Department of Mathematics, University of California, Berkeley

STUDENT EXAM NUMBER

GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2013

- 1. Please write your 1- or 2-digit student exam number on this cover sheet and on **all** problem sheets (even problems that you do not wish to be graded).
- 2. Indicate below which six problems you wish to have graded. **Cross out** solutions you may have begun for the problems that you have not selected.
- 3. Extra sheets should be stapled to the appropriate problem at the upper right corner. Do not put work for problem p on either side of the page for problem q if $p \neq q$.
- 4. No notes, books, or calculators may be used during the exam.

PROBLEM SELECTION

Part A: List the six problems you have chosen:

GRADE COMPUTATION

1A	1B	Calculus
2A	2B	Real analysis
3A	3B	Real analysis
4A	4B	Complex analysis
5A	5B	Complex analysis
6A	6B	Linear algebra
7A	7B	Linear algebra
8A	8B	Abstract algebra
9A	9B	Abstract algebra

Problem 1A.

Score:

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a bounded continuous function. Calculate the limit

$$\lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} f(t) \frac{\epsilon}{\epsilon^2 + t^2} dt$$

Problem 2A.

Score:

Suppose that f is a smooth real function defined for all real x, such that $|f'(x)| \ge \epsilon > 0$ and $|f''(x)| \le M > 0$ for all x.

- (1) Show that f has a unique zero z.
- (2) Given x_0 , define a sequence by $x_{n+1} = x_n f(x_n)/f'(x_n)$. Show that

$$|x_{n+1} - z| \le |x_n - z|^2 M/\epsilon.$$

(Hint: $f(x_n) = \int_z^{x_n} f'(x) dx$.) (3) Show that the sequence $\{x_n\}$ converges to the zero z of f provided that $|f(x_0)| < \epsilon^2/M$.

Problem 3A.

Score:

Show that $\int_0^\infty x \exp(-x^6(\sin x)^2) dx$ is finite.

Problem 4A.

Find

$$\int_C \frac{\cosh(\pi z)}{z(z^2+1)} \, dz$$

when C is the circle |z| = 2, described in the positive sense.

Solution:

Score:

Problem 5A.

Score:

Let $n \ge 1$ and let $\{a_0, a_1, \ldots, a_n\}$ be complex numbers such that $a_n \ne 0$. For $\theta \in \mathbf{R}$, define

$$f(\theta) = a_0 + a_1 e^{i\theta} + a_2 e^{2i\theta} + \ldots + a_n e^{ni\theta}.$$

Prove that there exists $\theta \in \mathbf{R}$ such that $|f(\theta)| > |a_0|$.

Problem 6A.

Score:

Show that if V is a real vector space with a positive definite symmetric bilinear form $\langle \cdot, \cdot \rangle$ and $W \subset V$ is a linear subspace then $W^{\perp} = ((W^{\perp})^{\perp})^{\perp}$. Give an example such that $W \neq (W^{\perp})^{\perp}$.

Problem 7A.

Score:

Let A be a matrix over the field of complex numbers. Suppose A has finite order, in other words $A^m = I$ for some positive integer m. Prove that A is diagonalizable. Give an example of a matrix of finite order over an algebraically closed field that is not diagonalizable.

Problem 8A.

Score:

Let m and n be integers greater than 1. Prove that $\log_m(n)$ is rational if and only if $m = l^r$ and $n = l^s$, for some positive integers l, r, and s.

Problem 9A.

Score:

Let K be a field. Let R be an integral domain which contains K and is finite-dimensional (as a vector space) over K. Prove that R is a field.

STUDENT EXAM NUMBER _____

GRADUATE PRELIMINARY EXAMINATION, Part B Spring Semester 2013

- 1. Please write your 1- or 2-digit student exam number on this cover sheet and on **all** problem sheets (even problems that you do not wish to be graded).
- 2. Indicate below which six problems you wish to have graded. **Cross out** solutions you may have begun for the problems that you have not selected.
- 3. Extra sheets should be stapled to the appropriate problem at the upper right corner. Do not put work for problem p on either side of the page for problem q if $p \neq q$.

_ , _

4. No notes, books, or calculators may be used during the exam.

_ , _

PROBLEM SELECTION

Part B: List the six problems you have chosen:

_ , _

_ , _

Problem 1B.

Score:

Find $\int_0^1 \arctan(x) dx$.

Problem 2B.

Score:

Prove that the intersection of a decreasing sequence of closed connected subsets of a compact metric space is connected. Give an example to show that this is false if the assumption that the space is compact is dropped.

Problem 3B.

Score:

Let g be 2π -periodic, continuous on $[-\pi,\pi]$ and have Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \,.$$

Let f be 2π -periodic and satisfy the differential equation

$$f''(x) + kf(x) = g(x)$$

where $k \neq n^2, n = 1, 2, 3, \ldots$ Find the Fourier series of f and prove that it converges everywhere.

Problem 4B.

Score:

Let U be an open subset of C. Let K be a closed bounded subset of C that is contained in U. Put

$$D = \min_{p \in K, q \notin U} |p - q|.$$

That is, D is the closest distance between K and $\mathbf{C} - U$. (If $U = \mathbf{C}$ then we put $D = \infty$.)

Suppose that f is an analytic function on U so that for all $z \in U$, we have $|f(z)| \leq M$. Here M is a fixed positive number. Find an explicit number $C < \infty$, depending on M and D, so that for all $z_0 \in K$ we have $|f'(z_0)| \leq C$. Justify your answer.

Problem 5B.

Score:

Which of the following domains are biholomorphically equivalent to each other: the complex plane \mathbb{C} , the unit disk $D \subset \mathbb{C}$, the upper halfplane $\mathbb{H} \subset \mathbb{C}$? Write explicit biholomorphisms or prove they cannot exist.

Problem 6B.

Score:

Show that the $n \times n$ (Cauchy) matrix with entries $1/(x_i - y_j)$ has determinant

$$\frac{\prod_{1 \le j < i \le n} (x_i - x_j)(y_j - y_i)}{\prod_{1 \le i, j \le n} (x_i - y_j)}$$

Problem 7B.

Score:

Prove the following three statements about real $n \times n$ matrices.

1. If A is an orthogonal matrix whose eigenvalues are all different from -1, then I + A is nonsingular and $S = (I - A)(I + A)^{-1}$ is skew-symmetric.

2. If S is a skew-symmetric matrix, then $A = (I - S)(I + S)^{-1}$ is an orthogonal matrix with no eigenvalue equal to -1.

3. The correspondence (called the Cayley transform) $A \leftrightarrow S$ from Parts 1 and 2 is one-to-one.

Problem 8B.

Score:

Consider the symmetric group Σ_n in its presentation as $n \times n$ permutation matrices. Define the "expected trace" to be the weighted sum of traces

$$E_n = \frac{1}{n!} \sum_{g \in \Sigma_n} \operatorname{Trace}(g)$$

Calculate E_n .

Problem 9B.

Score:

If F is a finite field, show that more than half the elements of F are squares. Show that every element is the sum of 2 squares.