Preliminary Exam - Spring 1995

Problem 1 For each positive integer n, define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{n}(x)=$ $\cos n x$. Prove that the sequence of functions $\left\{f_{n}\right\}$ has no uniformly convergent subsequence.

Problem 2 Let A be the 3×3 matrix

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

Determine all real numbers a for which the limit $\lim _{n \rightarrow \infty} a^{n} A^{n}$ exists and is nonzero (as a matrix).

Problem 3 Let n be a positive integer and $0<\theta<\pi$. Prove that

$$
\frac{1}{2 \pi i} \int_{|z|=2} \frac{z^{n}}{1-2 z \cos \theta+z^{2}} d z=\frac{\sin n \theta}{\sin \theta}
$$

where the circle $|z|=2$ is oriented counterclockwise.
Problem 4 Let \mathbf{F} be a finite field of cardinality p^{n}, with p prime and $n>0$, and let G be the group of invertible 2×2 matrices with coefficients in \mathbf{F}.

1. Prove that G has order $\left(p^{2 n}-1\right)\left(p^{2 n}-p^{n}\right)$.
2. Show that any p-Sylow subgroup of G is isomorphic to the additive group of \mathbf{F}.

Problem 5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuously differentiable function. Show that every solution of $y^{\prime}(x)=f(y(x))$ is monotone.

Problem 6 Suppose that R is a subring of a commutative ring S and that R is of finite index n in S. Let m be an integer that is relatively prime to n. Prove that the natural map $R / m R \rightarrow S / m S$ is a ring isomorphism.

Problem 7 Let $f, g:[0,1] \rightarrow[0, \infty)$ be continuous functions satisfying

$$
\sup _{0 \leqslant x \leqslant 1} f(x)=\sup _{0 \leqslant x \leqslant 1} g(x)
$$

Prove that there exists $t \in[0,1]$ with $f(t)^{2}+3 f(t)=g(t)^{2}+3 g(t)$.
Problem 8 Suppose that $W \subset V$ are finite-dimensional vector spaces over a field, and let $L: V \rightarrow V$ be a linear transformation with $L(V) \subset W$. Denote the restriction of L to W by L_{W}. Prove that $\operatorname{det}(1-t L)=\operatorname{det}\left(1-t L_{W}\right)$.

Problem 9 Let $P(x)$ be a polynomial with real coefficients and with leading coefficient 1. Suppose that $P(0)=-1$ and that $P(x)$ has no complex zeros inside the unit circle. Prove that $P(1)=0$.

Problem 10 Let $f_{n}:[0,1] \rightarrow[0, \infty)$ be a continuous function, forn $=1,2, \ldots$. Suppose that one has
(*) $\quad f_{1}(x) \geqslant f_{2}(x) \geqslant f_{3}(x) \geqslant \cdots$ for all $x \in[0,1]$.
Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ and $M=\sup _{0 \leqslant x \leqslant 1} f(x)$.

1. Prove that there exists $t \in[0,1]$ with $f(t)=M$.
2. Show by example that the conclusion of Part 1 need not hold if instead of $(*)$ we merely know that for each $x \in[0,1]$ there exists n_{x} such that for all $n \geqslant n_{x}$ one has $f_{n}(x) \geqslant f_{n+1}(x)$.

Problem 11 Let n be a positive integer, and let $S \subset \mathbb{R}^{n}$ a finite subset with $0 \in S$. Suppose that $\varphi: S \rightarrow S$ is a map satisfying

$$
\begin{aligned}
\varphi(0) & =0 \\
d(\varphi(s), \varphi(t)) & =d(s, t) \quad \text { for all } \quad s, t \in S,
\end{aligned}
$$

where $d($,$) denotes Euclidean metric. Prove that there is a linear mapf :$ $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose restriction to S is φ.

Problem 12 Let n be a positive integer. Compute

$$
\int_{0}^{2 \pi} \frac{1-\cos n \theta}{1-\cos \theta} d \theta
$$

Problem 13 Let n be an odd positive integer, and denote by S_{n} the group of all permutations of $\{1,2, \ldots, n\}$. Suppose that G is a subgroup of S_{n} of 2power order. Prove that there exists $i \in\{1,2, \ldots, n\}$ such that for all $\sigma \in G$, one has $\sigma(i)=i$.

Problem 14 Let $y: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function satisfying the differential equation $y^{\prime \prime \prime}-y=0$. Suppose that $\lim _{x \rightarrow \infty} y(x)=0$. Find real numbers a, b, c, and d, not all zero, such that ay $(0)+y^{\prime}(0)+c y^{\prime \prime}(0)=d$.

Problem 15 Let \mathbf{F} be a finite field, and suppose that the subfield of \mathbf{F} generated by $\left\{x^{3} \mid x \in \mathbf{F}\right\}$ is different from \mathbf{F}. Show that \mathbf{F} has cardinality 4.

Problem 16 Let K be a nonempty compact set in a metric space with distance function d. Suppose that $\varphi: K \rightarrow K$ satisfies

$$
d(\varphi(x), \varphi(y))<d(x, y)
$$

for all $x \neq y$ in K. Show there exists precisely one point $x \in K$ such that $x=\varphi(x)$.

Problem 17 Let V be a finite-dimensional vector space over a field \mathbf{F}, and let $L: V \rightarrow V$ be a linear transformation. Suppose that the characteristic polynomial χ of L is written as $\chi=\chi_{1} \chi_{2}$, where χ_{1} and χ_{2} are two relatively prime polynomials with coefficients in \mathbf{F}. Show that V can be written as the direct sum of two subspaces V_{1} and V_{2} with the property that $\chi_{i}(L) V_{i}=0$ for $i=1,2$.

Problem 18 Prove that there is no one-to-one conformal mapof the punctured disc $G=\{z \in \mathbb{C}|0<|z|<1\}$ onto the annulusA $=\{z \in \mathbb{C} \mid 1<$ $|z|<2\}$.

