Preliminary Exam - Spring 1979

Problem 1 Let $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be differentiable. Suppose

$$\lim_{x \to 0} \frac{\partial f}{\partial x_j}(x)$$

exists for each $j = 1, \ldots, n$.

1. Can f be extended to a continuous map from \mathbb{R}^n to \mathbb{R} ?

2. Assuming continuity at the origin, is f differentiable from \mathbb{R}^n to \mathbb{R} ?

Problem 2 Let *E* denote a finite-dimensional complex vector space with a Hermitian inner product $\langle x, y \rangle$.

- 1. Prove that E has an orthonormal basis.
- 2. Let $f : E \to \mathbb{C}$ be such that f(x, y) is linear in x and conjugate linear in y. Show there is a linear map $A : E \to E$ such that $f(x, y) = \langle Ax, y \rangle$.

Problem 3 Let S_7 be the group of permutations of a set of seven objects. Find all n such that some element of S_7 has order n.

Problem 4 Prove that every compact metric space has a countable dense subset.

Problem 5 Find all solutions to the differential equation

$$\frac{dy}{dx} = \sqrt{y}, \qquad y(0) = 0.$$

Problem 6 Prove that if $1 < \lambda < \infty$, the function

$$f_{\lambda}(z) = z + \lambda - e^{z}$$

has only one zero in the half-plane $\Re z < 0$, and that this zero is real.

Problem 7 Evaluate

$$\int_0^\infty \frac{x^2 + 1}{x^4 + 1} \, dx \, .$$

Problem 8 Let M be a real nonsingular 3×3 matrix. Prove there are real matrices S and U such that M = SU = US, all the eigenvalues of U equal 1, and S is diagonalizable over \mathbb{C} .

Problem 9 Let M be an $n \times n$ complex matrix. Let G_M be the set of complex numbers λ such that the matrix λM is similar to M.

1. What is G_M if

$$M = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ?$$

2. Assume M is not nilpotent. Prove G_M is finite.

Problem 10 Let f(x) be a polynomial over \mathbb{Z}_p , the field of integers mod p. Let $g(x) = x^p - x$. Show that the greatest common divisor of f(x) and g(x)is the product of the distinct linear factors of f(x).

Problem 11 Classify all abelian groups of order 80 up to isomorphism.

Problem 12 Let G be a group with three normal subgroups N_1 , N_2 , and N_3 . Suppose $N_i \cap N_j = \{e\}$ and $N_i N_j = G$ for all i, j with $i \neq j$. Show that G is abelian and N_i is isomorphic to N_j for all i, j.

Problem 13 Consider the system of differential equations:

$$\frac{dx}{dt} = y + tz$$
$$\frac{dy}{dt} = z + t^2 x$$
$$\frac{dz}{dt} = x + e^t y.$$

Prove there exists a solution defined for all $t \in [0, 1]$, such that

.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \quad \begin{pmatrix} x(0) \\ y(0) \\ z(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

 $and \ also$

$$\int_0^1 \left(x(t)^2 + y(t)^2 + z(t)^2 \right) dt = 1.$$

Problem 14 Let $M_{n \times n}$ denote the vector space of $n \times n$ real matrices for $n \ge 2$. Let det : $M_{n \times n} \to \mathbb{R}$ be the determinant map.

- 1. Show that det is C^{∞} .
- 2. Show that the derivative of det at $A \in M_{n \times n}$ is zero if and only if A has rank $\leq n 2$.

Problem 15 Which of the following matrices are similar as matrices over \mathbb{R} ?

$$(a) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (b) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, (c) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (d) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, (e) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (f) \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Problem 16 For which $z \in \mathbb{C}$ does

$$\sum_{n=0}^{\infty} \left(\frac{z^n}{n!} + \frac{n^2}{z^n} \right)$$

converge?

Problem 17 Let P and Q be complex polynomials with the degree of Q at least two more than the degree of P. Prove there is an r > 0 such that if C is a closed curve outside |z| = r, then

$$\int_C \frac{P(z)}{Q(z)} \, dz = 0.$$

Problem 18 Show that for any continuous function $f : [0,1] \to \mathbb{R}$ and $\varepsilon > 0$, there is a function of the form

$$g(x) = \sum_{k=0}^{n} C_k x^{4k}$$

for some $n \in \mathbb{Z}$, where $C_0, \ldots, C_n \in \mathbb{Q}$ and $|g(x) - f(x)| < \varepsilon$ for all x in [0, 1].

Problem 19 Let P be a $n \times n$ real matrix such that $x^t Py = -y^t Px$ for all column vectors x, y in \mathbb{R}^n . Prove that P is skew-symmetric.

Problem 20 Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ having all three of the following properties:

- f(x) = 0 for x < 0 and x > 2,
- f'(1) = 1,
- f has derivatives of all orders.