Preliminary Exam - Spring 1979

Problem 1 Let $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ be differentiable. Suppose

$$
\lim _{x \rightarrow 0} \frac{\partial f}{\partial x_{j}}(x)
$$

exists for each $j=1, \ldots, n$.

1. Can f be extended to a continuous map from \mathbb{R}^{n} to \mathbb{R} ?
2. Assuming continuity at the origin, is f differentiable from \mathbb{R}^{n} to \mathbb{R} ?

Problem 2 Let E denote a finite-dimensional complex vector space with a Hermitian inner product $\langle x, y\rangle$.

1. Prove that E has an orthonormal basis.
2. Let $f: E \rightarrow \mathbb{C}$ be such that $f(x, y)$ is linear in x and conjugate linear in y. Show there is a linear map $A: E \rightarrow E$ such that $f(x, y)=\langle A x, y\rangle$.

Problem 3 Let S_{7} be the group of permutations of a set of seven objects. Find all n such that some element of S_{7} has order n.

Problem 4 Prove that every compact metric space has a countable dense subset.

Problem 5 Find all solutions to the differential equation

$$
\frac{d y}{d x}=\sqrt{y}, \quad y(0)=0
$$

Problem 6 Prove that if $1<\lambda<\infty$, the function

$$
f_{\lambda}(z)=z+\lambda-e^{z}
$$

has only one zero in the half-plane $\Re z<0$, and that this zero is real.

Problem 7 Evaluate

$$
\int_{0}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x
$$

Problem 8 Let M be a real nonsingular 3×3 matrix. Prove there are real matrices S and U such that $M=S U=U S$, all the eigenvalues of U equal 1 , and S is diagonalizable over \mathbb{C}.

Problem 9 Let M be an $n \times n$ complex matrix. Let G_{M} be the set of complex numbers λ such that the matrix λM is similar to M.

1. What is G_{M} if

$$
M=\left(\begin{array}{lll}
0 & 0 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) ?
$$

2. Assume M is not nilpotent. Prove G_{M} is finite.

Problem 10 Let $f(x)$ be a polynomial over \mathbb{Z}_{p}, the field of integers $\bmod p$. Let $g(x)=x^{p}-x$. Show that the greatest common divisor of $f(x)$ and $g(x)$ is the product of the distinct linear factors of $f(x)$.

Problem 11 Classify all abelian groups of order 80 up to isomorphism.
Problem 12 Let G be a group with three normal subgroups N_{1}, N_{2}, and N_{3}. Suppose $N_{i} \cap N_{j}=\{e\}$ and $N_{i} N_{j}=G$ for all i, j with $i \neq j$. Show that G is abelian and N_{i} is isomorphic to N_{j} for all i, j.

Problem 13 Consider the system of differential equations:

$$
\begin{aligned}
& \frac{d x}{d t}=y+t z \\
& \frac{d y}{d t}=z+t^{2} x \\
& \frac{d z}{d t}=x+e^{t} y
\end{aligned}
$$

Prove there exists a solution defined for all $t \in[0,1]$, such that

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad\left(\begin{array}{l}
x(0) \\
y(0) \\
z(0)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and also

$$
\int_{0}^{1}\left(x(t)^{2}+y(t)^{2}+z(t)^{2}\right) d t=1
$$

Problem 14 Let $M_{n \times n}$ denote the vector space of $n \times n$ real matrices for $n \geqslant 2$. Let det : $M_{n \times n} \rightarrow \mathbb{R}$ be the determinant map.

1. Show that det is C^{∞}.
2. Show that the derivative of det at $A \in M_{n \times n}$ is zero if and only if A has rank $\leqslant n-2$.

Problem 15 Which of the following matrices are similar as matrices over \mathbb{R} ?
(a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
(b) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$,
(c) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$,
(e) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
$(f)\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.

Problem 16 For which $z \in \mathbb{C}$ does

$$
\sum_{n=0}^{\infty}\left(\frac{z^{n}}{n!}+\frac{n^{2}}{z^{n}}\right)
$$

converge?
Problem 17 Let P and Q be complex polynomials with the degree of Q at least two more than the degree of P. Prove there is an $r>0$ such that if C is a closed curve outside $|z|=r$, then

$$
\int_{C} \frac{P(z)}{Q(z)} d z=0
$$

Problem 18 Show that for any continuous function $f:[0,1] \rightarrow \mathbb{R}$ and $\varepsilon>0$, there is a function of the form

$$
g(x)=\sum_{k=0}^{n} C_{k} x^{4 k}
$$

for some $n \in \mathbb{Z}$, where $C_{0}, \ldots, C_{n} \in \mathbb{Q}$ and $|g(x)-f(x)|<\varepsilon$ for all x in $[0,1]$.

Problem 19 Let P be a $n \times n$ real matrix such that $x^{t} P y=-y^{t} P x$ for all column vectors x, y in \mathbb{R}^{n}. Prove that P is skew-symmetric.

Problem 20 Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ having all three of the following properties:

- $f(x)=0$ for $x<0$ and $x>2$,
- $f^{\prime}(1)=1$,
- f has derivatives of all orders.

