Preliminary Exam - Summer 1979

Problem 1 Prove that the matrix

(0)	5	1	0
5	0	5	0
1	5	0	5
$\int 0$	0	5	0/

has two positive and two negative eigenvalues (counting multiplicities).

Problem 2 Let **F** be a subfield of a field **K**. Let *p* and *q* be polynomials over **F**. Prove that their greatest common divisor in the ring of polynomials over **F** is the same as their gcd in the ring of polynomials over **K**.

Problem 3 Let X be the space of orthogonal real $n \times n$ matrices. Let $v_0 \in \mathbb{R}^n$. Locate and describe the elements of X, where the map

$$f: X \to \mathbb{R}, \qquad f(A) = \langle v_0, Av_0 \rangle$$

takes its maximum and minimum values.

Problem 4 Prove that the group of automorphisms of a cyclic group of prime order p is cyclic and find its order.

- **Problem 5** 1. Give an example of a differentiable function $f : \mathbb{R} \to \mathbb{R}$ whose derivative f' is not continuous.
 - 2. Let f be as in Part 1. If f'(0) < 2 < f'(1), prove that f'(x) = 2 for some $x \in [0, 1]$.

Problem 6 Let $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a complex polynomial of degree n > 0. Prove

$$\frac{1}{2\pi i} \int_{|z|=R} z^{n-1} |f(z)|^2 \, dz = a_0 \overline{a}_n R^{2n}.$$

Problem 7 Let f be a continuous complex valued function on [0, 1], and define the function g by

$$g(z) = \int_0^1 f(t)e^{tz} dt \qquad (z \in \mathbb{C}).$$

Prove that g is analytic in the entire complex plane.

Problem 8 Let $U \subset \mathbb{R}^n$ be an open set. Suppose that the maph $: U \to \mathbb{R}^n$ is a homeomorphism from U onto \mathbb{R}^n , which is uniformly continuous. Prove $U = \mathbb{R}^n$.

Problem 9 Prove that a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ has

- 1. a one-dimensional invariant subspace, and
- 2. a two-dimensional invariant subspace.

Problem 10 Find all pairs of C^{∞} functions x(t) and y(t) on \mathbb{R} satisfying

$$x'(t) = 2x(t) - y(t), \qquad y'(t) = x(t).$$

Problem 11 Let A and B be $n \times n$ matrices over a field **F** such that $A^2 = A$ and $B^2 = B$. Suppose that A and B have the same rank. Prove that A and B are similar.

Problem 12 Which rational numbers t are such that

$$3t^3 + 10t^2 - 3t$$

is an integer?

Problem 13 Let \mathbf{F} be a finite field with q elements and let V be an n-dimensional vector space over \mathbf{F} .

- 1. Determine the number of elements in V.
- 2. Let $GL_n(\mathbf{F})$ denote the group of all $n \times n$ nonsingular matrices over \mathbf{F} . Determine the order of $GL_n(\mathbf{F})$.
- 3. Let $SL_n(\mathbf{F})$ denote the subgroup of $GL_n(\mathbf{F})$ consisting of matrices with determinant 1. Find the order of $SL_n(\mathbf{F})$.

Problem 14 Let A, B, and C be finite abelian groups such that $A \times B$ and $A \times C$ are isomorphic. Prove that B and C are isomorphic.

Problem 15 Show that

$$\sum_{n=0}^{\infty} \frac{z}{\left(1+z^2\right)^n}$$

converges for all complex numbers z exterior to the lemniscate

$$|1+z^2| = 1.$$

Problem 16 Let $g_n(z)$ be an entire function having only real zeros, $n = 1, 2, \ldots$ Suppose

$$\lim_{n \to \infty} g_n(z) = g(z)$$

uniformly on compact sets in \mathbb{C} , with g not identically zero. Prove that g(z) has only real zeros.

Problem 17 Let $f : \mathbb{R}^3 \to \mathbb{R}$ be such that

$$f^{-1}(0) = \{ v \in \mathbb{R}^3 \mid ||v|| = 1 \}.$$

Suppose f has continuous partial derivatives of orders ≤ 2 . Is there a $p \in \mathbb{R}^3$ with $||p|| \leq 1$ such that

$$\frac{\partial^2 f}{\partial x^2}(p) + \frac{\partial^2 f}{\partial y^2}(p) + \frac{\partial^2 f}{\partial z^2}(p) \ge 0 ?$$

Problem 18 Let E be a three-dimensional vector space over \mathbb{Q} . Suppose $T: E \to E$ is a linear transformation and Tx = y, Ty = z, Tz = x + y, for certain $x, y, z \in E$, $x \neq 0$. Prove that x, y, and z are linearly independent.

Problem 19 Let $\{f_n\}$ be a sequence of continuous real functions defined [0,1] such that

$$\int_0^1 \left(f_n(y)\right)^2 \, dy \leqslant 5$$

for all n. Define $g_n: [0,1] \to \mathbb{R}$ by

$$g_n(x) = \int_0^1 \sqrt{x+y} f_n(y) \, dy.$$

- 1. Find a constant $K \ge 0$ such that $|g_n(x)| \le K$ for all n.
- 2. Prove that a subsequence of the sequence $\{g_n\}$ converges uniformly.

Problem 20 Let $x : \mathbb{R} \to \mathbb{R}$ be a solution to the differential equation

5x'' + 10x' + 6x = 0.

Prove that the function $f : \mathbb{R} \to \mathbb{R}$,

$$f(t) = \frac{x(t)^2}{1 + x(t)^4}$$

attains a maximum value.