so fg = x2. Then

|(x+ δ)2 − x2| = |x2 + 2δx+ δ2 − x2| = |2δx+ δ2| → ∞ as x→∞.

So there does not exist any δ such that |fg(y)− fg(x)| < ε (even for just one interval!)

Problem 6. Let X and Y be Banach spaces and T : X → Y be a one-to-one, bounded and linear

operator for which the range T (X) is closed in Y . Show that for each continuous linear functional φ

on X there is a continuous linear functional ψ on Y , so that φ = ψ ◦ T .

Proof. Since T : X → T (X) is bijective, by teh open mapping theorem, T−1 is bounded so φ◦T−1 ∈
T (X)∗.

Then by the Hahn-Banach, there exists some ψ ∈ Y ∗ such that ψ(y) = (φ ◦ T−1)(y) for all y ∈ Y .

For any x ∈ X, T (x) = y ∈ Y and we have

φ(x) = φ
(
T−1(Tx)

)
= ψ(Tx) = (ψ ◦ T )(x).

Since this is true for all x ∈ X, φ = ψ ◦ T .

Problem 7. State the Open Mapping Theorema nd the Closed Graph Theorem for Banach spaces.

Derive the Open Mapping Theorem from the Closed Graph Theorem.

Proof. Assume T : X → Y is surjective, linear, and bounded. WLOG we want to show B(0, δ) ⊆
T (B(0, 1)) for some δ > 0. Define
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G : Y → X/ ker(T )

y 7→ [x] = x+ ker(T ) where y = Tx

Then G is well-defined, because T is surjective.

Claim: G is closed.

Assume yn → y in Y and G(yn)→ [x] in X/ ker(T ). WTS G(y) = [x]⇔ Tx = y.

We have Txn = yn so since [xn] → [x] then ‖[xn] − [x]‖ = infz∈kerT ‖xn − x − z‖ → 0. Then take

(zn) ⊆ ker(T ) such that ‖xn − x− zn‖ < 1/n. So xn − zn → x. Then

‖T (xn − zn)− T (x)‖ ≤ ‖T‖‖xn − x− zn‖ → 0.

Thus, T (xn − zn) = T (xn) → T (x). And also T (xn − zn) = T (xn) = yn → y. Together, these imply

T (x) = y. So G is closed, and the claim holds.

By the closed graph theorem, G is bounded so there exists some δ > 0 such that G(B(0, δ)) ⊆
B(0, 1) in X/ ker(T ). Now, let y ∈ B(0, δ) so then [x] = G(y) ∈ B(0, 1). Thus, if infz∈ker(T ) ‖x−z‖ <
1, then there exists some z0 ∈ ker(T ) such that ‖x − z0‖ < 1. This implies y = Tx = T (x − z0) ∈
T (B(0, 1)) so B(0, δ) ⊆ T (B(0, 1)).

Problem 8. Let Y be a closed subspace of a Banach space X, with norm ‖ · ‖. Let ‖ · ‖1 be a norm

on Y which is equivalent to ‖ · ‖, meaning that there is a C ≥ 1 so that

1

C
‖y‖1 ≤ ‖y‖ ≤ C‖y‖1 for all y ∈ Y.

Let S be the set of all linear functions φ : X → R, so that

(i) |φ(y)| ≤ ‖y‖1 for all y ∈ Y , and

(ii) |φ(x)| ≤ C‖x‖ for all x ∈ X.

Prove the following statements

(a) ‖x‖2 := supφ∈S |φ(x)|, x ∈ X, defines a norm on X.

Proof. Easy to check.

(b) ‖y‖2 = ‖y‖1 for y ∈ Y .

Proof. Since |φ(y)| ≤ ‖y‖1 then ‖y‖2 ≤ ‖y‖1.

On the other hand, from the Hahn-Banach separation theorem, for all y 6= 0, there exists some

φ ∈ X∗ such that ‖φ‖ = 1 and φ(y) = ‖y‖1 so ‖y‖2 ≥ ‖y‖1.

To check that φ ∈ S: |φ(y)| = ‖y‖1 and |φ(x)| ≤ ‖φ‖‖x‖ = ‖x‖.
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(c) The norms ‖ · ‖2 and ‖ · ‖ are equivalent on X.

Proof. We just need to consider this on X\Y . For x ∈ X\Y , we have

‖x‖2 = sup
φ∈S
|φ(x)| ≤ C‖x‖.

Again by Hahn-Banach, for x̃ 6= 0, there exists some φ ∈ X∗ such that φ(x̃) = ‖x̃‖ and ‖φ‖ = 1.

Define ψ = 1
Cφ so ‖ψ‖ = 1

C .

Then to see ψ ∈ S:

• |ψ(x)| ≤ 1
C ‖x‖ ≤ C‖x‖ for all x ∈ X

• |ψ(y)| ≤ 1
C ‖y‖ ≤ ‖y‖1 for all y ∈ Y

So ψ ∈ S and ‖x̃‖ ≥ |ψ(x̃)| = 1
C ‖x̃‖ so 1

C ‖x‖ ≤ ‖x‖2 ≤ C‖x‖.

Problem 9. Let f be increasing on [0, 1] and let

g(x) = lim sup
h→0

f(x+ h)− f(x− h)

2h
, for 0 < x < 1.

Prove that if A = {x ∈ (0, 1) | g(x) > 1} then

f(1)− f(0) ≥ m∗(A).

Proof. For x ∈ A,

lim sup
h→0

f(x+ h)− f(x− h)

2h
> 1

so for all ε > 0, there exists some h > 0 such that 2h < ε and f(x+h)−f(x−h)
2h > 1 if and only if

f(x+ h)− f(x− h) > 2h.

Let I = {(x − h, x + h) | x ∈ A, 2h < ε, (x − h, x + h) ⊆ [0, 1]}. Then I covers A in the sense

of Vitali. By Vitali’s Lemma, for every ε > 0, there exists I1, I2, . . . , In disjoint from I such that

m∗ (A\ ∪ni=1 Ii) < ε.

Since m∗(A) = m∗ (A\ ∪ni=1 Ii) + m∗ (∪ni=1Ii) for all Ii then write Ii = (xi − hi, xi + hi) and

x1 − h1 < x1 + h1 < x2 − h2 < . . . < xn + hn. Then

m∗(A) < ε+

n∑
i=1

2hi < ε+

n∑
i=1

|f(xi + hi)− f(xi − hi)|.

Since f is increasing,
∑n
i=1

(
f(xi + hi)− f(xi − hi)

)
≤ f(1)− f(0).

So m∗(A) < ε+ f(1)− f(0) so m∗(A) ≤ f(1)− f(0).
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Problem 10. (a) State a version of the Stone-Weierstrass Theorem.

Proof. See textbook.

(b) Let A be a uniformly dense subspace of C[0, 1] and let

B =

{
F (x) | F (x) =

∫ x

0

f(t)dt, 0 ≤ x ≤ 1, f ∈ A
}
.

Prove that B is uniformly dense in

C0[0, 1] := {g ∈ C[0, 1] | g(0) = 0}.

Proof. Define B′ = {F (x) | F (x) =
∫ x
0
f(t)dt, 0 ≤ x ≤ 1, f ∈ C[0, 1]}. First show B is dense in

B′.

For every F ∈ B′, G = B, F (x) =
∫ x
0
f(t)dt and G(x) =

∫ x
0
g(t)dt. Then

‖F (x)−G(x)‖∞ ≤
∫ 1

0

|f − g|dt ≤ ‖f − g‖∞.

Since A is dense in C[0, 1], then ‖f − g‖∞ < ε so ‖F −G‖∞ < ε. So B is indeed dense in B′.

Then we will show B′ is an algebra (in order to use Stone-Weierstrass). Let F,G ∈ B′ so

F (x)G(x) =

∫ x

0

f(t)dt

∫ x

0

g(s)ds =

∫ x

0

∫ x

0

f(t)g(s)dsdt =

∫ x

0

F (t)g(t)+G(t)f(t)dt =

∫ x

0

∫ t

0

f(s)g(t)+g(s)f(t)dsdt.

Since F (t)g(t) +G(t)f(t) ∈ C[0, 1] then FG ∈ B′.

Also, x =
∫ 1

0
1dt ∈ B′ so B′ separates points.

By Stone-Weierstrass, B′ is dense in C0[0, 1] since any function F ∈ B′, F (0) = 0. So B is dense

in C0[0, 1].

(c) Prove that the span of {sin(nx) | n ∈ N} is dense in C0[0, 1].

Proof. sin(nx) =
∫ x
0
n cos(nx)dt. From part (b), it is sufficient to show

A = span{n cos(nx)} = span{cos(nt)}

is dense in C[0, 1]. A is an algebra:

• cos(nt) cos(mt) = 1
2

(
cos((m+ n)t) + cos((m− n)t)

)
∈ A

• cos(t) separates [0, 1] (since 1 < π/2) so A is dense in C[0, 1].
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10 January 2015

Problem 1. Let f ∈ L1(R). If

∫ b

a

f(x)dx = 0

for all rational numbers a < b, prove that f(x) = 0 for almost all x ∈ R.

Proof. Let E+ := {x | f(x) > 0}. Assume m(E+) > 0 (the same argument will show E− := {x |
f(x) < 0} has measure zero).

There exists some n such that E+ ∩ [n, n + 1] has positive measure. Consider F closed in R and

F ⊆ E+∩[n, n+1] with m(F ) > 0. Then [n, n+1]\F is open in [n, n+1]. Thus, [n, n+1]\F = ∪∞n=1In
for In being disjoint open intervals in [n, n+ 1].

For all In = (an, bn), there exists some (ani)i, (bni)i ⊆ Q such that ani → an and bni → bn. Since

∫ bn

an

f(x)dx =

∫
R
f(x)χ[an,bn]dx lim

i
f(x)χ[ani ,bni ]

= f(x)χ[an,bn]

then |f(x)χ[ani ,bni ]
≤ |f(x)| ∈ L1 so by Dominated Convergence Theorem,

∫ bn
an
f(x)dx = 0.

Since
∫
F
f(x)dx > 0, by condition we know

∫ n+1

n
f(x)dx = 0 for all n. So then

∫
[n,n+1]\F f(x)dx <

0.

So there exists some Im = (am, bm) such that
∫
Im
f(x)dx < 0. Contradiction!

Proof #2 as in Problem 3 from August 2014, not restricted to rationals with f ∈ L1.

For every open U , write U = ∪∞n=1(an, bn) for disjoint open intervals, so

∫
U

f(x)dx =

∞∑
n=1

∫ bn

an

f(x)dx = 0.

For every compact K ⊆ (a, b) then (a, b)\K is open in R and

∫
K

f(x)dx =

∫ b

a

f(x)dx−
∫
(a,b)\K

f(x)dx

(because each is finite). Suppose E+ = {x | f(x) > 0} has positive measure. Since E+ = ∪nEn
where En = {x | f(x) > 1/n} so there must exist some n such that m(En) > 0.

By inner regularity, there exists some K ⊆ En with m(K) > 0. Then

0 =

∫
K

f(x)dx >

∫
K

1

n
dx =

1

n
m(K) > 0
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Contradiction!

Problem 2. Let {gn}∞n=1 and g be in L1(R) and satisfy

lim
n→∞

‖gn − g‖1 = 0.

Prove that there is a subsequence of {gn}∞n=1 that converges pointwise almost everywhere to g.

Proof. Step 1: Suppose gn → g in L1. Let En,ε = {x | |fn(x)− f(x)| ≥ ε}. Then

∫
|fn − f | ≥

∫
En,ε

|fn − f | ≥ εµ(En,ε)

So then µ(En,ε) ≤ 1
ε

∫
|fn − f | → 0.

Step 2: We will show that if gn → g in measure, then there exists a subsequence that converges to g

pointwise almost everywhere.

Suppose for every ε > 0, µ({x | |fn(x)− f(x)| ≥ ε})→ 0. Choose a subsequence {gnk} such that if

Ej = {x | |gnj (x)− gnj+1(x)| > 2−j}

satisfies µ(Ej) < 2−j . Let Fk = ∪∞j=kEj so µ(Fk) ≤
∑∞
j=k 2−j ≤ 21−k. Let F = ∩kFk so µ(F ) = 0.

For x /∈ Fk and for i ≥ j ≥ k then

|gni(x)− gnj (x)| ≤
i−1∑
`=j

|gn`(x)− gn`+1
(x)| ≤

i−1∑
`=j

2` ≤ 2−j → 0 as k →∞.

So gnk is pointwise Cauchy on x /∈ F , so let

f(x) =

{
lim gnk(x) x /∈ F
0 otherwise

So gnk → f almost everywhere and gn → f in measure since

µ({x | |gn(x)− f(x)| ≥ ε}) ≤ µ({x | |gn(x)− gn`(x)| ≥ ε/2})︸ ︷︷ ︸
→0

+µ({x | |gn`(x)− f(x)| ≥ ε})︸ ︷︷ ︸
→0

and

µ({x | |f(x)− g(x)| ≥ ε}) ≤ µ({x | |f(x)− gn(x)| ≥ ε/2}︸ ︷︷ ︸
→0

+µ({x | |gn(x)− g(x)| ≥ ε/2})︸ ︷︷ ︸
→0
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so f = g almost everywhere. Thus, {gnk} converges to g almost everywhere.

Problem 3. Let (X,M, µ) be a measure space with µ(X) < ∞. Let N ⊆ M be a σ-algebra. If f ≥
0 is M-measurable and µ-integrable then prove that there exists an N -measurable and µ-integrable

function g ≥ 0 so that

∫
E

gdµ =

∫
E

fdµ, E ∈ N .

Proof. Define ν(E) =
∫
E
fdµ a finite positive measure on (X,N , µ). Then since µ(E) = 0, ν(E) = 0

so ν � µ.

Then by Radon-Nikodym Theorem, there exists some g : X → [0,∞) and N -measurable and g ∈
L1(µ) such that ν(E) =

∫
E
gdµ. Then

ν(E) =

∫
E

fdµ =

∫
E

gdµ ∀E ∈ N .

Note: Folland doesn’t mention positive but there are other versions that give positive.

Problem 4. (a) State the closed graph theorem.

Proof. See wikipedia.

(b) If H is a Hilbert space and T : H → H is a linear operator satisfying

〈Tx, y〉 = 〈x, Ty〉, x, y ∈ H,

then prove that T is bounded.

Proof. Let xn → x and Txn → y. We want to show Tx = y.

〈Txn, z〉︸ ︷︷ ︸
→〈y,z〉

= 〈xn, T z〉 → 〈x, Tz〉 = 〈Tx, z〉.

So 〈Tx− y, z〉 = 0 for all z ∈ H so then Tx− y = 0 and so Tx = y.

Problem 5. Let f, g ∈ L1(R). Prove that h ∈ L1(R), where h(x) is defined by

h(x) =

∫
R
f(y)g(x− y)dy

whenever this integral is finite.

Proof. We want to show that
∫
R |h(x)|dx =

∫
R
∣∣∫

R f(y)g(x− y)dy
∣∣ dx <∞. Indeed,
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∫
R

∣∣∣∣∫
R
f(y)g(x− y)dy

∣∣∣∣ dx ≤ ∫
R

∫
R
|f(y)||g(x− y)|dydx

=

∫
R
|f(y)|

(∫
R
|g(x− y)|dx

)
dy

=

∫
R
|f(y)|‖g‖1dy

= ‖g‖1
∫
R
|f(y)|dy

= ‖g‖1‖f‖1 <∞.

Problem 6. Let f, g ∈ C[0, 1] with f(x) < g(x) for all x ∈ [0, 1].

(a) Prove that there is a polynomial p(x) so that

f(x) < p(x) < g(x), x ∈ [0, 1].

Proof. Let ε = inf{g(x)− f(x) | x ∈ [0, 1]}. Since h(x) = g(x)− f(x) > 0 on [0, 1] and attains a

minimum on the compact set [0, 1] then the inf is attained and thus is positive. So ε > 0.

By Stone-Weierstrass, polynomials are dense in C[0, 1] so there exists a polynomial p(x) such

that
∥∥∥p− ( f+g2 )∥∥∥∞ < ε/2. Then

p(x) <
f(x) + g(x)

2
+
ε

2
≤ 1

2

(
f(x) + g(x) + (g(x)− f(x))

)
=

1

2
(2g(x)) = g(x).

p(x) >
f(x) + g(x)

2
− ε

2
>

1

2

(
f(x) + g(x)− (g(x)− f(x))

)
=

1

2
(2f(x)) = f(x).

So f(x) < p(x) < g(x).

Remark: Let M = max{g(x)− f(x)} then

|g(x)− f(x)| ≤
∣∣∣∣g(x)−

(
f + g

2

)
(x)

∣∣∣∣+

∣∣∣∣(f + g

2

)
(x)− p(x)

∣∣∣∣ < M

2
+ ε.

Alternative Proof. Let M := minx∈[0,1] g(x)− f(x). By Stone-Weierstrass, there exists some p̃(x)

polynomial such that ‖p̃(x)− g(x)‖∞ < M/3. Let p(x) = p̃(x)−M/2. Then

g(x)− p(x) = g(x)− p̃(x) +
M

2
>
−M

3
+
M

2
=
M

6
> 0.

p(x)−f(x) = p(x)−g(x)+g(x)−f(x) = p̃(x)−g(x)−M
2

+
(
g(x)−f(x)

)
>
−M

3
−M

2
+M =

M

6
> 0.

So f(x) < p(x) < g(x).
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(b) Prove that there is an increasing sequence of polynomial {pn(x)}∞n=1 so that

f(x) < pn(x) < g(x), x ∈ [0, 1],

and pn → g uniformly on [0, 1].

Proof. Find p1 such taht g − 1
2 < p1 < g with

∥∥p1 − ( g+g−12

)∥∥ < 1
4 . Then |g(x) − p1(x)| <

1
4 + 1

4 = 1
2 .

Recursively find a polynomial pn such that pn−1 < pn < g with
∥∥∥pn − ( g+pn−1

2

)∥∥∥ < 1
2n−1 ,

implying

|g(x)− pn(x)| < Mn−1

2
+

1

2n+1
=

1

2n+1
+

1

2n+1
=

1

2n
.

So Mn <
1
2n . Then for every ε > 0 choose N such that 1

2N
< ε, so for all n > N

|pn(x)− g(x)| < 1

2N
< ε ∀x ∈ [0, 1].

Alternative Proof. From part (a) we can find f(x) < p1(x) < g(x). Repeating, we can find

p1(x) < p2(x) < g(x). By requiring εn instead of M , in ‖p̃(x) − g(x)‖∞ < ε and letting εn → 0,

we get

‖pn(x)− g(x)‖∞ ≤ ‖pn(x)− p̃n(x)‖∞ + ‖p̃n(x)− g‖∞ <
εn
2

+
εn
3

=
5

6
εn → 0.

Problem 7. If f ∈ L2(R), g ∈ L3(R), and h ∈ L6(R) then prove that the product fgh is in L1(R).

Proof. Note:
∥∥|f |k∥∥

p
=
(∫
|f |kpdx

)1/p
=
(∫
|f |kpdx

) 1
kpp = ‖f‖pkp.

Then it follows that

‖fgh‖1 ≤ ‖f‖2‖gh‖2 ≤ ‖f‖2‖|g|2|h|2‖1/21 ≤ ‖f‖2
(
‖|g|2‖p=3/2‖|h|2‖q=3

)1/3 ≤ ‖f‖2(‖g‖3‖h‖6)1/3 <∞.
Where we use p = 3/2, q = 3 so 1

p + 1
q = 2

3 + 1
3 = 1.

Problem 8. (a) A point y in a metric space Y is isolated if the set {y} is both open and closed in

Y . Prove taht y ∈ Y is isolated if and only if the complement {y}C is not dense in Y .

Proof. ⇒) If y is isolated, then {y} is open. But {y}c ∩ {y} = ∅ so {y}c is not dense.

⇐) Trivially, {y} is closed since we’re in a metric space. Suppose {y}c is not dense in Y . Then

there exists an open U 6= ∅ such that U ∩ {y}c = ∅ (since A is dense in Y ⇔ for all open U 6= ∅,
U ∩A 6= ∅).

But if U ∩ {y}c = ∅ then U ⊆ {y}cc = {y} so U = {y} is open.
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(b) Let X be a countable nonempty complete metric space. Prove that the set of isolated points is

dense in X.

Proof. Let Y ⊆ X be the set of isolated points. Let X\Y = {zj}∞j=1 (or {zj}nj=1).

Since the singleton {zk} is not an isolated point, by (a) we know {zk}c is dense in X, so {zk}c =

X. So each {zk}c is open and dense in X.

By Baire-Category, Y = ∩∞j=1{zj}c (or ∩nj=1{zj}c) is also dense in Y .

Problem 9. Suppose that f ∈ Lp(R) for all p ∈ (1, 2) and that supp∈(1,2) ‖f‖p < ∞. Prove that

f ∈ L2(R) and that

lim
p→2−

‖f‖p = ‖f‖2.

Proof. Let A = {x | |f(x)| ≥ 1}, B = {x | |f(x)| < 1}. Then by Monotone Convergence Theorem,∫
A
|f |pdx↗

∫
A
|f |2dx.

Let pn ↑ 2. WLOG assume p1 = 3/2. We know on B, |f |p ≤ |f |3/2 ∈ L1(B). By Dominated

Convergence Theorem,
∫
B
|f |pdx→

∫
B
|f |2dx which implies

∫
R |f |

pdx→
∫
R |f |

2dx.

Therefore, ‖f‖pp → ‖f‖22 so ‖f‖p/2p → ‖f‖2 as p→ 2.

Also, since M = supp∈(1,2) ‖f‖p <∞, then ‖f‖p/2−1p ≤Mp/2−1 for all p ∈ (1, 2).

Then Mp/2−1 → 1 as p→ 2 which implies ‖f‖p/2p − ‖f‖p → 0 as p→ 2.

So then, ‖f‖p → ‖f‖2 as p→ 2 and ‖f‖2 <∞ since M <∞.

Problem 10. Let (X, ‖ · ‖) be a normed vector space with a subspace Y and let ‖ · ‖1 be another

norm on Y that satisfies

1

K
‖y‖1 ≤ ‖y‖ ≤ K‖y‖1, y ∈ Y,

where K > 1 is a fixed constant. Define S to be the set of linear functionals φ : X → R satisfying

(i) |φ(y)| ≤ ‖y‖1, y ∈ Y ,

(ii) |φ(x)| ≤ K‖x‖, x ∈ X.

Prove the following statements:

(a) ‖x‖2 := sup{|φ(x)| | φ ∈ S} defines a norm on X.

Proof. See August 2015

(b) For y ∈ Y , ‖y‖1 = ‖y‖2.

Proof. See August 2015
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(c) The norms ‖ · ‖ and ‖ · ‖2 are equivalent on X.

Proof. See August 2015

11 August 2014

Problem 1. For n ∈ N, let fn : [0, 1] → R be continuous, and assume that for every x ∈ [0, 1]

the sequence (fn(x)) is decreasing. Suppose that fn converges pointwise to a continuous function f .

Show that this convergence is uniform.

Proof. WLOG: by replacing fn by fn(x)− f(x), these are still continuous and decreasing pointwise.

So we want to prove fn ⇒ 0.

This is precisely Dini’s Theorem (aka freebie question).

Fix ε > 0 and let Un = f−1n ((−1, ε)) = {x ∈ X | gn(x) < ε} which is open. Then for all x, fn(x)↘ 0

so there exists N such that for all n ≥ N , |fn(x)| < ε which implies x ∈ Un.

So [0, 1] = ∪nUn. By compactness of [0, 1], there exists a finite subcover Un1
, Un2

, . . . , Unk for n1 <

n2 < . . . < nk but since Un ⊆ Un+1 then Un1 ⊆ Un2 ⊆ . . . ⊆ Unk .

Therefore, [0, 1] ⊆ Unk =: UN so for all x ∈ [0, 1], then x ∈ f−1N ((−1, ε))⇔ |fN (x)| < ε.

Decreasing fn implies that for all n ≥ N , |fn(x)| < ε for all x ∈ [0, 1].

Problem 2. Let f ∈ L1(0,∞). For x > 0, define

g(x) =

∫ ∞
0

f(t)e−txdt.

Prove that g(x) is differentiable for x > 0 with derivative

g′(x) =

∫ ∞
0

−tf(t)e−txdt.

Proof. Since

∫ ∞
0

∫ x

0

|tf(t)e−ty|dydt =

∫ ∞
0

t|f(t)|
(∫ x

0

e−tydy

)
dt =

∫ ∞
0

−e−tx︸ ︷︷ ︸
≤1

|f(t)|dt+
∫ ∞
0

|f(t)|dt ≤ 2

∫ ∞
0

|f(t)|dt <∞.

By Fubini, h(x) =
∫∞
0

∫ x
0
−tf(t)e−tydtdy =

∫∞
0
f(t)e−txdt+ c.

So h(x) = g(x) + c.

From the definition of h, we know h′(x) = g′(x) and thus g(x) is differentiable. And h is differen-

tiable since it’s absolutely continuous.

65



11 AUGUST 2014 Kari Eifler

Problem 3. Let f : R→ R be a Lebesgue integrable function such that

∫ b

a

f(x)dx = 0 for every a < b.

Show that f(x) = 0 for almost every x ∈ R.

Proof. See question 1 from January 2015.

Problem 4. Let f be Lebesgue measurable on [0, 1] with f(x) > 0 a.e. Suppose (Ek) is a sequence

of measurable sets in [0, 1] with the property that
∫
Ek
f(x)dx→ 0 as k →∞.

Prove that m(Ek)→ 0 as k →∞.

Proof. Let Fm = {x | f(x) ≥ 1/m} so Fn ⊆ Fn+1.

Since f(x) > 0 almost everywhere, then

m (∪∞n=1Fn) = lim
n
m(Fn) = 1.

Fix ε > 0, so there exists N such that m(F cn) < ε/2 for n ≥ N . Now,

1

N
m(Ek ∩ FN ) ≤

∫
Ek∩FN

f(x)dx ≤
∫
Ek

f(x)dx→ 0 as k →∞.

So there exists some K such that m(Ek ∩ FN ) < ε/2 for all k ≥ K. Thus,

m(Ek) = m(EK ∩ FN ) +m(Ek ∩ F cN ) <
ε

2
+
ε

2
= ε ∀k ≥ K.

Problem 5. Let (fn) be a sequence of continuous functions on [0, 1] such that for each x ∈ [0, 1]

there is an N = Nx so that

fn(x) ≥ 0 for all n ≥ Nx.

Show that there is an open nonempty set U ⊂ [0, 1] and an N ∈ N, so that fn(x) ≥ 0 for all n ≥ N

and all x ∈ U .

Proof. Let

En := {x | fm(x) ≥ 0 ∀m ≥ n} =

∞⋂
n=m

{x | fn(x) ≥ 0}
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so En is closed and En ⊇ En+1. For all x ∈ [0, 1] there exists N = Nx such taht fm(x) ≥ 0 for all

m ≥ N . Thus, x ∈ EN .

Then, [0, 1] = ∪∞n=1En. Since [0, 1] is compact, by Baire-Category we know there exists N such that

EN
◦ 6= ∅ (i.e. E◦N 6= ∅).

Let U = E◦N be open, non-empty so for all x ∈ U , fn(x) ≥ 0 for all n ≥ N .

Problem 6. (a) Define the w∗-topology on the dual X∗ of a Banach space X.

Proof. See wikipedia!

(b) Let X be an infinite dimensional Banach space. What is the w∗-closure of

SX∗ = {x∗ ∈ X∗ | ‖x∗‖ = 1}?

(as usual, prove your answer.)

Proof. Claim: SX∗
w∗

= BX∗ .

We know for any x1, x2, . . . , xn ∈ X, there exists some x∗0 6= 0 such that x∗0(xi) = 0. Indeed,

if this were not true then otherwise, x∗0(xi) 6= 0 for some i, let ϕ : X∗ → Rn be ϕ(x∗) =

(x∗(x1), . . . , x∗(xn)) then ϕ is injective so dim(X∗) ≤ dim(Rn) = n. Contradiction, so true.

Now for any x∗ ∈ BX∗ , consider it’s neighborhood (open under the w∗-neighborhood)

V = ∩ni=1{y∗ ∈ X∗ | |x̂i(x∗ − y∗)| = |x∗(xi)− y∗(xi)| < ε}

for each {xi}ni=1 choose such an x∗0 6= 0 from the claim.

Consider the line {x∗ + tx∗0 | t ∈ R} in X∗.

Since for any x̂i,

x̂i(x
∗ + tx∗0 − x∗) = tx̂i(x

∗
0) = tx∗0(xi) = 0 < ε.

Then {x∗ + tx∗0 | t ∈ R} ⊆ V . Since ‖x∗ + tx∗0‖ is continuous about t, then we can find t0 such

that ‖x∗ + t0x
∗
0‖ = 1 ⇒ V ∩ SX∗ 6= ∅.

Since any neighborhood of x∗ contains a neighborhood of the form V as above (i.e. these V ’s

are a neighborhood basis) then BX∗ ⊆ SX∗
w∗

.

On the other hand, for any x∗0 ∈ BX∗ , by Hahn-Banach separation Theorem, we know there

exists x ∈ X and c ∈ R such that x∗(x) < c < x∗0(x) for all x∗ ∈ BX∗ .

Then for all {x∗n} ⊆ BX∗ , x
∗
n(x) ≤ c < x∗0(x). Therefore, x∗0 isn’t an accumulation point of BX∗

which implies BX∗
w∗

= BX∗ . Thus, SX∗
w∗ ⊆ BX∗

w∗

= BX∗ so BX∗ = SX∗
w∗

.

Problem 7. (a) State the Riesz Representation Theorem for the dual L∗p(µ) of Lp(µ), 1 ≤ p <∞.

Proof. See Wikipedia!
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(b) Let µ be a finite measure on the measurable space (Ω,Σ). Prove the following part of the above

theorem:

If F ∈ L∗p(µ), then there exists an h ∈ L1(µ) so that

F (χA) =

∫
A

hdµ for all A ∈ Σ.

Proof. Let ν(A) = F (χA). The goal is to show ν is a σ-finite signed measure.

(a) ν(∅) = F (χ∅) = F (0) = 0

(b) Let {Ei} be disjoint, let E = ∪∞i=1Ei. Then

ν(E)−
n∑
i=1

ν(Ei) = F (χE)− F

(
n∑
i=1

χi

)

≤ ‖F‖L∗p

∥∥∥∥∥χE −
n∑
i=1

χi

∥∥∥∥∥
p

≤ ‖F‖L∗p

∥∥∥∥∥
∞∑

i=n+1

χi

∥∥∥∥∥
p

= ‖F‖L∗pµ
(
∪∞i=n+1Ei

)1/p → 0 as n→∞.

Therefore, ν(E) =
∑∞
i=1 ν(Ei).

When µ(A) = 0, then

ν(A) = F (χA) ≤ ‖F‖L∗p‖χA‖p = ‖F‖L∗pµ(A)1/p = 0.

So ν � µ.

Then from the Radon-Nikodyn Theorem, there exists some h ∈ L1(µ) such that ν(A) =
∫
A
hdµ.

So

F (χA) = ν(A) =

∫
A

hdµ.

Problem 8. Assume that (xn) is a weakly converging sequence in a Hilbert space H. Show that

there is a subsequence (yn) of (xn) so that

1

n

n∑
j=1

yj

converges in norm.
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Proof. WLOG xn → 0 weakly (〈xn, y〉 → 〈0, y〉 for all y ∈ H) and we know ‖xn‖ is bounded,

supn ‖xn‖ ≤ C. For n > m,

∥∥∥∥∥∥ 1

m

m∑
j=1

yj −
1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

=

〈
1

m

m∑
j=1

yj −
1

n

n∑
j=1

yj ,
1

m

m∑
j=1

yj −
1

n

n∑
j=1

yj

〉

=

〈(
1

m
− 1

n

) m∑
j=1

yj −
1

n

n∑
j=m+1

yj ,

(
1

m
− 1

n

) m∑
j=1

yj −
1

n

n∑
j=m+1

yj

〉

≤
(

1

m
− 1

n

)2
∥∥∥∥∥∥
m∑
j=1

yj

∥∥∥∥∥∥
2

+ 2

∣∣∣∣∣∣
〈(

1

m
− 1

n

) m∑
j=1

yj ,
1

n

n∑
j=m+1

yj

〉∣∣∣∣∣∣+

(
1

n

)2
∥∥∥∥∥∥

n∑
j=m+1

yj

∥∥∥∥∥∥
2

.

Now by induction, we can choose yj such that |〈yj ,
∑m
n=1 yn〉| < 2−j for all m ≤ j − 1. Pick y1

randomly.

Since 〈xn, y〉 → 〈0, y〉 for all y ∈ H, then we can find y2 such that 〈y2, y1〉 < 2−2.

Similarly, find y3 such that 〈y3, y1 + y2〉 < 2−3 and 〈y3, y1〉 < 2−3, etc. Then

∥∥∥∥∥∥
m∑
j=1

yj

∥∥∥∥∥∥
2

=

〈
m∑
j=1

yj ,

m∑
j=1

yj

〉
= 〈ym, ym〉+〈ym,

m−1∑
j=1

yj〉+. . .+〈y1, y1〉 ≤
m∑
j=1

‖yj‖2+

m∑
j=1

2−j <

m∑
j=1

‖yj‖2+2.

Therefore,

(
1

m
− 1

n

)2
∥∥∥∥∥∥
m∑
j=1

yj

∥∥∥∥∥∥
2

≤ 1

m2

 m∑
j=1

‖yj‖2 + 2

 <
1

m2
(mc+ 2)→ 0 as m→∞.

Similar argument holds for
(
1
n

)2 ∥∥∥∑n
j=m+1 yj

∥∥∥2.

Finally,

∣∣∣∣∣∣
〈(

1

m
− 1

n

) m∑
j=1

yj ,
1

n

n∑
j=m+1

yj

〉∣∣∣∣∣∣ ≤ 1

n

(
1

m
− 1

n

) n∑
j=m+1

〈
yj ,

m∑
k=1

yk

〉

≤ 1

n

(
1

m
− 1

n

) n∑
j=m+1

2−(m+1)

≤ 1

n

(
1

m
− 1

n

)
→ 0
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So then
∥∥∥ 1
m

∑m
j=1 yj −

1
n

∑n
j=1 yj

∥∥∥2 → 0 as n,m→∞ so it’s Cauchy and therefore converges.

Problem 9. Show that a linear functional φ on a Banach space X is continuous if and only if {x ∈
X | φ(2x) = 3} is norm closed.

Proof. ⇒) A = {x | φ(2x) = 3)} = {x | 2x ∈ φ−1({3})}. Let ψ(x) = φ(2x) so A = ψ−1(φ−1({3})).

⇐) We want to show ker(φ) is closed. Note that {x ∈ X | φ(2x) = 3} = {x ∈ X | φ(x) = 3/2}.

Pick some a ∈ X such that φ(a) = 3/2. Then clearly

a+ ker(φ) ⊆ {x ∈ X | φ(x) = 3/2}

and if φ(x) = 3/2 then φ(x− a) = 0 so x = a+ (x− a) ∈ a+ ker(φ).

Thus, a+ ker(φ) = {x ∈ X | φ(2x) = 3}. Therefore ker(φ) = {x ∈ X | φ(2x) = 3}−a which is closed.

Then

φ′ : X/ ker(φ)→ R
x+ ker(φ) 7→ φ(x)

is an isomorphism. Let π : X → X/ kerφ which is also continuous, so φ = φ′ ◦ π is continuous.

Problem 10. Let C1[0, 1] be the space of functions f ∈ C[0, 1] such taht f ′ exists and is continuous

in [0, 1]. The space C1[0, 1] is given the supremum norm. Define T : C1[0, 1] → C[0, 1] by Tf =

f ′ for f ∈ C1[0, 1]. Show that T has a closed graph and that T is not bounded. Decide if C1[0, 1]

(together with the supremum norm) is a Banach space or not. (Explain your answer).

Proof. Let fn → f and Tfn → f ′n → g in ‖ · ‖∞.

fn(x) =

∫ x

0

f ′n(t)dt+ fn(0) f(x) =

∫ x

0

f ′(t)dt+ f(0)

Since fn → f then fn(0)→ f(0). Let G =
∫ x
0
g(t)dt+ f(0). Then

‖f −G‖ ≤ ‖f − fn‖+ ‖fn −G‖ ≤ ‖f − fn‖+

∫ x

0

‖fn − g‖∞ ≤ ‖f − fn‖+ ‖fn − g‖∞ → 0.

So f ′ = g meaning T has a closed graph.

To see T is not bounded, consider fn = xn so ‖fn‖∞ = 1 but ‖Tfn‖ = ‖nxn−1‖∞ = n→∞.

Thus, by the closed graph theorem, C1[0, 1] is not a Banach space.
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12 January 2014

Problem 1. Let (X,M, µ) be a non atomic masure space with µ(X) > 0. Show that there is a

measurable f : X → [0,∞), for which

∫
f(x)dµ(x) =∞.

Proof. Take X = E1 ⊇ E2 ⊇ E3 ⊇ . . . such that µ(E1) > µ(E2) > . . . > 0. Define

f(x) =

{
µ(En\En+1)−1 if x ∈ En\En+1

0 if x ∈ ∩∞n=1En

Then
∫
f(x)dx =

∑∞
n=1 1 =∞.

Problem 2. Assume that µ is a finite measure on Rn. Prove that there is a closed set A ⊂ Rn with

the property that for each closed B ( A it follows that µ(A\B) 6= 0.

Proof. Since Rn is a locally compact Hausdorff space and µ is finite, µ is Radon (and regular). If

µ(Rn) = a (so V 6= Rn) then we can set

Mn :=
{
U | U is open and µ(U) <

a

n

}
and V := ∪∞n=1{U | U ∈Mn} so V is open. Let A = V c is closed.

For any B ( A, A\A ∩Bc. Assume µ(A\B) = 0 then

µ(A\B) = inf{µ(U) | A\B ⊆ U,U open} = 0.

Then there exists U ⊆ V such that A\B ⊆ U . Then A\B ∩ U ⊆ A ∩ U ⊆ A ∩ V = ∅, so A\B = ∅.
Contradiction!

Problem 3. For a nonnegative function f ∈ L1([0, 1]), prove that

lim
n→∞

∫ 1

0

n
√
f(x)dx = m({x | f(x) > 0}).

Proof. Let

E1 = {x | f(x) ≥ 1}
E2 = {x | 0 < f(x) < 1}
E3 = {x | f(x) = 0}
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Then

∫ 1

0

f(x)1/ndx =

∫
E1

f(x)1/ndx+

∫
E2

f(x)1/ndx+

∫
E3

f(x)1/ndx

For the first integral on E1, limn f(x)1/ndx = 1 and |f(x)1/n| ≤ |f(x)| ∈ L1, so by DCT,
∫
E1
f(x)1/ndx =∫

E1
dx = m(E1).

For the second integral on E2, limn f(x)1/n = 1 and |f(x)1/n| ≤ 1 ∈ L1 so again by DCT,
∫
E2
f(x)1/ndx =∫

E2
dx = m(E2). Therefore,

∫ 1

0

f(x)1/ndx = m(E1) +m(E2) = m({x | f(x) > 0}).

Problem 4. Let f be Lebesgue integrable on (0, 1). For 0 < x < 1 define

g(x) =

∫ 1

x

t−1f(t)dt.

Prove that g is Lebesgue integrable on (0, 1) and that

∫ 1

0

g(x)dx =

∫ 1

0

f(x)dx.

Proof. Notice that

∫ 1

0

∫ t

0

t−1f(t)dtdx =

∫ 1

0

|f(t)|dt <∞

since f ∈ L1(0, 1) so then by Fubini, we have that

∫ 1

0

∫ 1

x

t−1f(t)dtdx =

∫ 1

0

∫ t

0

t−1f(t)dxdt.

So we have

∫ 1

0

g(x)dx =

∫ 1

0

∫ 1

x

t−1f(t)dtdx =

∫ 1

0

∫ t

0

t−1f(t)dxdt =

∫ 1

0

f(t)dt.

Problem 5. Assume that ν and µ are two finite measures on a measurable space (X,M). Prove

that
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ν << µ⇔ lim
n→∞

(ν − nµ)+ = 0.

Proof. ⇐) Let µ(E) = 0. Then for all ε > 0, there exists some N such that for all n ≥ N ,

ε > (ν − nµ)+(E) ≥ (ν − nµ)(E) = ν(E)− nµ(E) ≥ ν(E).

Letting ε approach 0, we have that ν(E) = 0 so that ν << µ.

Problem 6. Let (pn) be a sequence of polynomials which converges uniformly on [0, 1] to some

function f , and assume that f is not a polynomial. Prove the limn→∞ deg(pn) = ∞, where deg(p)

denotes the degree of a polynomial p.

Proof. Assume to the contrary and consider the space P = span{1, x, x2, . . . , xm} with (pn) ⊆ P.

Since {1, x, . . . , xm} are basis elements and P is finite dimensional, then any two norms are equiva-

lent on P and so if P =
∑∞
k=0 akx

k, we can consider the two norms defined by

‖P‖1 := sup |ak| ‖P‖2 := sup
x∈[0,1]

|P (x)|

Since ‖pnk − pn`‖2 → 0, then ‖pnk − pn`‖1 → 0 so {ank} is Cauchy. Hense, P =
∑m
`=0 a`x

` where

a` = limk a
`
nk

is a polynomial of degree at most m and pn converges uniformly to p. So therefore,

p = f . Contradiction!

Alternative proof. Assume not, so there exists some M such that for all N ∈ N, there exists some

n ≥ N such that deg(pn) ≤ M . For N = 1, find n1 such that deg(pn1) ≤ M . For N = n1, find n2
such that deg(pn2) ≤M , etc.

Get a subsequence {pnk} such that deg(pnk) ≤M .

Since pn converges to f uniformly on [0, 1] then pnk converges to f uniformly on [0, 1].

We write pni :=
∑m
j=1 aijx

j , then

f = lim
i→∞

m∑
j=i

aijx
j =

m∑
j=1

lim
i→∞

aijx
j =

∑
j=1

xj where bj = lim
i→∞

aij .

To see limi→∞ aij exists: let X = Pp | p polynomial with degree ≤ M} is a finite dimensional

subspace of C[0, 1] hense closed so f ∈ X so f is a polynomial.

Problem 7. Let (fn) be sequence of non zero bounded linear functionals on a Banach space X.

Show that there is an x ∈ X so that fn(x) 6= 0, for all n ∈ N.

Proof. Let En = {x | fn(x)} which is closed in X. Assume the result is not true, so for every x ∈ X,

there exists some n such that fn(x) = 0 implies x ∈ En, that is, X = ∪nEn.
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Since X is a Banach space, then by Baire Category Theorem, there exists some n such that ∅ 6=
E◦n = E◦n.

Thus, there exists some r > 0, x ∈ X such that B(r, x) ⊆ En.Then for all y ∈ X,

r
y

‖y‖
+ x ∈ x+B(r, 0) = B(r, x)

so then if fn(r y
‖y‖ + x) = 0, then r

‖y‖fn(y) = −fn(x) = 0 so fn(y) = 0 so fn = 0.

Thus, by Baire Category, ∪Cn 6= X. Contradiction!

Problem 8. Assume that T : `1 → `2 is bounded, linear and one-to-one. Prove that T (`1) is not

closed in `2.

Proof. If T (`1) is closed, then T (`1) is a hilbert space. Since T : `1 → T (`1) is bijective, by the open

mapping theorem. T is open and T−1 is bounded so T is an isomorphism. Then `1 ∼= T (`1). But `1

is not reflexive and T (`1) is reflexive, so contradiction.

Alternative Proof. T (`1) is closed, hence complete. So T : `1 → T (`1) is bijective, so by the open

mapping theorem, T is an open map so T (`1) is both open and closed in `2. Hence, T (`1) ∼= `2 so

then `1 ∼= `2. Contradiction!

Problem 9. For a uniformly bounded sequence (fn) in C[0, 1] (i.e. supn∈N supξ∈[0,1] |fn(ξ)| < ∞)

show that fn converges weakly to 0 ⇔ limn→∞ fn(ξ) = 0 for all ξ ∈ [0, 1].

Is the equivalence true if we do not assume that (fn) is uniformly bounded, explain?

Proof. This question is the same as 3 from August 2015.

⇒) C([0, 1])∗ = M[0, 1] for all ξ ∈ [0, 1], δξ ∈ M[0, 1]. So 0 = limn

∫
fndδξ = limn fn(ξ) so then

limn fn(ξ) = 0 (note that this does not require uniformly boundedness!)

⇐) Fix µ ∈ M[0, 1], we want to show that
∫
fndµ → 0. Since |fn(x)| ≤ M for all x and all n, then

by dominated convergence theorem,
∫
fndµ→ 0.

Finally, consider hn given by connecting (0, 0), (1/n, n), (2/n, 0) and (1, 0). So hn(ξ) → for all xı ∈
[0, 1]. But by taking Lebesgue measure,

∫
hn(x)dµ(x) = 1 so fn 9 0 weakly.

Problem 10. Assume that f is measurable and non negative function on [0, 1]2 and that 1 ≤ r <

p <∞. Show that

(∫ 1

0

(∫ 1

0

fr(x, y)dy

)p/r
dx

)1/p

≤

(∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p
dy

)1/r

.

Hint: Let s = p/r, let 1 < s′ <∞ be the conjugate of s and let

F : [0, 1]→ R+
0 , x 7→

∫ 1

0

fr(x, y)dy.
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Then consider for an appropriate function h ∈ Ls′ [0, 1] the product hF .

Proof. Let F (x) :=
∫ 1

0
fr(x, y)dy. Let h ∈ Ls′ [0, 1] with ‖h‖s′ = 1 and h ≥ 0. Then by Tonelli (since

Fh ≥ 0), we have

∫ 1

0

F (x)h(x)dx =

∫ 1

0

∫ 1

0

fr(x, y)h(x)dydx

=

∫ 1

0

∫ 1

0

fr(x, y)h(x)dxdy

≤
∫ 1

0

‖fr(·, y)‖s‖h‖s′dy

=

∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p
dy

So then
∫ 1

0
F (x)h(x)dx ≤

∫ 1

0

(∫ 1

0
fp(x, y)dx

)r/p
dy for all ‖h‖s′ = 1, h ≥ 0.

Notice that F ≥ 0 so when ‖h̃‖s′ = 1, we have

sup
‖h̃‖s′=1

∫ 1

0

F (x)h(x)dx = sup
‖h‖s′=1,h≥0

∫ 1

0

F (x)h(x)dx

Therefore,

sup
‖h‖s′=1,h≥0

∫ 1

0

F (x)h(x)dx = ‖F‖s =

(∫ 1

0

(∫ 1

0

fr(x, y)dy

)p/r)r/p
≤
∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p
dy

So then,

(∫ 1

0

(∫ 1

0

fr(x, y)dy

)p/r
dx

)1/p

=

(∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p
dy

)1/r

.

13 August 2013

Problem 1. Let 1 ≤ p ≤ ∞ and let f ∈ Lp(R). For t ∈ R, let ft(x) = f(x − t) and consider

the mapping G : R → Lp(R) given by G(t) = ft. The space Lp(R) is equipped with the usual norm

topology.

(a) Show that G is continuous if 1 ≤ p <∞.
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Proof. Since C∞c (R) is dense in Lp(R) for 1 ≤ p < ∞, we can choose g ∈ C∞c (R) such that

‖g − f‖p < ε. Then

‖ftn − ft‖p ≤ ‖ftn − gtn‖p + ‖gtn − gt‖p + ‖gt − ft‖p

It’s easy to see ‖ftn − gtn‖p and ‖gt − ft‖p are small since ‖g − f‖p < ε. For ‖gtn − gt‖p, then

‖gtn − gt‖p =

(∫
R
|g(x− tn)− g(x− t)|pdx

)1/p

≤
(∫

A

εp
)1/p

= εµ(A)

where for each fixed tn → t, we can find a bounded set A ⊆ R such that ∪n supp gtn ∪ supp gt ⊆
A.

(b) Find an f for which the mapping G is not continuous when p =∞ (and justify your answer)

Proof. We will take f = χ[0,1], so

‖χ[0,1](tn)− χ[0,1](t)‖∞ = ‖χ[tn,tn+1) − χ[t,t+1)‖∞ = 1 ∀n

although tn → t, we have ‖ · ‖∞ 9 0.

(c) Let 1 ≤ p, q ≤ ∞ be conjugate exponents (i.e. satisfying 1
p + 1

q = 1). Let f ∈ Lp(R) and

g ∈ Lq(R) and show that their convolution h = f ∗ g is continuous. Recall

h(t) =

∫ ∞
−∞

f(x)g(t− x)dx.

Proof. Letting gt(x) = g(t− x), then we have (by Hölder)

|h(t)− h(tn)| ≤
∫
R
|f(x)||g(t− x)− g(tn − x)|dx ≤ ‖f‖p‖gt − gtn‖q

This goes to zero when 1 < p, q <∞ from part (a).

Also notice that

h(t) =

∫ ∞
−∞

f(x)g(t− x)dx =

∫ ∞
−∞

f(t− y)g(y)dy = g ∗ f.

So when p = 1, q =∞ the same is true.

Problem 2. (a) For f ∈ CR([0, 1]), show that f ≥ 0 if and only if ‖λ − f‖u ≤ λ for all λ ≥ ‖f‖u,

where ‖ · ‖u denotes the uniform (supremum) norm.

Proof. ⇒) Assume there exists some λ ≥ ‖f‖u such that ‖λ− f‖∞ > λ. Then there exists some

x ∈ [0, 1] such that |λ− f(x)| = λ− f(x) > λ so then f(x) < 0. Contradiction!

⇐) If there exists some x such that f(x) < 0, then if λ ≥ ‖f‖∞ so λ > 0. Then ‖λ − f‖∞ ≥
λ− f(x) > λ. Contradiction!
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(b) Suppose E ⊆ CR([0, 1]) is a closed subspace containing the constant function 1. For φ ∈ E∗,

we define φ ≥ 0 to mean φ(f) ≥ 0 whenever f ∈ E and f ≥ 0. Show φ ≥ 0 if and only if

‖φ‖ = φ(1).

Proof. ⇒) We have

‖φ‖ = sup
‖f‖u=1

|φ(f)| ≥ φ(1).

Also for ‖f‖u = 1, we have 1− f ≥ 0 so φ(1− f) ≥ 0 implies φ(1) ≥ φ(f). Moreover, φ(1 + f) =

φ(1) + φ(f) ≥ 0 and so φ(1) ≥ −φ(f) so then φ(1) ≥ |φ(f)|. Therefore, φ(1) = ‖φ‖

⇐) φ(1) = ‖φ‖ ≥ |φ(f)| for all ‖f‖u ≤ 1. Assume there exists some f ≥ 0 but φ(f) < 0.

By rescaling we can assume ‖f‖u < 1, so then

‖φ‖ ≥ φ
(

1− f
‖1− f‖

)
=

1

‖1− f‖
(φ(1)− φ(f)) ≥ φ(1)− φ(f) > φ(1) = ‖φ‖

which contradicts!

(c) If φ ∈ E∗ and φ ≥ 0, show that there is a bounded linear functional ψ on CR([0, 1]) so that

ψ ≥ 0 and the restriction of ψ to E is φ.

Proof. By Hahn-Banach, there exists some ψ which is an extension of φ such that ‖ψ‖ = ‖φ‖ =

φ(1) = ψ(1). So ψ ≥ 0 follows from (b).

Problem 3. (a) Let µ and λ be mutually singular complex measures defined on the same measur-

able space (X,M) and let ν = µ+ λ. Show |ν| = |µ|+ |λ|.

Proof. Let X = E t F be a disjoint union such that λ(F ) = mu(E) = 0. Let P2 t N2 = E be

the Hahn-decomposition for λ. Let P3 tN3 = F be the Hahn-decomposition for µ.

Then P1 = P2 t P3, N1 = N2 tN3 will be the Hahn-decomposition for ν = λ+ µ. Then

ν+(A) = ν(A ∩ P2) + ν(A ∩ P3) = λ(A ∩ P2) + µ(A ∩ P3)

ν−(A) = ν(A ∩N2) + ν(A ∩N3) = λ(A ∩N2) + µ(A ∩N3)

So then

|ν|(A) = λ(A ∩ P2) + µ(A ∩ P3) + λ(A ∩N2) + µ(A ∩N3) = |µ|(A) + |λ|(A)

Therefore, |ν| = |µ|+ |λ|.

(b) Construct a nonzero, atomless Borel measure on [0, 1] that is mutually singular with respect to

Lebesgue measure.

Proof. here. Maybe Cantor-Lebesgue?
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Problem 4. Let (fn)∞n=1 be a sequence of continuous functions on [0, 1] and suppose that for all

x ∈ [0, 1], fn(x) is eventually nonnegative. Show that there is an open interval I ⊆ [0, 1] such that

for all n large enough, fn is nonnegative everywhere on I.

Proof. Let UN = ∩∞n=Nf−1n [0,∞) = {x | fn(x) ≥ 0 ∀n ≥ N}. This is closed. For every x ∈ [0, 1],

fn(x) is eventually non-negative so [0, 1] = ∪NUN .

By Baire-Category, there exists some N such that ∅ 6= UN
◦

= U◦N . So there exists some open I ⊆
U◦N ⊆ [0, 1] and then for all n ≥ N , fn ≥ 0 on I.

Problem 5. Let µ be a nonatomic signed measure on a measure space (X,Ω), with µ(X) = 1.

Show that there is a measureable subset E ⊂ X with µ(E) = 1/2.

Proof. First notice that for every ε > 0, there exists some E ⊆ X with µ(E) < ε. This is because we

can recursively divide our set into two non-trivial sets and chose the smaller one.

Therefore, for all n, we can find a set En such taht 0 < µ(En) < 2−n. Let S = {E ⊆ X | µ(E) ≤ 1
2}

ordered by inclusion.

Zorn’s Lemma implies that there exists a maximal element E. If µ(E) < 1
2 then we can find some

F ⊆ Ec with 0 < µ(F ) < 1
2 − µ(E) but then µ(F ∪ E) ≤ µ(F ) + µ(E) ≤ 1

2 which contradicts

maximality.

Problem 6. Compute

lim
n→∞

∫ ∞
0

n sin(x/n)

x(1 + x2)
dx

and justify your computation.

Proof. Let fn(x) = n sin(x/n)
x(1+x2) . Recall that limt→0

sin t
t = 1, so limn

n sin(x/n)
x(1+x2) = 1

1+x2 and since

| sin(x/n)| ≤ x/n for x, n positive,

∣∣∣∣n sin(x/n)

x(1 + x2)

∣∣∣∣ ≤ ∣∣∣∣nx xn 1

1 + x2

∣∣∣∣ =
1

1 + x2
∈ L1[0,∞).

Then by DCT,

lim
n

∫ ∞
0

n sin(x/n)

x(1 + x2)
=

∫ ∞
0

lim
n

n sin(x/n)

x(1 + x2)
= arctan |∞0 =

π

4
.

Problem 7. Prove or disprove: for every real-valued continuous function f on [0, 1] such that f(0) =

0 and every ε > 0, there is a real polynomial p having only odd powers of x, i.e. p is of the form

p(x) = a1x+ a3x
3 + a5x

5 + · · ·+ a2n+1x
2n+1,
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such that supx∈[0,1] |f(x)− p(x)| < ε.

Proof. Let

A = { polynomial with even power}

so A is an algebra that separates points. Stone-Weierstrass implies that A is dense in C[0, 1]. We

can let

B = F (x) | F (x) =

∫ x

0

f(t)dt 0 ≤ x ≤ 1, f ∈ A} = { all polynomials with odd powers}

From problem 10 of August 2015, B = C0[0, 1].

Problem 8. Let f ∈ L1
loc(R).

(a) What (by definition) are the Hardy-Littlewood maximal function Hf and the Lebesgue set Lf of

f?

Proof.

Hf(x) = sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f(y)|dy︸ ︷︷ ︸
=:Arf(x)

.

Lf =

{
x | lim

r→0+

∫
B(r,x)

|f(y)− f(x)|dy
m(B(r, x))

= 0

}

(b) State the Hardy-Littlewood Maximal Theorem.

Proof. ‖Hf(x)‖p ≤ ‖f‖p.

(c) In each case, either construct concretely an example of f with the required property, or explain

why no such example exists (you may use theorems from Folland about the Lebesgue set, if you

state them).

(i) Lf = R

(ii) the complement of Lf is uncountable

(iii) Lf ⊆ (−∞, 0] ∪ [1,∞).

Proof. here

Problem 9. Let X be a separable Banach space, let {xn | n ≥ 1} be a countable, dense subset of the

unit ball of X and let B be the closed unit ball in the dual Banach space X∗ of X. For φ, ψ ∈ B, let
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d(φ, ψ) =

∞∑
n=1

2−n|φ(xn)− ψ(xn)|.

Show that d is a metric on B whose topology agrees with the weak*-topology of X∗ restricted to B.

Proof. We first check that d is a metric on B:

• d(φ, ψ) ≥ 0 clear

If d(φ, ψ) = 0 then φ = ψ on {xn} so φ = ψ by continuity / density

• triangle inequality follows as well

the weak*-topology is {z∗ ∈ X∗ | |(x∗ − z∗)(x)| < ε} for fixed x∗ ∈ X∗, x ∈ X, ε > 0.

For fixed x∗ ∈ X∗ consider the ε-ball in the metric d which is

ψ ∈ X∗ | d(x∗, ψ) < ε} = {ψ ∈ X∗ |
∞∑
n=1

2−n|x∗(xn)− ψ(xn)| < ε}

We want to show that |(x ∗ −ψ)(x)| < ε′ for any x ∈ BX and some ε′ > 0. Since xn is dense in BX
then there exists a xnk → x. Then

|(x∗ − ψ)(x)| ≤ |(x∗ − ψ)(x− xnk)|+ |(x∗ − ψ)(xnk)| < ε′

On the other hand, if ψ is in a weak* neighborhood of x∗, we want to show
∑∞
n=1 2−n|x∗(xn) −

ψ(xn)| < ε. Let |(ψ − x∗)(xn)| < ε′ for all n, then

∞∑
n=1

2−n|x∗(xn)− ψ(xn)| <
∞∑
n=1

2−nε = ε.

Alternative Proof. We first check that d is a metric on B:

• d(φ, ψ) ≥ 0 clear

If d(φ, ψ) = 0 then φ = ψ on {xn} so φ = ψ by continuity / density

• triangle inequality follows as well

To see that the topologies agree:

Consider B(r, ϕ) under the metric. We need to show it contains an open U under the weak*-topology.

Say d(φk, ψ) → 0. Then
∑∞
n=1 2−n|φk(xn) − ψ(xn)| → 0. So under the weak* topology, we need to

show for all x ∈ BX , |φk(x)− ψ(x)| → 0.

Indeed, this follows by density of {xn}. For large k, ‖φk‖ = supn |φk(xn)| ≤ M and |φk(xn)| ∼
|ψ(xn)|.
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Then for every ε > 0, there exists some n such that ‖xn − x‖ < ε so

|φk(x)− ψ(x)| ≤ |φk(x)− φk(xn)|+ |φk(xn)− ψ(xn)|+ |ψ(xn)− ψ(x)|

If |φk(x) − ψ(x)| → 0 for all x, then for all ε, choose N such that
∑∞
n=N 2−n < ε, so d(φk, ψ) =∑∞

n=1 2−n|φk(xn)− ψ(xn)|.

Problem 10. Let T : X → Y be a linear map between Banach spaces that is surjective and satisfies

‖Tx‖ ≥ ε‖x‖ for some ε > 0 and all x ∈ X. Show that T is bounded.

Proof. Is Γ(T ) = {(x, Tx) | x ∈ X} closed in X × Y ?

If xn → x and Txn → y, we want to show y = Tx. T is surjective, so y = Tx0. Then for all ε̃ > 0,

there exists N such that for all n ≥ N ,

ε̃ > ‖Txn − Tx0‖ ≥ ε‖xn − x0‖.

So xn → x0, and Txn → Tx0.

The closed graph theorem implies T is bounded.

14 January 2013

Problem 1. Let f be a Lebesgue integrable, real-valued function on (0, 1) and for x ∈ (0, 1) define

g(x) =

∫ 1

x

t−1f(t)dt.

Show that g is Lebesgue integrable on (0, 1) and that
∫ 1

0
g(x)dx =

∫ 1

0
f(x)dx.

Proof. See January 2014, # 4

Problem 2. Let fn ∈ C[0, 1]. Show that fn → 0 weakly if and only if the sequence (‖fn‖)∞n=1 is

bounded and fn converges pointwise to 0.

Proof. See August 2015, # 3

Problem 3. Let (X,µ) be a measure space with 0 < µ(X) ≤ 1 and let f : X → R be measurable.

State the definition of ‖f‖p for p ∈ [1,∞]. Show that ‖f‖p is a monotone increasing function of

p ∈ [1,∞) and that limp→∞ ‖f‖p = ‖f‖∞.

Proof. See January 2016, # 8
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Problem 4. (a) Is there a signed Borel measure µ on [0, 1] such that

p′(0) =

∫ 1

0

p(x)dµ(x)

for all real polynomials p of degree at most 19?

Proof. We first define the linear functional I(p) = p′(0).

Write P = span{1, x, x2, . . . , x19}, which is a finite dimensional space. Thus, all norms are

equivalent. We take, in particular, the norms ‖ · ‖m = maxi=1,...,19 |ai| and ‖ · ‖∞. Then there

must exist some C such that if ‖p‖∞ = 1 then ‖p‖m ≤ C so |a1| ≤ C which implies that I is

bounded.

By Hahn-Banach, there exists some Ĩ ∈ C[0, 1]∗ such that Ĩ(p) = I(p) for all p ∈ P. By Riesz,

there exists some µ such that Ẽ(p) = p′(0) =
∫ 1

0
p(x)dµ.

(b) Is there a signed Borel measure µ on [0, 1] such that

p′(0) =

∫ 1

0

p(x)dµ(x)

for all real polynomials p?

Proof. Suppose there did exist such a measure µ on [0, 1]. Then since µ([0, 1]) =
∫ 1

0
1dµ = 0, we

have that |µ|([0, 1]) <∞. Therefore, the mapping T : p 7→
∫ 1

0
p(x)dµ(x) can extend continuously

to C[0, 1].

Consider fn(x) defined by nx for x ∈ [1/n, 2/n], fn(x) = 1 for x ∈ [2/n, 1] and smooth on the

interval [1/n, 2/n] but bounded above by 2 (it’s always possible to construct such an fn). Then

f ′n(0) =

∫ 1

0

fn(x)dµ ≤ ‖fn‖∞‖µ‖ ≤ ‖µ‖ <∞

But limn |f ′n(0)| = limn =∞. Contradiction!

Problem 5. Let F be the set of all real-valued functions on [0, 1] of the form

f(t) =
1

Πn
j=1(t− cj)

for natural numbers n and for real numbers cj /∈ [0, 1]. Prove or disprove: for all continuous, real-

valued functions g and h on [0, 1] such that g(t) < h(t) for all t ∈ [0, 1], there is a function a ∈
spanF such that g(t) < a(t) < h(t) for all t ∈ [0, 1].

Proof. Let A = spanF . It’s easy to see this is an algebra since cj /∈ [0, 1]. Also 1
t+1 separates

points, so Stone-Weierstrass theorem implies A = C[0, 1].

Let M = mint∈[0,1] |h(t) − g(t)|, so we can choose some a ∈ A such that
∥∥∥a− h+g

2

∥∥∥
∞
< M

6 . Then

−M
6 < a− h+g

2 < M
6 and since h− g ≥M , then
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h− a =
h

2
− a+

h

2
≥ h

2
− a+

g

2
+
M

2
=
h+ g

2
− a+

M

2
>
M

2
− M

6
=
M

3
> 0

a− g = a− g + g

2
≥ a− g + h

2
+
M

2
>
−M

6
+
M

2
=
M

3
> 0

So then g < a < h.

Problem 6. Let k : [0, 1] × [0, 1] → R be continuous and let 1 < p < ∞. For f ∈ Lp[0, 1], let Tf be

the function on [0, 1] defined by

(Tf)(x) =

∫ 1

0

k(x, y)f(y)dy.

Show that Tf is a continuous function on [0, 1] and that the image under T of the unit ball in Lp[0, 1]

has compact closure in C[0, 1].

Proof. Note that

|Tf(x)− Tf(y)| ≤ int10|k(x, z)− k(y, z)||f(z)|dz ≤ ‖k(x, ·)− k(y, ·)‖q‖f‖p for q =
p

p− 1

Since k is continuous on [0, 1]2, then for every ε > 0 there exists some δ > 0 such that if |x− y| < δ,

then

‖k(x, ·)− k(y, ·)‖qq =

∫ 1

0

|k(x, z)− k(y, z)|qdz <
∫ 1

0

εpdz = εp.

Therefore, Tf is continuous.

Now consider F = {Tf | ‖f‖p ≤ 1} ⊆ C[0, 1]. We’ll use Arzela-Ascoli:

• equicontinuous

follows from above

• pointwise bounded

|Tf(x)| ≤ ‖K(x, ·)‖q‖f‖p ≤ ‖K(x, ·)‖q ≤
(∫ 1

0

Mqdz

)1/q

= M

so it’s actually uniformly bounded

Therefore, by Arzela-Ascoli, F is compact in C[0, 1].
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Problem 7. (a) Define the total variation of a function f : [0, 1]→ R and absolute continuity of f .

Proof. here

(b) Suppose f : [0, 1]→ R is absolutely continuous and defines g ∈ C[0, 1] by

g(x) =

∫ 1

0

f(xy)dy.

Show that g is absolutely continuous.

Proof. Since f is absolutely continuous, there exists some δ′ > 0 such that
∑n
i=1 |bi − ai| < δ′

implies
∑n
i=1 |f(bi)− f(ai)| < ε. Fix some y ∈ [0, 1] so that

n∑
i=1

|biy − aiy| ≤
n∑
i=1

|bi − ai| < δ′

This implies then that
∑n
i=1 |f(biy)− f(aiy)| < ε. Therefore,

n∑
i=1

|g(bi)− g(ai)| ≤
∫ 1

0

n∑
i=1

|f(bi)− f(ai)| ≤
∫ 1

0

εdx = ε.

So g is absolutely continuous.

Problem 8. (a) State the definition of absolute continuity, v << µ, for positive measures µ and

ν, and state the Radon-Nikodym Theorem, (or the Lebesgue-Radon-NIkodym Theorem, if you

prefer.)

Proof. here

(b) Suppose that we have ν1 << µ1 and ν2 << µ2 for positive measures νi and µi on measurable

spaces (Xi,Mi) for i = 1, 2. Show that we have ν1 × ν2 << µ1 × µ2, and

d(ν1 × ν2)

d(µ1 × µ2)
(x, y) =

dν1
dµ1

(x)
dν2
dµ2

(y).

Proof. Assume E ∈M1 ⊗M2 and µ1 × µ2(E) = 0. Define

Ex = {y ∈ X2 | (x, y) ∈ E} Ey = {x ∈ X | (x, y) ∈ E}

Then Ex ∈ M1 and Ey ∈ M2 for all x ∈ X1, y ∈ X2. Since µ1 and µ2 are positive, then

0 = (µ1 × µ2)(E) =
∫
µ1(Ey)dµ2(y) then µ1(Ey) = 0 µ2-almsot everywhere and so then

ν1(Ey) = 0 µ2-almost everywhere.

Thus, µ2({y ∈ X2 | ν1(Ey) > 0}) = 0 so then ν2({y ∈ X2 | ν1(Ey) > 0}) = 0. Thus, ν1(Ey) = 0

for ν2-almost everywhere and therefore, (ν1 × ν2)(E) =
∫
ν1(Ey)dν2(y) = 0.

Thus, ν1 × ν2 << µ1 × µ2. By Radon-Nikodym theorem,
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ν1 × ν2(E) =

∫
E

d(ν1 × ν2)

d(µ1 × µ2)
(x, y)d(µ1 × µ2) for E ∈M1 ⊗M2

Since ν1 << µ1, by Proposition 3.9(a) in Folland,

(ν1 × ν2)(E) =

∫
ν2(Ex)dν1(x)

=

∫
ν2(Ex)

dν1
dµ1

(x)dµ1(x)

=

∫ (∫
Ex

dν2
dµ2

(y)dµ2(y)

)
dν1
dµ1

(x)dµ1(x)

=

∫
E

dν2
dµ2

(y)
dν1
dµ1

(x)d(µ1 × µ2)(x, y)

By the uniqueness of Radon-Nikodym derivative, we have

d(ν1 × ν2)

d(µ1 × µ2)
(x, y) =

dν1
dµ1

(x)
dν2
dµ2

(y).

Problem 9. (a) Let E be a nonzero Banach space and show that for every x ∈ E, there is φ ∈ E∗
such that ‖φ‖ = 1 and |φ(x)| = ‖x‖.

Proof. This is the Hahn-Banach separation Theorem.

(b) Let E and F be Banach spaces, let π : E → F be a bounded linear map and let π∗ : F ∗ → E∗ be

the induced map on dual spaces. Show that ‖π∗‖ = ‖π‖.

Proof. We have π∗(y∗)(x) = y∗(π(x)) for all y∗ ∈ F ∗ and x ∈ E. Then ‖π∗(y∗)(x)‖ ≤
‖y∗‖‖π‖‖x‖ so then ‖π∗‖ ≤ ‖π‖.

On the other hand, by part (a), for each x ∈ E such that ‖x‖ ≤ 1, π(x) ∈ F , we can find

y∗ ∈ F ∗ such that |y∗(π(x))| = ‖π(x)‖ and ‖y∗‖ = 1. Then

‖π∗‖ ≥ ‖π∗(y∗)‖ ≥ |π∗(y)(x)| = |y∗(π(x))| = ‖π(x)‖ ∀‖x‖ ≤ 1

So ‖π∗‖ ≥ ‖π‖. THus, ‖π‖ = ‖π∗‖.

Problem 10. Let X be a real Banach space and suppose C is a closed subset of X such that

(i) x1 + x2 ∈ C for all x1, x2 ∈ C,

(ii) λx ∈ C for all x ∈ C and λ > 0,

(iii) for all x ∈ X there exists x1, x2 ∈ C such that x = x1 − x2.
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Prove that, for some M > 0, the unit ball of X is contained in the closure of

{x1 − x2 | xi ∈ C, ‖xi‖ ≤M}.

Deduce that every x ∈ X can be written x = x1 − x2, with xi ∈ C and ‖xi‖ ≤ 2M‖x‖.

Proof. Define

Cn = {x1 − x2 | xi ∈ C, ‖xi‖ ≤ n}

By (iii), we know that X = ∪Cn. By Baire Category, there exists some M such that ∅ 6= CM
◦

=

C◦M . Thus, there exists an open ball B ⊆ CM , B = B(x0, 2r).

For any x ∈ BX , x0 + rx ∈ B ⊆ CM . From (i), we know that CM − CM ⊆ C2M so then rx =

(x0 + rx)− x0 ∈ CM − CM ⊆ C2M . From (ii), we know x ∈ C2M/r, so BX ⊆ C2M/r. Let M ′ = 2M
r .

For any x ∈ X, x ∈ CM ′‖x‖. So we can find z1, y1 ∈ C such that ‖z1‖, ‖y1‖ ≤ M‖x‖ and ‖x − (z1 −
y1)‖ < 1

2‖x‖. Therefore,

2(x− (z1 − y1))

‖x‖
∈ CM ⇒ x− (z1 − y1) ∈ CM‖x‖/2

So we can find z2, y2 ∈ C such that ‖z2‖, ‖y2‖ ≤ M
2 ‖x‖ and

∥∥∥∥∥x−
2∑
i=1

(zi − yi)

∥∥∥∥∥ < 1

22
‖x‖.

Inductively, we can find {zn}, {yn} ⊆ C such that ‖zk‖, ‖yk‖ ≤ M
2k−1 ‖x‖ and

∥∥∥∥∥x−
k∑
i=1

(zi − yi)

∥∥∥∥∥ < 1

2k
‖x‖.

Then,

∞∑
k=1

‖zk‖ ≤
∞∑
k=1

M‖x‖ 1

2k
< 2M‖x‖ <∞

so
∑∞
k=1 zk converges to some x1 in C and similarly

∑∞
k=1 yk converges to some x2 in C (since C is

closed). Moreover,

lim
n

∥∥∥∥∥x−
n∑
i=1

(zi − yi)

∥∥∥∥∥ = lim
n

∥∥∥∥∥x−
(

n∑
i=1

zi −
n∑
i=1

yi

)∥∥∥∥∥ = 0.
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So then x =
∑∞
i=1(zi − yi) = x1 − x2.

15 August 2012

Problem 1. Let (X,M, µ) be a measure space. Prove that the normed vector space L1(X,µ) is

complete. You may use any results except the convergence of function series.

Proof. See class notes.

Problem 2. Fix two measure spaces (X,M, µ) and (Y,N , ν) with µ(X), ν(Y ) > 0. Let f : X → C,

g : Y → C be measurable. Suppose f(x) = g(y), (µ × ν)-a.e. Show that there is a constant a ∈ C
such that f(x) = a µ-a.e. and g(y) = a ν-a.e.

Proof. Let E := {(x, y) ∈ X × Y | f(x) = g(y)}, so (µ ⊗ ν)(Ec) = 0. Then for every a ∈ C, by

Fubini-Tonelli,

0 = (µ⊗ ν) ({(x, y) ∈ X × Y | f(x) = a, g(y) 6= a}) = µ ({x ∈ X | f(x) = a}) ν ({y ∈ Y | g(y) 6= a}) .

Assume µ({x ∈ X | f(x) = a}) = 0 for all a ∈ C. Then

0 < (µ⊗ ν)(X × Y )

= (µ⊗ ν)(E) =

∫
X×Y

χ{(x,y)|f(x)=g(y)}dµ(x)dν(y)

=

∫
Y

(∫
X

χ{x|f(x)=g(y)}dµ(x)

)
dν(y)

=

∫
Y

0dν(y) = 0.

This is a contradiction so there must exist some a ∈ C with µ({x ∈ X | f(x) = a}) > 0. Then

ν({y ∈ Y | g(y) 6= 0}) = 0 so g(y) = a ν-a.e.

Similarly, we have (µ⊗ν)({(x, y) | f(x) 6= a, g(y) = a}) = 0. Since ν({y ∈ Y | g(y) = a}) = ν(Y ) 6= 0,

then µ({x | f(x) 6= a}) = 0 so f(x) = a µ-a.e.

Problem 3. Let f : R3 → R be a Borel measurable function. Suppose for every ball B, f is

Lebesgue integrable on B and
∫
B
f(x)dx = 0. What can you deduce about f? Justify your answer

carefully.

Proof. Since f ∈ L1
loc(R2), by Lebesgue Differentiation Theorem, for a.e. x0 ∈ R2,

lim
r→0

1

|B(r, x0)|

∫
B(r,x0)

f(x)dx = f(x0)
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This implies f(x0) = 0 so f = 0 almost everywhere.

Problem 4. Let X be a locally compact Hausdorff space. Denote by C0(X) the space of complex-

valued continuous functions on X which vanish at infinity, and by Cc(X) the subset of compactly

supported functions. Use an approximate version of the Stone-Weierstrass theorem to prove that

Cc(X) is dense in C0(X).

Proof. For any f, g ∈ Cc(X), the complex conjugation of f is also in Cc(X).

By complex-LCH-Stone-Weierstrass, we only need to show that Cc(X) separates points.

For every x 6= y, we can find open U, V with x ∈ U, y ∈ V with U ∩ V = ∅. Since X is LCH, we can

require U to be compact.

Now {x} ⊆ U ⊆ U ⊆ X\V ⊆ X\{y}. Then by Urysohn’s Lemma for LCH, we can find a continuous

function f : X → [0, 1] such taht f |U = 1 and f(x) = 0 outside a compact subset of X\{y}. So

f(x) = 1, f(y) = 0, and f ∈ Cc(X).

So Cc(X) separates points. Also, there does not exist any x0 ∈ X such that f(x0) = 0 for all f ∈
Cc(X).

Therefore, by Stone-Weierstrass, Cc(X) = C0(X).

Problem 5. Give an example of each of the following. Justify your answers

(a) A nowhere dense subset of R of positive Lebesgue measure

Proof. Take a fat Cantor set.

(b) A closed, convex subset of a Banach space with multiple points of minimal norm.

Proof. Let X = L1[0, 1], C = {f ∈ X |
∫ 1

0
f(t)dt = 0}. It’s easy to see that C is closed and

convex. The minimum norm of elements in C is 1 because

‖f‖1 =

∫ 1

0

|f(t)|dt ≥
∣∣∣∣∫ 1

0

f(t)dt

∣∣∣∣ = 1.

But every element of {aχ[0,1/2] + (2− a)χ[1/2,1]}0≤a≤2 in C has norm 1.

Problem 6. Let

S =

{
f ∈ L∞(R) | |f(x)| ≤ 1

1 + x2
a.e.

}
.

Which of the following statements are true? Prove your answers.

(a) The closure of S is compact in the norm topology
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Proof. NO. Let

fn(x) :=
1

x2 + 1
χ
[ 1
n+1 ,

1
n ](x)

in S. So there are no subsequences of (fn) which are Cauchy in L∞ since ‖fn − fm‖∞ ≥ 1 for

n 6= m.

(b) S is closed in the norm topology.

Proof. YES. Suppose (fn) ⊆ S, fn → f in L∞. Then

|f(x)| ≤ |fn(x)|+ |fn(x)− f(x)| < 1

1 + x2
+ ‖fn − f‖∞ <

1

1 + x2
+ ε a.e.

Letting ε→ 0, we have |f(x)| ≤ 1
1+x2 a.e. and f ∈ L∞ so f ∈ S.

(c) The closure of S is compact in the weak* topology

Proof. YES. The unit ball in L∞(R) is weak*-compact by Alaoglu. Since 1
1+x2 ≤ 1 for all x ∈

R, then S is a subset of the unit ball in L∞. Therefore, S
w∗

is weak* compact.

Problem 7. Let T be a bounded operator on a Hilbert space H. Prove taht ‖T ∗T‖ = ‖T‖2. State

the results you are using.

Proof. Clearly, ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. On the other hand,

‖T‖2 = sup
‖x‖=1

|〈Tx, Tx〉| = sup
‖x‖=1

|〈T ∗Tx, x〉|.

Since for ‖x‖ = 1,

|〈T ∗Tx, x〉| ≤ ‖T ∗Tx‖‖x‖ ≤ ‖T ∗T‖‖x‖2 ≤ ‖T ∗T‖

then ‖T‖2 ≤ ‖T ∗T‖.

Problem 8. (a) Let g be an integrable function on [0, 1]. Does there exist a bounded measurable

function f such that ‖f‖∞ 6= 0 and
∫ 1

0
fgdx = ‖g‖1‖f‖∞? Give a construction or a counterex-

ample.

Proof. YES. For any g ∈ L1, let f = sgn(g) where g(x) 6= 0, and 1 where g(x) = 0. Then

‖f‖∞ = 1 and

∫ 1

0

fg =

∫ 1

0

|g(x)|dx = ‖g‖1 = ‖g‖1‖f‖∞.
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(b) Let g be a bounded measurable function on [0, 1]. Does there exist an integrable function f such

that ‖f‖1 6= 0 and
∫ 1

0
fgdx = ‖g‖∞‖f‖1? Give a construction or a counterexample.

Proof. NO. Let g(x) = x on [0, 1] so ‖g‖∞ = 1, implying g ∈ L∞[0, 1]. Assume such an f ∈ L1

exists, so

‖f‖1 = ‖f‖1‖g‖∞ =

∫ 1

0

fgdx =

∫ 1

0

xf(x)dx

and also ‖f‖1 =
∫ 1

0
|f |dx so then

∫ 1

0
f(x)xdx =

∫ 1

0
|f |dx. Therefore,

∫ 1

0

|f(x)|dx =

∫ 1

0

xf(x)dx ≤
∫ 1

0

x|f(x)|dx ≤
(

1− 1

n

)∫ 1−1/n

0

|f(x)|dx+

∫ 1

1−1/n
|f(x)|dx

So then

∫ 1−1/n

0

|f(x)|dx+

∫ 1

1−1/n
|f(x)|dx ≤

(
1− 1

n

)∫ 1−1/n

0

|f(x)|dx+

∫ 1

1−1/n
|f(x)|dx

Thus,
∫ 1−1/n
0

|f(x)|dx = 0 for all n ∈ N. Letting fn(x) = χ[0,1−1/n]|f(x)| ↗ |f(x)| then by

monotone convergence theorem,
∫
|f(x)dx = limn

∫
fn(x) = 0 so ‖f‖1 = 0.

Problem 9. Let F : R → C be a bounded continuous function, µ the Lebesgue measure, and f, g ∈
L1(µ). Let

f̃(x) =

∫
F (xy)f(y)dµ(y), g̃(x) =

∫
F (xy)g(y)dµ(y).

Show that f̃ and g̃ are bounded continuous functions which satisfy

∫
fg̃dµ =

∫
f̃gdµ.

Proof. We have ‖f̃‖|infty ≤ ‖F‖∞‖f‖1 < ∞ and ‖g̃‖ ≤ ‖F‖∞‖g‖1 < ∞ so f̃ , g̃ ∈ L∞. By

dominated convergence theorem, we know that limn

∫
[−n,n] |f(x)dµ = ‖f‖1. So then for every ε > 0,

there exists some N such that
∫
R\[−n,n] |f(x)|dµ < ε. Then

|f̃(x1)− f̃(x2)| ≤
∫
|F (x1y)− F (x2y)||f(y)|dµ(y)

=

∫
[−n,n]

|F (x1y)− F (x2y)||f(y)|dµ(y) +

∫
R\[−n,n]

|F (x1y)− F (x2y)||f(y)|dµ(y)

≤ sup
y∈[−n,n]

|F (x1y)− F (x2y)|‖f‖1 + 2‖F‖∞ε
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Since F is continuous, let |x1 − x2| < δ
n such that |x1y − x2y| < δ imples |F (x1y)− F (x2y)| < ε. So

|f̃(x1)− f̃(x2)| → 0 as |x1 − x2| → 0.

A similar argument will show that g̃ is continuous. Since fg̃ ∈ L1, by Fubini,

∫
fg̃dµ =

∫ ∫
f(x)F (xy)g(y)dµ(y)dµ(x)

=

∫
g(y)

(∫
f(x)F (xy)dµ(x)

)
dµ(y)

=

∫
g(y)f̃(y)dµ(y)

=

∫
f̃gdµ.

Problem 10. Let µ, {µn | n ∈ N} be finite Borel measures on [0, 1]. µn → µ vaguely if it converges

in the weak* topology on M [0, 1] = (C[0, 1])∗. µn → µ in moments if for each k ∈ {0} ∪ N,

∫
[0,1]

xkdµn(x)→
∫
[0,1]

xkdµ(x).

Show that µn → µ vaguely if and only if µn → µ in moments.

Proof. ⇒) trivial by the definitions

⇐) We want to show that for all f ∈ C[0, 1],
∫
fdµn →

∫
fdµ. By Stone-Weierstrass, we can find

pn to be a sequence of polynomials which converge uniformly to f on [0, 1]

∣∣∣∣∫ f(x)dµ−
∫
f(x)dµn

∣∣∣∣ ≤ ∣∣∣∣∫ fdµ−
∫
pmdµ

∣∣∣∣+

∣∣∣∣∫ pmdµ−
∫
pmdµn

∣∣∣∣+

∣∣∣∣∫ pmdµn −
∫
fdµn

∣∣∣∣
For the first part, |

∫
fdµ−

∫
pmdµ| ≤ ‖f−pm‖∞µ(X)→ 0 as m→∞. Similarly,

∣∣∫ pmdµn − ∫ fdµn∣∣ ≤
‖f − pm‖∞µn(X)→ 0 for all n.

Next, find a polynomial qmj with degree at most j such that ‖qmj − pm‖∞ → 0 as j → ∞. Then

since µn → µ in moments, then
∣∣∫ qmjdµ− ∫ qmjdµn∣∣→ 0 for all j. Thus,

∣∣∣∣∫ pmdµ−
∫
pmdµn

∣∣∣∣ ≤ ∣∣∣∣∫ pndµ−
∫
qmjdµ

∣∣∣∣+

∣∣∣∣∫ qmjdµ−
∫
qmjdµn

∣∣∣∣+

∣∣∣∣∫ qmjdµn −
∫
pmdµn

∣∣∣∣
≤ ‖pm − qmj‖∞ (µ(X) + µn(X)) +

∣∣∣∣∫ qmjdµ−
∫
qmjdµn

∣∣∣∣→ 0.
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16 January 2012

Problem 1. Let A be the subset of [0, 1] consisting of numbers whose decimal expansions contain

no sevens. Show that A is Lebesgue measurable, and find its measure. Why does non-uniqueness of

decimal expansions not cause any problems?

Proof. Let Ai be the subset of [0, 1] consisting of numbers whose first i digits are not 7. Then An+1 ⊆
An and A = ∩nAn,

A1 = [0, 0.7] ∪ [0.8, 1]

A2 = [0, 0.07] ∪ [0.08, 0.17] ∪ . . . ∪ [0.98, 1]

So An is the union of some Borel intervals in [0, 1], so An is Lebesgue measurable. Therefore, A is

Lebesgue measurable.

Now for 0 ≤ i ≤ 9, let Ain be the subset of An such that the (n + 1)th digit is i. Then we can write

An = t9i=0A
i
n.

Also, m(Ain) = m(Ajn), so m(An) = 10m(Ain) and An+1 = ti 6=7A
i
n so m(An+1) = 9m(Ain). There-

fore, m(An+1) = 9
10m(An). Then

m(A) = m (∩∞n=1An) = lim
n
m(An) = lim

n

(
9

10

)n−1
m(A1) = 0

The only numbers with non-unique decimal representation are 0.a1a2 . . . an = 0.a1a2 . . . an−1999 . . ..

However ∀n there are only finitely many, so non-unique = ∪n{0.a1 . . . an} which is countable, hence

null, hence Lebesgue.

Problem 2. Let the functions fα be defined by

fα(x) =

{
xα cos(1/x) x > 0

0 x = 0

Find all values of α ≥ 0 such that

(a) fα is continuous

Proof. When a > 0, xa cos(1/x) ≤ xa → 0 as x → 0 so fa is continuous. If a = 0, we know

cos(1/x) isn’t continuous at 0.

(b) fα is of bounded variation on [0, 1]

Proof. First, 0 < a ≤ 1, put partitions
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Pm =

{
0,

1

2πm
,

1

π(2m− 1)
, . . . ,

1

π
, 1

}
Then

fa(Pm) =

{
0,

1

(π2m)a
,

−1

(π(2n− 1))a
, . . . ,

−1

πa
, cos(1)

}
So

Tfα(Pm) =

∣∣∣∣ 1

(π(2m))a
− 0

∣∣∣∣+

∣∣∣∣ −1

(π(2m− 1))a
− 1

(π2m)a

∣∣∣∣+ . . .+

∣∣∣∣cos(1)− −1

πa

∣∣∣∣ ≈ 2m∑
i=1

c

(πi)a
→∞

when 0 < a ≤ 1 as m→∞.

So when 0 < a ≤ 1, fa is not of bounded variation when 0 < a ≤ 1. For a > 1, let’s look at

(c).

(c) fα is absolutely continuous on [0, 1]

Proof. When a > 1, we see f ′a(0) = 0 and f ′a is integrable because f ′a(x) = axa−1 cos(1/x) +

xa−2 sin(1/x) so then fa(x) =
∫ x
0
f ′a(t)dt. Thus, f is absolutely continuous.

So in (b) we have fa is of bounded variation for a > 1. Since fa isn’t bounded variation when

0 < a ≤ 1, so fa isn’t absolutely continuous either when 0 < a ≤ 1.

Problem 3. Let F denote the family of functions on [0, 1] of the form

f(x) =

∞∑
n=1

an sin(nx)

where an are real and |an| ≤ 1/n3. State a general theorem and use that theorem to prove taht any

sequences in F has a subsequence that converges uniformly on [0, 1].

Proof. We’ll use Arzela-Ascoli.

For all f ∈ F ,

|f(x)| =

∣∣∣∣∣
∞∑
n=1

an sin(nx)

∣∣∣∣∣ ≤
∞∑
n=1

|an| ≤
∞∑
n=1

n−3 <∞

so uniformly bounded. Also, for all f ∈ F ,

|f(x)−f(y)| ≤
∞∑
n=1

|an|| sin(nx)−sin(ny)| ≤
∞∑
n=1

2n−3
∣∣∣∣cos

nx+ ny

2

∣∣∣∣ ∣∣∣∣sin nx+ ny

2

∣∣∣∣ ≤ ∞∑
n=1

n−2|x−y| = π2

6
|x−y|
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So F is equicontinuous.

Then F is compact, hence sequentially compact. So F has a subsequence that converges in the uni-

form norm.

Problem 4. Let H be a Hilbert space and W ⊂ H a subspace. Show that H = W ⊕W⊥ where W is

the closure of W .

Note: Do not just state this as a consequence of a standard result, prove the result.

Proof. here!

Problem 5. Suppose A is a bounded linear operator on a Hilbert space H with the property that

‖p(A)‖ ≤ C sup{|p(z)| | z ∈ C, |z| = 1}

for all polynomials p with complex coefficients, and a fixed constant C. Show that to each pair x, y ∈
H there corresponds a complex Borel measure µ on the circle S1 = {z ∈ C | |z| = 1} such that

〈Anx, y〉 =

∫
zndµ(z) n = 0, 1, 2, . . .

Proof. Consider

Tx,y : P (S1)→ C
p 7→ 〈P (A)x, y〉

Then

|〈P (A)x, y〉| ≤ ‖P (A)‖‖x‖‖y‖ ≤ C‖P‖∞‖x‖‖y‖

Thus, |Tx,y(P )| ≤ C‖x‖‖y‖‖P‖∞ = f(P ) which is obviously a seminorm. By Hahn-Banach, Tx,y
can be extended to C(S1).

Then apply Riesz-Representation Theorem, there exists a complex Borel measure µ on S1 such that

Tx,y(P ) = 〈P (A)x, y〉 =

∫
S1

P (z)dµ(z)

Take P (z) = zn so 〈Anx, y〉 =
∫
S1 z

ndµ(z).

Problem 6. Let φ be the linear functional

φ(f) = f(0)−
∫ 1

−1
f(t)dt

(a) Compute the norm of φ as a functional on the Banach space C[−1, 1] with uniform norm
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Proof.

|φ(f)| ≤ |f(0)|+
∫ 1

−1
|f(t)|dt ≤ ‖f‖∞ + ‖f‖∞

∫ 1

−1
dt = 3‖f‖∞

So ‖φ‖ ≤ 3. On the other hand, let fn be piecewise linear functional such that fn = −1 on

[−1,−1/n] and [1/n, 1] and fn(0) = 1. Then

∫ 1

−1
fn(t)dt = −2(1− 1/n) +

2

n
= −2 +

4

n
→ −2

So sup |φ(fn)| ≥ 3 so ‖φ‖ = 3.

(b) Comptue the norm of φ as a functional on the normed vector space LC[−1, 1] which is C[−1, 1]

with the L1 norm.

Proof.

‖φ‖ = sup
f∈LC[−1,1]

|f(0)−
∫ 1

−1 f(t)dt|
‖f‖1

≥ lim
n

|1− 1/n|
(1/n)

=∞

Problem 7. Let X be a normed space and A ⊂ X be a subset. Show that A is bounded (as a set) if

and only if it is weakly bounded (that is, f(A) ⊂ C is bounded for each f ∈ X∗).

Proof. ⇒) for all x ∈ A, for all f ∈ X∗, |f(x)| ≤ ‖f‖‖x‖ <∞ so A is weakly bounded

⇐) on the other hand, consider A∗∗ = {a∗∗ | a ∈ A} by a∗∗(f) = f(a) for all f ∈ X∗. Since X∗ is

Banach, and we know

sup
a∗∗∈A∗∗

‖a∗∗(f)‖ = sup
a∈A
|f(a)| <∞ ∀f ∈ X∗

By the uniform boundedness principle, supa∈A ‖a‖ = supa∗∗∈A∗∗ ‖a∗∗‖ <∞.

Problem 8. Let X be a topological vector space.

(a) Define what this means.

Proof. Let X be a vector space, T a topology on X. Then (X, T ) is a topological vector space

provided

• + : X ×X → X is continuous

• · : R×X → X is continuous

(b) Let A ⊂ X be compact and B ⊂ X be closed. Show that A+B ⊂ X is closed.
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Proof. Fix z ∈ (A + B)c. For x ∈ A, z − x ∈ Bc so there exists an open neighborhood Vx 3
0 in X such that (z − x + Vx) ∩ B = ∅. Since addition is continuous, there exists U1x, U2x

neighborhoods of 0 such that U1x + U2x ⊆ Vx.

Ux = U1x∩U2x∩ (−U1x)∩ (−U2x) so Ux = −Ux. Then {x+Ux}x∈A is an open cover of A. Since

A is compact, there exists a finite subcover x1, . . . , xn ∈ A such that

A ⊆ ∪ni=1xi + Uxi

Put U = ∩ni=1Uxi . Then z + U is an open neighborhood of z. If there exists x ∈ A y ∈ B such

that x+ y ∈ z + U then x ∈ xi + Uxi for some i and y ∈ z − x+ U ⊆ z − xi + Uxi ⊆ z − xi + Vxi
but (z − xi + Vxi) ∩B = ∅. Contradiction!

So (z + U) ∩ (A+B) = ∅.

(c) Give an example indicating that the condition ‘A closed’ is insufficient for the conclusion.

Proof. X = R2, A = {(x, 0) | x ∈ R} and B = {(x, 1/x) | x > 0}. Then A + B = {(x, y) | y >
0}.

Problem 9. Let (X,M, µ) be a finite measure space. Let f, fn ∈ L3(X, dµ) for n ∈ N be functions

such that fn → f µ-a.e. and |fn| ≤M for all n. Let g ∈ L3/2(X, dµ). Show that

lim
n

∫
fngdµ =

∫
fgdµ.

Proof. |fng| ≤ M |g|. Since µ is a finite measure, M1 ∈ L3(µ). By Holder, M |g| ∈ L1(µ). The result

follows from Dominated Convergence Theorem.

Problem 10. Let X be a σ-finite measure space, and fn : X → R a sequence of measurable func-

tions on it. Suppose fn → 0 in L2 and L4.

(a) Does fn → 0 in L1?

Proof. NO.

Let X = R, µ=Lebesgue measure. fn = n−1χ[0,n] so ‖fn‖1 = 1 does not converge to 0, but

‖fn‖2 = n−1/2 → 0 and ‖fn‖4 = n−3/4 → 0.

(b) Does fn → 0 in L5?

Proof. YES.

Since 0 < 2 < 3 < 4 < ∞, L2 ∩ L4 ⊆ L3 and ‖f‖3 ≤ ‖f‖λ2‖f‖1−λ4 where 1
3 = λ

2 + 1−λ
4 implies

λ = 1
3 . So

‖fn‖3 ≤ ‖fn‖1/32 ‖fn‖
2/3
4 → 0

(c) Does fn → 0 in L5?
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Proof. NO.

X = [0, 1], µ: Lebesgue measure. Let fn = nχ[0,n−5]. Then ‖fn‖5 = 1 but ‖fn‖2 = n−3/2 → 0

and ‖fn‖4 = n−1/4 → 0.

17 August 2011

Problem 1. Let (X,M, µ) be a measure space.

(a) Give the definitions of convergence a.e. and convergence in measure for a sequence of measur-

able functions on X.

Proof. We say a sequence of measurable functions fn converge to f almost everywhere if µ({x |
limn fn(x) 6= f(x)}) = 0.

We say that fn converges to f in measure if ∀ε > 0, limn µ({x | |f(x)− fn(x)| > ε}) = 0.

(b) Show that every sequence of measurable functions on X which converges in measure to 0 has a

subsequence which converges a.e. to 0.

Proof. Suppose for every ε > 0, µ({x | |fn(x)| ≥ ε})→ 0. Choose a subsequence {fnk} such that

if

Ej = {x | |fnj (x)− fnj+1(x)| > 2−j}

satisfies µ(Ej) < 2−j . Let Fk = ∪∞j=kEj so µ(Fk) ≤
∑∞
j=k 2−j ≤ 21−k. Let F = ∩kFk so

µ(F ) = 0.

For x /∈ Fk and for i ≥ j ≥ k then

|fni(x)− fnj (x)| ≤
i−1∑
`=j

|fn`(x)− fn`+1
(x)| ≤

i−1∑
`=j

2` ≤ 2−j → 0 as k →∞.

So fnk is pointwise Cauchy on x /∈ F , so let

f(x) =

{
lim fnk(x) x /∈ F
0 otherwise

So fnk → 0 almost everywhere and fn → f in measure since

µ({x | |fn(x)− f(x)| ≥ ε}) ≤ µ({x | |fn(x)− fn`(x)| ≥ ε/2})︸ ︷︷ ︸
→0

+µ({x | |fn`(x)− f(x)| ≥ ε})︸ ︷︷ ︸
→0

and
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µ({x | |f(x)| ≥ ε}) ≤ µ({x | |f(x)− fn(x)| ≥ ε/2}︸ ︷︷ ︸
→0

+µ({x | |fn(x)| ≥ ε/2})︸ ︷︷ ︸
→0

so f = 0 almost everywhere. Thus, {fnk} converges to 0 almost everywhere.

Problem 2. Let X be a separable Banach space. Show that there exists an isometric linear map

from X into `∞. Also, show that this is false in general if `∞ is replaced by `2.

Proof. Let (xn) be a dense sequence in BX . For each n, use Hahn-Banach Theorem to find a norm-

one functional fn ∈ X∗ with fn(xn) = 1.

Define φ : X → `∞ via φ(x) =
(
fn(x)

)
. Suppose x ∈ X has norm one and let 1 > ε > 0. Choose nε

so that ‖xnε − x‖ < ε. Then

ε > |fnε(xnε − x)| = |fnε(x)|

So ‖φ(x)‖ = supn |fn(x)| ≥ 1. For every n, |fn(x)| ≤ ‖fn‖‖x‖ = 1 so ‖φ(x)‖ ≤ 1. So ‖φ(x)‖ = 1

whenever ‖x‖ = 1. Then for all non-zero x, ‖φ(x)‖ = ‖x‖ supn |fn(x/‖x‖)| = ‖x‖. So φ is an

isometry.

Why FALSE for `2?

Problem 3. Let X be a locally compact metric space and let {xk} be a sequence in X which has no

convergent subsequence. Show that {n−1
∑n
k=1 δxk} converges to 0 in the weak* topology on C0(X)∗,

where δxk denotes the point mass at xk.

Proof. here

Problem 4. Let P be the set of all polynomials f on [0, 1] such that f(0) = f ′(0) = 0. Determine,

with proof, the values of p with 1 ≤ p ≤ ∞ such that P is dense in Lp[0, 1].

Proof. All 1 ≤ p < ∞. Clearly, P is an algebra which separates points (ex. x2). Stone-Weierstrass

implies P = {f ∈ C[0, 1] | f(0) = 0}. Now for any f ∈ Lp, for all ε > 0, there exists some N such

that

∥∥f − fχ[−N≤f≤N ]

∥∥
p
≤ ε

2

Define fN = fχ[−N≤f≤N ]. By Lusin’s theorem, there exists a closed set F such that m([0, 1]\F ) ≤
1
2p

εp

(2N)p = 1
2p

(
ε

2N

)p
. and fN |F continuous.

Tietze extension theorem applied to fN and F implies the extension g is still bounded by N . Then

‖fN − g‖pp =

∫
[0,1]\F

|fN − g|p ≤ (2N)pm([0, 1]\F ) ≤ εp

2p

So then
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‖f − g‖p ≤ ‖f − fN‖p + ‖fN − g‖p ≤
εp

2p
+
ε

2
≤ ε

NOT L∞[0, 1] since P = {f ∈ C[0, 1] | f(0) = 0}. If f ∈ L∞[0, 1] with f(0) = a 6= 0, then ∀g ∈ P,

‖f − g‖∞ = a.

Problem 5. Let 1 < p <∞ and let {xk}∞k=1 be a sequence in `p(N) such that limk xk(n) = 0 for all

n ∈ N. Show that if there is an M > 0 such that ‖xk‖ ≤M for all k ∈ N then xk → 0 weakly.

Also, show that if no such M exists, then {xk} can fail to converge weakly.

Proof. Note: Similar to August 2015, #3, just in a different space now.

Fix some y ∈ `q where 1
p + 1

q = 1. We want to show that
∑
n xk(n)y(n)→ 0 as k →∞. Fix ε > 0.

Then we may choose a finite A ⊆ N such that
∑
Ac |y(n)|q < εq. Since A is finite, choose some K

such that for all k ≥ K we have |xk(n)|p < εp

|A| . Then for all k ≥ K, by using Holder, we have

|y(xk)| ≤
∑
n∈N
|xk(n)||y(n)|

=
∑
n∈A
|xk(n)||y(n)|+

∑
n∈Ac

|xk(n)||y(n)|

≤

(∑
n∈A
|xk(n)|p

)1/p(∑
n∈A
|y(n)|q

)1/q

+

(∑
n∈Ac

|xk(n)|p
)1/p(∑

n∈Ac
|y(n)|q

)1/q

≤
(
|A| ε

p

|A|

)1/p

‖y‖q +Mε

= ε (‖y‖q +M)

By making ε small enough, we see that |y(xk)| → 0 as k →∞.

To see why we require (xk) to be bounded, consider p = q = 2. Take

xk = (0, 0, . . . , 0, 2k, 0, . . .) = 2kek y =

(
1

2
,

1

22
, . . . ,

1

2n
, . . .

)

where xk is all zeros except in the kth spot. Then we can see that limk xk(n) = 0 for all n, but that

for all k,

y(xk) =
∑
n

xk(n)y(n) = 2k
1

2k
= 1

Problem 6. Let f ∈ C0(R) and for every t ∈ R define ft ∈ C0(R) by ft(x) = f(x+ t) for all x ∈ R.

(a) Prove that {ft | t ∈ [0, 1]} is compact in the norm topology.
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Proof. Similar to August 2013 #1

Since C∞c (R) is dense in C0(R), we can choose g ∈ C∞c (R) such that ‖g − f‖∞ < ε. Then

‖ftn − ft‖∞ ≤ ‖ftn − gtn‖∞ + ‖gtn − gt‖∞ + ‖gt − ft‖∞

It’s easy to see ‖ftn − gtn‖∞ and ‖gt− ft‖∞ are small since ‖g− f‖∞ < ε. For ‖gtn − gt‖∞, then

‖gtn − gt‖∞ = sup
x∈R
|gtn(x)− gt(x)| = sup

x∈R
|g(x+ tn)− g(x+ t)|

where for each fixed tn → t, since g is compactly supported and continuous then can be suffi-

ciently small for large enough n.

Therefore, the map G : R → C0(R) given by G(t) = ft is continuous. Since {ft | t ∈ [0, 1]} =

G([0, 1]) and continuous maps preserve compactness, then the set is compact in the norm topol-

ogy.

(b) Prove that {ft | t ∈ R} is relatively compact in the weak topology.

Proof. here

Problem 7. Let f be an arbitrary real valued function on [0, 1]. Show that the set of points at

which f is continuous is a Lebesgue measurable set.

Proof. Similar to August 2016, #3.

In fact, we will prove that the set of points at which f is discontinuous is a countable union of closed

subsets.

f is continuous at p if for all n, there exists an open U containing p such that |f(x) − f(y)| < 1/n

for all x, y ∈ U . Fix n and let

Vn =
⋃
p

{p s.t. there exists an appropriate U} =
⋃
{appropriate U}

Hence, Vn is open. Then

{points where f is continuous} =
⋂
n

Vn

So {points where f is discontinuous} =
⋃
n V

c
n where V cn is closed.

Problem 8. Show that not every nonempty bounded closed subset of `2 has a point of minimal

norm, but that every nonempty bounded closed convex subset of `2 has a point of minimal norm.

Proof. Let C be the bounded, closed, convex subset of `2. Consider the set {y ∈ R | y = ‖x‖, x ∈ C}
and since this set is bounded below, there exists an infimum of the set, say s. Then we can find a

sequence xn ∈ C such that s ≤ ‖xn‖ ≤ s+ 1
n .
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I claim that (xn) is a Cauchy sequence. Indeed, for any ε > 0, choose r to be the positive root of

the equation r2 + 2rs− ε2

4 = 0.

Since ‖xn‖ → s then there is an N such that s ≤ ‖xn‖ < s+ r for all n ≥ N . If n,m ≥ N , then

∥∥∥∥xm − xn2

∥∥∥∥2 = 2
∥∥∥xm

2

∥∥∥2 + 2
∥∥∥xn

2

∥∥∥2 − ∥∥∥∥xm + xn
2

∥∥∥∥2 < (s+ r)2

2
+

(s+ r)2

2
− s2 = 2sr + r2 =

ε2

4
.

So (xn) is a Cauchy sequence, which means it converges to some x. Since C is closed, x ∈ C and

obtains minimal norm.

Note: This choice of x is unique! If there were two points of minimal norm, say x1 and x2 then
1
2 (x1 + x2) ∈ C by the convexity of C. So s ≤

∥∥ 1
2 (x1 + x2)

∥∥ ≤ 1
2‖x1‖ + 1

2‖x2‖ = s. Hence,

‖x1 + x2‖ = 2s. By the parallelogram law,

‖x1 + x2‖2 + ‖x1 − x2‖2 = 2‖x1‖2 + 2‖x2‖2

And so ‖x1 − x2‖2 = 4s2 − 4s2 = 0 so x1 = x2, proving uniqueness.

Counterexample: Consider M =
{
n+1
n en | n ∈ N

}
. M is closed since the distance between any two

of its elements is greater than
√

2 (and thus the only convergent sequences from M are those that

are eventually constant). M is clearly non-empty and has no element of minimal norm.

Problem 9. Show that there is a sequence {fn} of continuous functions on [0, 1] such that

(a) |fn(t)| = 1 for all n and all t ∈ [0, 1] and

(b) for all g ∈ L1[0, 1] one has
∫ 1

0
fn(t)g(t)dt→ 0 as n→∞

Proof. NOT POSSIBLE??

If fn is continuous on [0, 1] and |fn(t)| = 1 then fn(t) = ±1. Since fn is continous, each fn is the

constant function at either 1 or −1. Write it as fn(x) = (−1)kn where kn is even or odd depending

on n.

Then if we take g to be the constant function 1, we get

∫ 1

0

fn(t)g(t)dt =

∫ 1

0

(−1)kndt = (−1)kn

which does not have to converge to 0 as n→∞.

right? obvious? I don’t get it...

Problem 10. (a) Define what it means for a real valued function on [0, 1] to be absolutely continu-

ous.
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Proof. The function f : [0, 1] → R is absolutely continuous if for every ε > 0 there exists δ >

0 such that whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of [0, 1] with

xk, yk ∈ [0, 1] satisfy
∑
k(yk − xk) < δ then

∑
k |f(yk)− f(xk)| < ε.

Equivalently, f has a derivative f ′ almost everywhere and the derviative is Lebesgue integrable

and for all x ∈ [0, 1],

f(x) = f(0) +

∫ x

0

f ′(t)dt.

(b) Prove that if f and g are absolutely continuous strictly positive functions on [0, 1] then f/g is

absolutely continuous on [0, 1].

Proof. Step 1: If f is absolutely continuous, then so is 1/f .

Since f > 0 is continuous on a compact space, there exists some M ∈ N such that 1
M ≤ |f(x)| ≤

M for all x ∈ [0, 1].

Indeed, since g is absolutely continuous then for every ε > 0, there exists a δ > 0 such that

whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of [0, 1] with xk, yk ∈ [0, 1]

satisfy
∑
k(yk − xk) < δ then

∑
k |f(yk)− f(xk)| < ε

M2 . Then for such intervals, we have

∑∣∣∣∣ 1

f(yk)
− 1

f(xk

∣∣∣∣ =
∑∣∣∣∣f(xk)− f(yk)

f(yk)f(xk)

∣∣∣∣
≤
∑∣∣∣∣ 1

f(yk)

∣∣∣∣ ∣∣∣∣ 1

f(xk)

∣∣∣∣ |f(yk)− f(xk)|

≤M2
∑
|f(yk)− f(xk)|

= M2 ε

M2
= ε.

Step 2: If f and g are both absolutely continuous, then so is fg.

Find M ∈ N such that |f(x)|, |g(x)| ≤M for all x ∈ [0, 1].

Take δ1 such that if
∑
yk−xk < δ1 then

∑
|f(yk)− f(xk)| < ε/2M . Similarly, take δ2 such that

if
∑
yk − xk < δ2 then

∑
|g(yk)− g(xk)| < ε/2M . Let δ = min(δ1, δ2). Now

∑
|(fg)(yk)− (fg)(xk)| =

∑
|f(yk)g(yk)− f(xn)g(xn)|

≤
∑
|f(yk)g(yk)− f(yk)g(xk)|+ |f(yk)g(xk)− f(xk)g(xk)|

≤
∑
|f(yk)||g(yk)− g(xk)|+

∑
|g(xn)||f(yk)− f(xk)|

≤M
∑
|g(yk)− g(xk)|+M

∑
|f(yk)− g(xk)|

≤M ε

2M
+M

ε

2M

= ε

Combining the two steps, we see immediately that f/g is absolutely continuous.
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