Preliminary Exam - Spring 1983

Problem 1 Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be a monotone decreasing function, defined on the positive real numbers with

$$\int_0^\infty f(x)\,dx < \infty.$$

Show that

$$\lim_{x \to \infty} x f(x) = 0.$$

Problem 2 Let $A = (a_{ij})$ be an $n \times n$ real matrix satisfying the conditions:

$$a_{ii} > 0 \quad (1 \le i \le n),$$
$$a_{ij} \le 0 \quad (i \ne j, \ 1 \le i, j \le n),$$
$$\sum_{i=1}^{n} a_{ij} > 0 \quad (1 \le j \le n).$$

Show that det(A) > 0.

Problem 3 A fractional linear transformation maps the annulus |z| < 1 (where r > 0) onto the domain bounded by the two circles $|z - \frac{1}{4}| = \frac{1}{4}$ and |z| = 1. Find r.

Problem 4 In the triangular network in \mathbb{R}^2 depicted below, the points P_0 , P_1 , P_2 , and P_3 are respectively (0,0), (1,0), (0,1), and (1,1). Describe the structure of the group of all Euclidean transformations of \mathbb{R}^2 which leave this network invariant.

Problem 5 Find all solutions $y : \mathbb{R} \to \mathbb{R}$ to

$$\frac{dy}{dx} = \sqrt{y(y-2)}, \quad y(0) = 0.$$

Problem 6 Suppose that f is a continuous function on \mathbb{R} which is periodic with period 1, i.e., f(x + 1) = f(x). Show:

- 1. The function f is bounded above and below and achieves its maximum and minimum.
- 2. The function f is uniformly continuous on \mathbb{R} .
- 3. There exists a real number x_0 such that

$$f(x_0 + \pi) = f(x_0).$$

Problem 7 Let H be the group of integers mod p, under addition, where p is a prime number. Suppose that n is an integer satisfying $1 \le n \le p$, and let G be the group $H \times H \times \cdots \times H$ (n factors). Show that G has no automorphism of order p^2 .

Problem 8 Suppose that n > 1 is an integer. Prove that the sum

$$1 + \frac{1}{2} + \dots + \frac{1}{n}$$

is not an integer.

Problem 9 Suppose that $F : \mathbb{R}^n \to \mathbb{R}^n$ is continuous and satisfies

$$||F(x) - F(y)|| \ge \lambda ||x - y||$$

for all $x, y \in \mathbb{R}^n$ and some $\lambda > 0$. Prove that F is one-to-one, onto, and has a continuous inverse.

Note: See also Problem ??.

Problem 10 Evaluate

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 \, dx$$

Problem 11 Let M be an invertible real $n \times n$ matrix. Show that there is a decomposition M = UT in which U is an $n \times n$ real orthogonal matrix and T is upper-triangular with positive diagonal entries. Is this decomposition unique?

Problem 12 Determine all the complex analytic functions f defined on the unit disc \mathbb{D} which satisfy

$$f''\left(\frac{1}{n}\right) + f\left(\frac{1}{n}\right) = 0$$

for $n = 2, 3, 4, \ldots$

Problem 13 Let $\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots$ be real numbers. Show that the infinite series

$$\sum_{n=1}^{\infty} \frac{e^{i\lambda_n x}}{n^2}$$

converges uniformly over \mathbb{R} to a continuous limit function $f : \mathbb{R} \to \mathbb{C}$. Show, further, that the limit

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x) \, dx$$

exists.

Problem 14 Let G be an abelian group which is generated by, at most, n elements. Show that each subgroup of G is again generated by, at most, n elements.

Problem 15 Let f and g be complex polynomials with the degree of g at least two more than the degree of f. Show that there is a positive number r such that

$$\int_C \frac{f(z)}{g(z)} \, dz = 0$$

for each simple closed curve C which does not intersect $\{z \mid |z| \leq r\}$.

Problem 16 Let V be a real vector space of dimension n, and let $S: V \times V \rightarrow \mathbb{R}$ be a nondegenerate bilinear form. Suppose that W is a linear subspace of V such that the restriction of S to $W \times W$ is identically 0. Show that dim $W \leq n/2$.

Problem 17 Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x-\pi)} \, dx$$

Problem 18 Let \mathbf{F} be the field with seven elements. How many 3×3 matrices with coefficients in \mathbf{F} have determinant 2? How many have determinant 3?

Problem 19 Show that the initial value problem

 $x' = 1 + 5\cos x, \quad x(0) = 7$

has a solution defined on all of \mathbb{R} .

Problem 20 Show that the interval [0,1] cannot be written as a countably infinite disjoint union of closed subintervals of [0,1].