Preliminary Exam - Summer 1977

Problem 1 Prove the following statements about the polynomial ring $\mathbf{F}[x]$, where \mathbf{F} is any field.

- 1. $\mathbf{F}[x]$ is a vector space over \mathbf{F} .
- 2. The subset $\mathbf{F}_n[x]$ of polynomials of degree $\leq n$ is a subspace of dimension n + 1 in $\mathbf{F}[x]$.
- 3. The polynomials $1, x a, ..., (x a)^n$ form a basis of $\mathbf{F}_n[x]$ for any $a \in \mathbf{F}$.

Problem 2 Let f be continuous on \mathbb{C} and analytic on $\{z \mid \Im z \neq 0\}$. Prove that f must be analytic on \mathbb{C} .

Problem 3 Prove that $\alpha = \sqrt{3} + \sqrt{5}$ is algebraic over \mathbb{Q} , by explicitly finding a polynomial with coefficients in \mathbb{Q} of which α is a root.

Problem 4 Let A be an $r \times r$ matrix of real numbers. Prove that the infinite sum

$$e^{A} = I + A + \frac{A^{2}}{2} + \dots + \frac{A^{n}}{n!} + \dots$$

of matrices converges (i.e., for each i, j, the sum of (i, j)th entries converges), and hence that e^A is a well-defined matrix.

Problem 5 Write all values of i^i in the form a + bi.

Problem 6 Show that

$$F(k) = \int_0^{\pi/2} \frac{dx}{\sqrt{1 - k \cos^2 x}}$$

 $0 \leq k < 1$, is an increasing function of k.

Problem 7 Let $A : \mathbb{R}^6 \to \mathbb{R}^6$ be a linear transformation such that $A^{26} = I$. Show that $\mathbb{R}^6 = V_1 \oplus V_2 \oplus V_3$, where V_1 , V_2 , and V_3 are two-dimensional invariant subspaces for A. Problem 8 Prove that the initial value problem

$$\frac{dx}{dt} = 3x + 85\cos x, \quad x(0) = 77,$$

has a solution x(t) defined for all $t \in \mathbb{R}$.

Problem 9 Show that every rotation of \mathbb{R}^3 has an axis; that is, given a 3×3 real matrix A such that $A^t = A^{-1}$ and det A > 0, prove that there is a nonzero vector v such that Av = v.

Problem 10 Suppose that f(x) is defined on [-1, 1], and that f'''(x) is continuous. Show that the series

$$\sum_{n=1}^{\infty} \left(n \left(f \left(\frac{1}{n} \right) - f \left(-\frac{1}{n} \right) \right) - 2f'(0) \right)$$

converges.

Problem 11 Let f(x,t) be a C^1 function such that $\partial f/\partial x = \partial f/\partial t$. Suppose that f(x,0) > 0 for all x. Prove that f(x,t) > 0 for all x and t.

Problem 12 Let V be the vector space of all polynomials of degree ≤ 10 , and let D be the differentiation operator on V (i.e., Dp(x) = p'(x)).

- 1. Show that tr D = 0.
- 2. Find all eigenvectors of D and e^{D} .

Problem 13 Let f be an analytic function such that

$$f(z) = 1 + 2z + 3z^2 + \cdots$$
 for $|z| < 1$.

Define a sequence of real numbers a_0, a_1, a_2, \ldots by

$$f(z) = \sum_{n=0}^{\infty} a_n (z+2)^n.$$

What is the radius of convergence of the series

$$\sum_{n=0}^{\infty} a_n z^n ?$$

- **Problem 14** 1. Prove that every finitely generated subgroup of \mathbb{Q} , the additive group of rational numbers, is cyclic.
 - Does the same conclusion hold for finitely generated subgroups of Q /Z, where Z is the group of integers?

Note: See also Problems ?? and ??.

Problem 15 Let $A \subset \mathbb{R}^n$ be compact, $x \in A$; let (x_i) be a sequence in A such that every convergent subsequence of (x_i) converges to x.

- 1. Prove that the entire sequence (x_i) converges.
- 2. Give an example to show that if A is not compact, the result in Part 1 is not necessarily true.

Problem 16 Use the Residue Theorem to evaluate the integral

$$I(a) = \int_0^{2\pi} \frac{d\theta}{a + \cos\theta}$$

where a is real and a > 1. Why the formula obtained for I(a) is also valid for certain complex (nonreal) values of a ?

Problem 17 In the ring $\mathbb{Z}[x]$ of polynomials in one variable over the integers, show that the ideal \mathfrak{I} generated by 5 and $x^2 + 2$ is a maximal ideal.

Problem 18 Let $\hat{a}_0 + \hat{a}_1 z + \cdots + \hat{a}_n z^n$ be a polynomial having \hat{z} as a simple root. Show that there is a continuous function $r: U \to \mathbb{C}$, where U is a neighborhood of $(\hat{a}_0, \ldots, \hat{a}_n)$ in \mathbb{C}^{n+1} , such that $r(a_0, \ldots, a_n)$ is always a root of $a_0 + a_1 z + \cdots + a_n z^n$, and $r(\hat{a}_0, \ldots, \hat{a}_n) = \hat{z}$.

Problem 19 Let p be an odd prime. If the congruence $x^2 \equiv -1 \pmod{p}$ has a solution, show that $p \equiv 1 \pmod{4}$.

Problem 20 Determine all solutions to the following infinite system of linear equations in the infinitely many unknowns x_1, x_2, \ldots :

How many free parameters are required?