Problem 1A. Score:

Show that
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is a rational number.

Solution: Let f(z) be the function in the integrand. Note that f(z) is defined on [4,9] as
4 < =6+ 5y/r <9 whenever 4 < x < 9. Also, f(x) is strictly increasing and f(4) = 2 and
f(9)=3. So f:[4,9] — [2,3] is invertible. Its inverse is
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which is a polynomial with rational coefficients.

The integral f49 f(z)dz is equal to the area of the region bounded by the graph y = f(x),
the vertical lines x = 4,2 = 9 and the x-axis. The union of this region with the region
bounded by the graph y = f(z), the horizontal lines y = 2,y = 3 and the y-axis is the
difference between two rectangles: one bounded by the lines z = 9,y = 3 and the x, y-axes
and the other bounded by the lines x = 4,y = 2 and the x, y-axes. Thus
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The second integral is a rational number, since f~!(y) is a polynomial with rational coeffi-
cients. So the first integral is also a rational number.

Problem 2A. Score:

Suppose that f and g are continuously differentiable real-valued functions on R with f, g, f', ¢’ €
L?*(R). Show that

/ fq dv = —/ f'g du.
(Recall that L*(R) is the set of integrable functions h such that [~_|h[* dz < c0.)

Solution: The condition f,g, f',¢’ € L?*(R) implies that the two integrals exist. It also
implies that [*°_|f(z)|-|g(z)| dz < oo, and hence that there are sequences {x;}52; and {y;}52,



such that lim; ., x; = —o0, lim; o y; = 00 and lim;_, f(x;)g(x;) = lim;_o0 f(v:)g(yi) = 0.
Then

| g sy = i [T+ 1) e = i Gat) — g =0
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Problem 3A. Score:

Suppose g and f,, are nonnegative integrable functions such that [ f,dz — 0 as n — oo
and f2 < g for all n. Prove or find a counterexample to the statement that [ fidx — 0 as
n — oo.

Solution: For a counterexample we can take the domain of the functions to be (0, 1), take
fn to be the step function

fn(m) =

n'/t 0<ax<1/n
0 I/n <z <1,

and take g(x) = 2~'/2. The condition f2 < g is satisfied, g is integrable with [ gdz =2, f,
is integrable with [ f, dx = n=3* — 0, and [ fidz =1 for all n.

Problem 4A. Score:

Prove that a monic polynomial p(z) with real coefficients is real-rooted if and only if
S(p'(2)/p(z)) < 0 whenever (z) > 0. (J(z) denotes the imaginary part of z.)
Solution: (=) Let p(z) = [[;_,(z# — \;) and observe that
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Since the \; are real all the numerators are in the lower half plane for z in the upper half
plane, so any linear combination of them with nonnegative coefficients is also in the lower
half plane.

(<) If p is not real-rooted then it must have a zero in the upper half plane, since the zeros
occur in conjugate pairs. Let A be such a zero, occuring with multiplicity m, and observe
that




where ¢q(z) = p(z)/(z — A\)™. Since ¢(A) # 0 we find that ¢'(z)/q(z) is bounded in a
neighborhood of A, so

in particular yielding a z for which &(z) > 0 and S(p/(2)/p(2)) > 0.

Problem 5A. Score:

Compute
/271' de
o BremE

Solution: Put z = €. Then

/27r do / 1 dz or R 2 o
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Problem 6A. Score:

Prove or disprove: there exists an € > 0 and a real matrix A such that

wo _ |—1 0
A _[O —1—6}'

Solution: The eigenvalues a,b € C of such a matrix A must satisfy
Q1% = 1 pl00— (1 _¢).

Note that a cannot be real since 100 is even. Moreover, since A is real its characteristic
polynomial is real so we must have a = b. But this is impossible since |a|'®® = 1 and
6]1%° = (1 + €)% #£ 1. So no such matrix can exist.

Problem T7A. Score:

Suppose A is a symmetric matrix with rational entries and A = UD U7, where U is orthog-
onal. Must D have rational entries? Prove or find a counterexample.



Solution: Since U is orthogonal the factorization A = UD UT diagonalizes A so the entries
of D are the eigenvalues of A. These are the roots of its characteristic polynomial, which
need not be rational. For instance, consider

The characteristic polynomial of this matrix is
(z—D(@x+1)—1=2*-2

which has roots /2.

Problem 8A. Score:

Find a product of cyclic groups of prime power order isomorphic to the group of units in the
ring of integers modulo 2016.

Solution: 2016 = 2° x 32 x 7, so the group of units is the product of the groups of units of
the integers mod 2°, 32, 7, which are products of cyclic groups of orders 2, 8 and 2, 3 and 2,
3. So the solution is that the group is a product of cyclic groups of orders 2, 2, 2, 3, 3, 8.

Problem 9A. Score:

Compute the Galois group of the normal closure of the field
K =Q(V3++V5)

over Q.
Solution: We first prove K = Q(v/3,/5). For that, it suffices to prove v/3,v5 € K. In

fact, by
(V3 +5)? = 8+ 215,

we have v/15 € K. Then
(V3 +v5)V15 = 5v3+3V5

is also in K. Its Q-linear combinations with V3+45 give \/g, V5 eK.

As a consequence, K is Galois over Q, since it is the composite of two Galois extensions
over Q. The normal closure of K over Q is still K.

We next prove Q(v/3) N Q(v/5) = Q. Otherwise, we would have Q(v/3) = Q(v/5) since
both of them have degree 2 over Q. As a consequence, we have v/5 = av/3 + b for some



a,b € Q. Taking squares, we have 5 = 3a® + b? 4 2aby/3. We must have ab = 0, so a = 0
orb=0. Ifa=0, V5 =0 € Qis a contradiction. If b = 0, \/%:ae(@isstilla
contradiction.

Finally, the composite gives

Gal(K/Q) = Gal(Q(v3)/Q) x Gal(Q(V5)/Q) = (Z/2Z)*.

An alternate approach is to start by by showing, as above, that v/5 & Q(v/3), and define
L = Q(+/3,v/5). Then L has degree 4 over Q and Autg(L) contains a group G isomorphic
to (Z/ZZ)Q, generated by o: V3 < —v/3and 7: V5 < —/5. Tt follows that L is Galois over
Q with Galois group G. Since the stabilizer of v/3 4+ v/5 in G is trivial, K = L.

Problem 1B. Score:

Show that

> tet/? - 1
dt =4 —_—
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Solution:
Expand e#2/(1 — e7*) in a geometric series and integrate

0 pn=0

> 1
/ e tdt = —,
0 o

valid for any o > 0. This formula can be obtained using integration by parts.

(It is also possible, but more difficult, to evaluate both sides of the required identity
explicitly, obtaining the value 72/2.)

Since this is meant to be a calculus problem rather than a real analysis problem, graders
should not demand justification for the interchange of summation and integration.

term by term, using the formula

Problem 2B. Score:

Let (f;)2, and g be twice-differentiable real-valued functions on R, with f/ > 0. Suppose
that

lim f;(x) = g(z)

1—00



for all x € R. Show that ¢” > 0.

Solution: Since each f; is concave upward, we have

filz+h)+ fi(z—h)
fi(z) < 5

for all z, h € R. It follows that g satisfies the same inequality. Then

w@)zggﬂv+m+9%—h%—%@)

>0

for all z € R.

Problem 3B. Score:

Show that the series

oo
S
— k+ |z
converges pointwise to a Lipschitz function f(x). Is the convergence uniform on R?

Solution: Since the series is alternating for every x, it converges pointwise to some limiting
function f(x). For the Lipschitz condition, we can assume without loss of generality that
x > 0 and compute

DL S I B 1
kﬂk+x —~hktat+e —(k+a)(k+a+e)
The last sum is again an alternating series, bounded in absolute value by its first term
e/(1+2)(14+x+c¢€)) <e Hence f(z) is Lipschitz with constant 1.

Using again the fact the series is alternating, its N*® tail has

N-—1 ( 00 1 1
f(x) - < AT
‘ kﬂk+ Z; +M| JV+@\ N
so it converges uniformly.
Problem 4B. Score:

Compute

/ 62° 41 y
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where C' is the circle centered at the origin with radius 2, oriented counterclockwise.

Solution: If |z| > 3/2 then |z 4+ 1] < [2]| + 1 < |2|® = |29, so Z%f;ll is analytic on
{z:]z| > 3/2}. Then

62° + 1 62° + 1
Ldz = —2m ReSZ:ooL = 12mi.
c+z+1 26

Alternate solution: the integrand is the derivative of log(2®+z+1). Hence the integral is
i times the change in arg(z® + 2z + 1) along C, or 27 times the number of zeroes of 25+ 2 +1
inside C'. The same argument as above shows that all six zeroes are inside C'.

Problem 5B. Score:

Let f(z) = Y  fu2z™ and g(z) = >_ g,2™ define holomorphic functions on a neighborhood
of the closed unit disk D = {z : |z| < 1}. Prove that h(z) = > fng,2" also defines a
holomorphic function on a neighborhood of D.

Solution: The series for f(z) and g(z) must have radius of convergence greater than 1.
Hence there is a p > 1 such that f,/p" — 0 and g,/p" — 0 as n — oco. Then f,g,/p** — 0
implies that the series for h(z) has radius of convergence at least p?, which is again greater
than 1.

Problem 6B. Score:

Let A be an m x n real matrix and y € R™. Let x € R" be a vector with nonnegative entries
that minimizes the Euclidean distance ||y — Az|| (among all nonnegative vectors x). Show
that the vector v = AT (y — Az) has nonnegative entries.

Solution: Suppose v; = ajT(Ax —y) <0, where a; = Ae; is the j-th column of A. Then for
sufficiently small € > 0,

ly — Az +eej)|* = lly — Az — eqyl|* = |ly — Az|]* + 2ea; (Az — y) + €*[la;||* < [ly — Az]]?,

contrary to the hypothesis on z.

Problem 7B. Score:




Let A be a real square matrix and let p be the maximum of the absolute values of its
eigenvalues (i.e., its spectral radius). (1) Show that if A is symmetric then ||Az|| < p||z| for
all z € R", where || - || denotes the Euclidean norm. (2) Is this true when A is not symmetric?
Prove or give a counterexample.

Solution: (1) Assume A is n x n. Since A is symmetric it has real eigenvalues A ...\, and
orthogonal eigenvectors uy, ..., u,. Thus, by the spectral theorem:

n
2 _ 2 T
A = E AJ U .
i=1

This implies that for any x:
JAz|? = 2" A% = > A2, ui)? < (max A2) o],
i=1

since Y (z,u;)? = ||z||?. Taking square roots proves the claim.

(2) This is not true. Consider the matrix
0 1
=l
which has both eigenvalues equal to zero, but

A62 = €1,

for elementary basis vectors ey, es.

Problem 8B. Score:

Factor the polynomial
f(z) = 62° + 32* — 92 + 152% — 132 — 2
into a product of irreducible polynomials in the ring Q[z].

Solution: Since f(1) = 0, the polynomial has a factor x — 1. Then we obtain
f(2) = (x — 1)(62* + 92° + 152 + 2).
We claim that this is a final form of the factorization, for which we need to prove that

g(x) = 62" + 92° + 15z + 2



is irreducible.
First, the polynomial
h(z) = 22* + 152 + 92+ 6

is irreducible. This follows from the Eisenstein criterion by the prime number p = 3.
Second, for any polynomial

¢($) = anwn + an—lxn_1 + -+ )

of degree n, denote )
d(x) = 2"p(x7 ') = apa™ + - + ap_1T + ay.

Then g(z) = h(z), and a decomposition g(z) = ¢1(2)gz(x) would give a decomposition

Hence, g is irreducible.

Problem 9B. Score:

Let p be a prime number. Prove that every group G of order p? is commutative.

Solution: Let G act on itself by conjugation, g(z) = grg~'. Under the action, G is a
disjoint union of orbits Og, Oy, ..., O,, where Oy = {e} is the orbit of the identity element.
The length |O;| of each orbit is a divisor of |G| = p?, so is equal to 1, p, or p>. We have the
sum

O] + 01| + - - - + |0, = |G| = p*.

Since |Og| = 1, at least p — 1 other orbits O; must have length 1. Let O;, = {xo} be such an
orbit. By definition, gzog~! = z, for all ¢ € G. Then x; is in the center of G, and it is not
the identity.

If 7o generates G, then G = Z/p*Z is commutative. If 2y does not generate G, then it
generates a subgroup (zo) of order p. Let ; be any element of G — (x). Then the subgroup
(xg, 1) has order greater than p, thus it is equal to G. Since zy and z; commute, we see
that G is still commutative.



