
Problem 1A. Score:

Show that ∫ 9

4
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is a rational number.

Solution: Let f(x) be the function in the integrand. Note that f(x) is defined on [4, 9] as
4 ≤ −6 + 5

√
x ≤ 9 whenever 4 ≤ x ≤ 9. Also, f(x) is strictly increasing and f(4) = 2 and

f(9) = 3. So f : [4, 9]→ [2, 3] is invertible. Its inverse is
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which is a polynomial with rational coefficients.
The integral

∫ 9

4
f(x)dx is equal to the area of the region bounded by the graph y = f(x),

the vertical lines x = 4, x = 9 and the x-axis. The union of this region with the region
bounded by the graph y = f(x), the horizontal lines y = 2, y = 3 and the y-axis is the
difference between two rectangles: one bounded by the lines x = 9, y = 3 and the x, y-axes
and the other bounded by the lines x = 4, y = 2 and the x, y-axes. Thus∫ 9

4

f(x)dx+

∫ 3

2

f−1(y)dy = 9 · 3− 4 · 2.

The second integral is a rational number, since f−1(y) is a polynomial with rational coeffi-
cients. So the first integral is also a rational number.

Problem 2A. Score:

Suppose that f and g are continuously differentiable real-valued functions on R with f, g, f ′, g′ ∈
L2(R). Show that ∫ ∞

−∞
fg′ dx = −

∫ ∞
−∞

f ′g dx.

(Recall that L2(R) is the set of integrable functions h such that
∫∞
−∞ |h|

2 dx <∞.)

Solution: The condition f, g, f ′, g′ ∈ L2(R) implies that the two integrals exist. It also
implies that

∫∞
−∞ |f(x)|·|g(x)| dx <∞, and hence that there are sequences {xi}∞i=1 and {yi}∞i=1



such that limi→∞ xi = −∞, limi→∞ yi =∞ and limi→∞ f(xi)g(xi) = limi→∞ f(yi)g(yi) = 0.
Then∫ ∞

−∞
(fg′ + f ′g) dx = lim

i→∞

∫ yi

xi

(fg′ + f ′g) dx = lim
i→∞

(f(yi)g(yi)− f(xi)g(xi)) = 0.

Problem 3A. Score:

Suppose g and fn are nonnegative integrable functions such that
∫
fn dx → 0 as n → ∞

and f 2
n ≤ g for all n. Prove or find a counterexample to the statement that

∫
f 4
n dx → 0 as

n→∞.

Solution: For a counterexample we can take the domain of the functions to be (0, 1), take
fn to be the step function

fn(x) =

{
n1/4 0 < x ≤ 1/n

0 1/n < x < 1,

and take g(x) = x−1/2. The condition f 2
n ≤ g is satisfied, g is integrable with

∫
g dx = 2, fn

is integrable with
∫
fn dx = n−3/4 → 0, and

∫
f 4
n dx = 1 for all n.

Problem 4A. Score:

Prove that a monic polynomial p(z) with real coefficients is real-rooted if and only if
=(p′(z)/p(z)) < 0 whenever =(z) > 0. (=(z) denotes the imaginary part of z.)

Solution: (⇒) Let p(z) =
∏n

i=1(z − λi) and observe that

p′(z)

p(z)
=

n∑
i=1

1

z − λi
=

n∑
i=1

z − λi
|z − λi|2

.

Since the λi are real all the numerators are in the lower half plane for z in the upper half
plane, so any linear combination of them with nonnegative coefficients is also in the lower
half plane.

(⇐) If p is not real-rooted then it must have a zero in the upper half plane, since the zeros
occur in conjugate pairs. Let λ be such a zero, occuring with multiplicity m, and observe
that

p′

p
(λ− εi) =

m

−εi
+
q′

q
(λ− εi),



where q(z) = p(z)/(z − λ)m. Since q(λ) 6= 0 we find that q′(z)/q(z) is bounded in a
neighborhood of λ, so

lim
ε→0

m

−εi
+
q′

q
(λ− εi) = i∞,

in particular yielding a z for which =(z) > 0 and =(p′(z)/p(z)) > 0.

Problem 5A. Score:

Compute ∫ 2π

0

dθ

(3 + e−iθ)2
.

Solution: Put z = eiθ. Then∫ 2π

0

dθ

(3 + e−iθ)2
=

∫
|z|=1

1

(3 + z−1)2
dz

iz
= 2π Resz=− 1

3

z

(3z + 1)2
=

2π

9
.

Problem 6A. Score:

Prove or disprove: there exists an ε > 0 and a real matrix A such that

A100 =

[
−1 0
0 −1− ε

]
.

Solution: The eigenvalues a, b ∈ C of such a matrix A must satisfy

a100 = −1 b100 = (−1− ε).

Note that a cannot be real since 100 is even. Moreover, since A is real its characteristic
polynomial is real so we must have a = b. But this is impossible since |a|100 = 1 and
|b|100 = (1 + ε)100 6= 1. So no such matrix can exist.

Problem 7A. Score:

Suppose A is a symmetric matrix with rational entries and A = UDUT , where U is orthog-
onal. Must D have rational entries? Prove or find a counterexample.



Solution: Since U is orthogonal the factorization A = UDUT diagonalizes A so the entries
of D are the eigenvalues of A. These are the roots of its characteristic polynomial, which
need not be rational. For instance, consider

A =

[
1 1
1 −1

]
.

The characteristic polynomial of this matrix is

(x− 1)(x+ 1)− 1 = x2 − 2,

which has roots ±
√

2.

Problem 8A. Score:

Find a product of cyclic groups of prime power order isomorphic to the group of units in the
ring of integers modulo 2016.

Solution: 2016 = 25 × 32 × 7, so the group of units is the product of the groups of units of
the integers mod 25, 32, 7, which are products of cyclic groups of orders 2, 8 and 2, 3 and 2,
3. So the solution is that the group is a product of cyclic groups of orders 2, 2, 2, 3, 3, 8.

Problem 9A. Score:

Compute the Galois group of the normal closure of the field

K = Q(
√

3 +
√

5)

over Q.

Solution: We first prove K = Q(
√

3,
√

5). For that, it suffices to prove
√

3,
√

5 ∈ K. In
fact, by

(
√

3 +
√

5)2 = 8 + 2
√

15,

we have
√

15 ∈ K. Then
(
√

3 +
√

5)
√

15 = 5
√

3 + 3
√

5

is also in K. Its Q-linear combinations with
√

3 +
√

5 give
√

3,
√

5 ∈ K.
As a consequence, K is Galois over Q, since it is the composite of two Galois extensions

over Q. The normal closure of K over Q is still K.
We next prove Q(

√
3) ∩ Q(

√
5) = Q. Otherwise, we would have Q(

√
3) = Q(

√
5) since

both of them have degree 2 over Q. As a consequence, we have
√

5 = a
√

3 + b for some



a, b ∈ Q. Taking squares, we have 5 = 3a2 + b2 + 2ab
√

3. We must have ab = 0, so a = 0
or b = 0. If a = 0,

√
5 = b ∈ Q is a contradiction. If b = 0,

√
5/3 = a ∈ Q is still a

contradiction.
Finally, the composite gives

Gal(K/Q) = Gal(Q(
√

3)/Q)×Gal(Q(
√

5)/Q) ' (Z/2Z)2.

An alternate approach is to start by by showing, as above, that
√

5 6∈ Q(
√

3), and define
L = Q(

√
3,
√

5). Then L has degree 4 over Q and AutQ(L) contains a group G isomorphic
to (Z/2Z)2, generated by σ :

√
3↔ −

√
3 and τ :

√
5↔ −

√
5. It follows that L is Galois over

Q with Galois group G. Since the stabilizer of
√

3 +
√

5 in G is trivial, K = L.

Problem 1B. Score:

Show that ∫ ∞
0

t e−t/2

1− e−t
dt = 4

∞∑
n=0

1

(2n+ 1)2

Solution:
Expand e−t/2/(1− e−t) in a geometric series and integrate∫ ∞

0

∞∑
n=0

t e−(n+1/2)t dt.

term by term, using the formula ∫ ∞
0

e−αt t dt =
1

α2
,

valid for any α > 0. This formula can be obtained using integration by parts.
(It is also possible, but more difficult, to evaluate both sides of the required identity

explicitly, obtaining the value π2/2.)
Since this is meant to be a calculus problem rather than a real analysis problem, graders

should not demand justification for the interchange of summation and integration.

Problem 2B. Score:

Let (fi)
∞
i=1 and g be twice-differentiable real-valued functions on R, with f ′′i ≥ 0. Suppose

that
lim
i→∞

fi(x) = g(x)



for all x ∈ R. Show that g′′ ≥ 0.

Solution: Since each fi is concave upward, we have

fi(z) ≤ fi(z + h) + fi(z − h)

2

for all z, h ∈ R. It follows that g satisfies the same inequality. Then

g′′(z) = lim
h→0

g(z + h) + g(z − h)− 2g(z)

h2
≥ 0

for all z ∈ R.

Problem 3B. Score:

Show that the series
∞∑
k=1

(−1)k

k + |x|

converges pointwise to a Lipschitz function f(x). Is the convergence uniform on R?

Solution: Since the series is alternating for every x, it converges pointwise to some limiting
function f(x). For the Lipschitz condition, we can assume without loss of generality that
x ≥ 0 and compute

∞∑
k=1

(−1)k

k + x
−
∞∑
k=1

(−1)k

k + x+ ε
=
∞∑
k=1

(−1)kε

(k + x)(k + x+ ε)
.

The last sum is again an alternating series, bounded in absolute value by its first term
ε/((1 + x)(1 + x+ ε)) ≤ ε. Hence f(x) is Lipschitz with constant 1.

Using again the fact the series is alternating, its N th tail has∣∣∣∣∣f(x)−
N−1∑
k=1

(−1)k

k + |x|

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=N

(−1)k

k + |x|

∣∣∣∣∣ ≤ 1

N + |x|
≤ 1

N
,

so it converges uniformly.

Problem 4B. Score:

Compute ∫
C

6z5 + 1

z6 + z + 1
dz,



where C is the circle centered at the origin with radius 2, oriented counterclockwise.

Solution: If |z| > 3/2 then |z + 1| ≤ |z| + 1 < |z|6 = |z6|, so 6z5+1
z6+z+1

is analytic on
{z : |z| > 3/2}. Then∫

C

6z5 + 1

z6 + z + 1
dz = −2πi Resz=∞

6z5 + 1

z6 + z + 1
= 12πi.

Alternate solution: the integrand is the derivative of log(z6 +z+1). Hence the integral is
i times the change in arg(z6 + z+ 1) along C, or 2πi times the number of zeroes of z6 + z+ 1
inside C. The same argument as above shows that all six zeroes are inside C.

Problem 5B. Score:

Let f(z) =
∑
fnz

n and g(z) =
∑
gnz

n define holomorphic functions on a neighborhood
of the closed unit disk D = {z : |z| ≤ 1}. Prove that h(z) =

∑
fngnz

n also defines a
holomorphic function on a neighborhood of D.

Solution: The series for f(z) and g(z) must have radius of convergence greater than 1.
Hence there is a ρ > 1 such that fn/ρ

n → 0 and gn/ρ
n → 0 as n→∞. Then fngn/ρ

2n → 0
implies that the series for h(z) has radius of convergence at least ρ2, which is again greater
than 1.

Problem 6B. Score:

Let A be an m×n real matrix and y ∈ Rm. Let x ∈ Rn be a vector with nonnegative entries
that minimizes the Euclidean distance ‖y − Ax‖ (among all nonnegative vectors x). Show
that the vector v = AT (y − Ax) has nonnegative entries.

Solution: Suppose vj = aTj (Ax− y) < 0, where aj = Aej is the j-th column of A. Then for
sufficiently small ε > 0,

‖y − A(x+ εej)‖2 = ‖y − Ax− εaj‖2 = ‖y − Ax‖2 + 2εaTj (Ax− y) + ε2‖aj‖2 < ‖y − Ax‖2,

contrary to the hypothesis on x.

Problem 7B. Score:



Let A be a real square matrix and let ρ be the maximum of the absolute values of its
eigenvalues (i.e., its spectral radius). (1) Show that if A is symmetric then ‖Ax‖ ≤ ρ‖x‖ for
all x ∈ Rn, where ‖·‖ denotes the Euclidean norm. (2) Is this true when A is not symmetric?
Prove or give a counterexample.

Solution: (1) Assume A is n×n. Since A is symmetric it has real eigenvalues λ1 . . . λn and
orthogonal eigenvectors u1, . . . , un. Thus, by the spectral theorem:

A2 =
n∑
i=1

λ2iuiu
T
i .

This implies that for any x:

‖Ax‖2 = xTA2x =
n∑
i=1

λ2i 〈x, ui〉2 ≤
(

max
i
λ2i

)
‖x‖2,

since
∑n

i=1〈x, ui〉2 = ‖x‖2. Taking square roots proves the claim.

(2) This is not true. Consider the matrix

A =

[
0 1
0 0

]
which has both eigenvalues equal to zero, but

Ae2 = e1,

for elementary basis vectors e1, e2.

Problem 8B. Score:

Factor the polynomial

f(x) = 6x5 + 3x4 − 9x3 + 15x2 − 13x− 2

into a product of irreducible polynomials in the ring Q[x].

Solution: Since f(1) = 0, the polynomial has a factor x− 1. Then we obtain

f(x) = (x− 1)(6x4 + 9x3 + 15x+ 2).

We claim that this is a final form of the factorization, for which we need to prove that

g(x) = 6x4 + 9x3 + 15x+ 2



is irreducible.
First, the polynomial

h(x) = 2x4 + 15x3 + 9x+ 6

is irreducible. This follows from the Eisenstein criterion by the prime number p = 3.
Second, for any polynomial

φ(x) = anx
n + an−1x

n−1 + · · ·+ a0

of degree n, denote
φ̃(x) = xnφ(x−1) = a0x

n + · · ·+ an−1x+ an.

Then g(x) = h̃(x), and a decomposition g(x) = g1(x)g2(x) would give a decomposition

h(x) = g̃1(x)g̃2(x).

Hence, g is irreducible.

Problem 9B. Score:

Let p be a prime number. Prove that every group G of order p2 is commutative.

Solution: Let G act on itself by conjugation, g(x) = gxg−1. Under the action, G is a
disjoint union of orbits O0, O1, . . . , Or, where O0 = {e} is the orbit of the identity element.
The length |Oi| of each orbit is a divisor of |G| = p2, so is equal to 1, p, or p2. We have the
sum

|O0|+ |O1|+ · · ·+ |Or| = |G| = p2.

Since |O0| = 1, at least p− 1 other orbits Oi must have length 1. Let Oi0 = {x0} be such an
orbit. By definition, gx0g

−1 = x0 for all g ∈ G. Then x0 is in the center of G, and it is not
the identity.

If x0 generates G, then G ∼= Z/p2Z is commutative. If x0 does not generate G, then it
generates a subgroup 〈x0〉 of order p. Let x1 be any element of G−〈x0〉. Then the subgroup
〈x0, x1〉 has order greater than p, thus it is equal to G. Since x0 and x1 commute, we see
that G is still commutative.


