Preliminary Exam - Spring 1995

Problem 1 For each positive integer n, define $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \cos nx$. Prove that the sequence of functions $\{f_n\}$ has no uniformly convergent subsequence.

Problem 2 Let A be the 3×3 matrix

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Determine all real numbers a for which the limit $\lim_{n\to\infty} a^n A^n$ exists and is nonzero (as a matrix).

Problem 3 Let n be a positive integer and $0 < \theta < \pi$. Prove that

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{z^n}{1 - 2z\cos\theta + z^2} dz = \frac{\sin n\theta}{\sin\theta}$$

where the circle |z| = 2 is oriented counterclockwise.

Problem 4 Let \mathbf{F} be a finite field of cardinality p^n , with p prime and n > 0, and let G be the group of invertible 2×2 matrices with coefficients in \mathbf{F} .

- 1. Prove that G has order $(p^{2n} 1)(p^{2n} p^n)$.
- 2. Show that any p-Sylow subgroup of G is isomorphic to the additive group of \mathbf{F} .

Problem 5 Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded continuously differentiable function. Show that every solution of y'(x) = f(y(x)) is monotone.

Problem 6 Suppose that R is a subring of a commutative ring S and that R is of finite index n in S. Let m be an integer that is relatively prime to n. Prove that the natural map $R/mR \rightarrow S/mS$ is a ring isomorphism.

Problem 7 Let $f, g: [0,1] \to [0,\infty)$ be continuous functions satisfying

$$\sup_{0 \leqslant x \leqslant 1} f(x) = \sup_{0 \leqslant x \leqslant 1} g(x).$$

Prove that there exists $t \in [0,1]$ with $f(t)^2 + 3f(t) = g(t)^2 + 3g(t)$.

Problem 8 Suppose that $W \subset V$ are finite-dimensional vector spaces over a field, and let $L: V \to V$ be a linear transformation with $L(V) \subset W$. Denote the restriction of L to W by L_W . Prove that $\det(1 - tL) = \det(1 - tL_W)$.

Problem 9 Let P(x) be a polynomial with real coefficients and with leading coefficient 1. Suppose that P(0) = -1 and that P(x) has no complex zeros inside the unit circle. Prove that P(1) = 0.

Problem 10 Let $f_n: [0,1] \to [0,\infty)$ be a continuous function, for n = 1, 2, ...Suppose that one has

(*)
$$f_1(x) \ge f_2(x) \ge f_3(x) \ge \cdots$$
 for all $x \in [0, 1]$.

Let $f(x) = \lim_{n \to \infty} f_n(x)$ and $M = \sup_{0 \le x \le 1} f(x)$.

- 1. Prove that there exists $t \in [0, 1]$ with f(t) = M.
- 2. Show by example that the conclusion of Part 1 need not hold if instead of (*) we merely know that for each $x \in [0, 1]$ there exists n_x such that for all $n \ge n_x$ one has $f_n(x) \ge f_{n+1}(x)$.

Problem 11 Let n be a positive integer, and let $S \subset \mathbb{R}^n$ a finite subset with $0 \in S$. Suppose that $\varphi : S \to S$ is a map satisfying

$$\begin{aligned} \varphi(0) &= 0, \\ d(\varphi(s), \varphi(t)) &= d(s, t) \qquad for \ all \quad s, t \in S, \end{aligned}$$

where d(,) denotes Euclidean metric. Prove that there is a linear mapf : $\mathbb{R}^n \to \mathbb{R}^n$ whose restriction to S is φ .

Problem 12 Let n be a positive integer. Compute

$$\int_0^{2\pi} \frac{1 - \cos n\theta}{1 - \cos \theta} d\theta$$

Problem 13 Let n be an odd positive integer, and denote by S_n the group of all permutations of $\{1, 2, ..., n\}$. Suppose that G is a subgroup of S_n of 2power order. Prove that there exists $i \in \{1, 2, ..., n\}$ such that for all $\sigma \in G$, one has $\sigma(i) = i$.

Problem 14 Let $y : \mathbb{R} \to \mathbb{R}$ be a three times differentiable function satisfying the differential equation y'' - y = 0. Suppose that $\lim_{x\to\infty} y(x) = 0$. Find real numbers a, b, c, and d, not all zero, such that ay(0) + y'(0) + cy''(0) = d.

Problem 15 Let \mathbf{F} be a finite field, and suppose that the subfield of \mathbf{F} generated by $\{x^3 \mid x \in \mathbf{F}\}$ is different from \mathbf{F} . Show that \mathbf{F} has cardinality 4.

Problem 16 Let K be a nonempty compact set in a metric space with distance function d. Suppose that $\varphi: K \to K$ satisfies

$$d(\varphi(x),\varphi(y)) < d(x,y)$$

for all $x \neq y$ in K. Show there exists precisely one point $x \in K$ such that $x = \varphi(x)$.

Problem 17 Let V be a finite-dimensional vector space over a field \mathbf{F} , and let $L: V \to V$ be a linear transformation. Suppose that the characteristic polynomial χ of L is written as $\chi = \chi_1 \chi_2$, where χ_1 and χ_2 are two relatively prime polynomials with coefficients in \mathbf{F} . Show that V can be written as the direct sum of two subspaces V_1 and V_2 with the property that $\chi_i(L)V_i = 0$ for i = 1, 2.

Problem 18 Prove that there is no one-to-one conformal map f the punctured disc $G = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$ onto the annulus $A = \{z \in \mathbb{C} \mid 1 < |z| < 2\}$.