Preliminary Exam - Spring 1983

Problem 1 Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a monotone decreasing function, defined on the positive real numbers with

$$
\int_{0}^{\infty} f(x) d x<\infty
$$

Show that

$$
\lim _{x \rightarrow \infty} x f(x)=0
$$

Problem 2 Let $A=\left(a_{i j}\right)$ be an $n \times n$ real matrix satisfying the conditions:

$$
\begin{gathered}
a_{i i}>0 \quad(1 \leqslant i \leqslant n), \\
a_{i j} \leqslant 0 \quad(i \neq j, 1 \leqslant i, j \leqslant n), \\
\sum_{i=1}^{n} a_{i j}>0 \quad(1 \leqslant j \leqslant n) .
\end{gathered}
$$

Show that $\operatorname{det}(A)>0$.
Problem 3 A fractional linear transformation maps the annulusr $<|z|<1$ (where $r>0$) onto the domain bounded by the two circles $\left|z-\frac{1}{4}\right|=\frac{1}{4}$ and $|z|=1$. Find r.

Problem 4 In the triangular network in \mathbb{R}^{2} depicted below, the points P_{0}, P_{1}, P_{2}, and P_{3} are respectively $(0,0),(1,0),(0,1)$, and $(1,1)$. Describe the structure of the group of all Euclidean transformations of \mathbb{R}^{2} which leave this network invariant.

> ../Fig/Pr/Sp83-4.ps not found

Problem 5 Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ to

$$
\frac{d y}{d x}=\sqrt{y(y-2)}, \quad y(0)=0
$$

Problem 6 Suppose that f is a continuous function on \mathbb{R} which is periodic with period 1, i.e., $f(x+1)=f(x)$. Show:

1. The function f is bounded above and below and achieves its maximum and minimum.
2. The function f is uniformly continuous on \mathbb{R}.
3. There exists a real number x_{0} such that

$$
f\left(x_{0}+\pi\right)=f\left(x_{0}\right)
$$

Problem 7 Let H be the group of integers $\bmod p$, under addition, where p is a prime number. Suppose that n is an integer satisfying $1 \leqslant n \leqslant p$, and let G be the group $H \times H \times \cdots \times H$ (n factors). Show that G has no automorphism of order p^{2}.

Problem 8 Suppose that $n>1$ is an integer. Prove that the sum

$$
1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

is not an integer.
Problem 9 Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and satisfies

$$
\|F(x)-F(y)\| \geqslant \lambda\|x-y\|
$$

for all $x, y \in \mathbb{R}^{n}$ and some $\lambda>0$. Prove that F is one-to-one, onto, and has a continuous inverse.
Note: See also Problem ??.
Problem 10 Evaluate

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

Problem 11 Let M be an invertible real $n \times n$ matrix. Show that there is a decomposition $M=U T$ in which U is an $n \times n$ real orthogonal matrix and T is upper-triangular with positive diagonal entries. Is this decomposition unique?

Problem 12 Determine all the complex analytic functions f defined on the unit disc \mathbb{D} which satisfy

$$
f^{\prime \prime}\left(\frac{1}{n}\right)+f\left(\frac{1}{n}\right)=0
$$

for $n=2,3,4, \ldots$.
Problem 13 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$ be real numbers. Show that the infinite series

$$
\sum_{n=1}^{\infty} \frac{e^{i \lambda_{n} x}}{n^{2}}
$$

converges uniformly over \mathbb{R} to a continuous limit function $f: \mathbb{R} \rightarrow \mathbb{C}$. Show, further, that the limit

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(x) d x
$$

exists.

Problem 14 Let G be an abelian group which is generated by, at most, n elements. Show that each subgroup of G is again generated by, at most, n elements.

Problem 15 Let f and g be complex polynomials with the degree of g at least two more than the degree of f. Show that there is a positive number r such that

$$
\int_{C} \frac{f(z)}{g(z)} d z=0
$$

for each simple closed curve C which does not intersect $\{z||z| \leqslant r\}$.
Problem 16 Let V be a real vector space of dimension n, and letS : $V \times V \rightarrow$ \mathbb{R} be a nondegenerate bilinear form. Suppose that W is a linear subspace of V such that the restriction of S to $W \times W$ is identically 0 . Show that $\operatorname{dim} W \leqslant n / 2$.

Problem 17 Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x(x-\pi)} d x
$$

Problem 18 Let \mathbf{F} be the field with seven elements. How many 3×3 matrices with coefficients in \mathbf{F} have determinant 2? How many have determinant 3?

Problem 19 Show that the initial value problem

$$
x^{\prime}=1+5 \cos x, \quad x(0)=7
$$

has a solution defined on all of \mathbb{R}.
Problem 20 Show that the interval $[0,1]$ cannot be written as a countably infinite disjoint union of closed subintervals of $[0,1]$.

