Preliminary Exam - Summer 1981

Problem 1 Let

$$y(h) = 1 - 2\sin^2(2\pi h), \quad f(y) = \frac{2}{1 + \sqrt{1 - y}}$$

Justify the statement

$$f(y(h)) = 2 - 4\sqrt{2\pi} |h| + O(h^2)$$

where

$$\limsup_{h \to 0} \frac{O(h^2)}{h^2} < \infty.$$

Problem 2 Let G be a finite group, and let φ be an automorphism of G which leaves fixed only the identity element of G.

- 1. Show that every element of G may be written in the form $g^{-1}\varphi(g)$.
- 2. If φ has order 2 (i.e., $\varphi \cdot \varphi = id$) show that φ is given by the formula $g \mapsto g^{-1}$ and that G is an abelian group whose order is odd.

Problem 3 Prove or disprove: The set \mathbb{Q} of rational numbers is the intersection of a countable family of open subsets of \mathbb{R} .

Problem 4 Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, with

$$\int_{-\infty}^{\infty} |f(x)| \, dx < \infty.$$

Show that there is a sequence (x_n) such that $x_n \to \infty$, $x_n f(x_n) \to 0$, and $x_n f(-x_n) \to 0$ as $n \to \infty$.

Problem 5 Let S denote the vector space of real $n \times n$ skew-symmetric matrices. For a nonsingular matrix A, compute the determinant of the linear map $T_A: S \to S, T_A(X) = AXA^t$.

Problem 6 Let SO(3) denote the group of orthogonal transformations of \mathbb{R}^3 of determinant 1. Let $Q \subset SO(3)$ be the subset of symmetric transformations $\neq I$. Let P^2 denote the space of lines through the origin in \mathbb{R}^3 .

- 1. Show that P^2 and $S\mathbb{O}(3)$ are compact metric spaces (in their usual topologies).
- 2. Show that P^2 and Q are homeomorphic.

Problem 7 Compute

$$\frac{1}{2\pi i} \int_C \frac{dz}{\sin\frac{1}{z}},$$

where C is the circle $|z| = \frac{1}{5}$, positively oriented.

Problem 8 Show that $x^{10} + x^9 + x^8 + \cdots + x + 1$ is irreducible over \mathbb{Q} . How about $x^{11} + x^{10} + \cdots + x + 1$?

Problem 9 Let $f : \mathbb{R} \to \mathbb{R}$ be the function of period 2π such that $f(x) = x^3$ for $-\pi \leq x < \pi$.

- 1. Prove that the Fourier series for f has the form $\sum_{n=1}^{\infty} b_n \sin nx$ and write an integral formula for b_n (do not evaluate it).
- 2. Prove that the Fourier series converges for all x.
- 3. Prove

$$\sum_{n=1}^{\infty} b_n^2 = \frac{2\pi^6}{7}$$

Problem 10 Let S be a vector space of complex sequences $\{a_n\}_{n=1}^{\infty}$. Define the map $T: S \to S$ by $T\{a_1, a_2, a_3, \ldots\} = \{a_2, a_3, \ldots\}$.

- 1. Describe the eigenvectors of T.
- 2. Consider the difference equation $x_{n+2} = x_{n+1} + x_n$. Show that the solutions of this equation define a two-dimensional subspace $E \subset S$ and that $T(E) \subset E$. Find an explicit basis for E.
- 3. The Fibonacci numbers are defined recursively by $f_1 = 1$, $f_2 = 1$, and $f_{n+2} = f_{n+1} + f_n$ for $n \ge 1$. Find and explicit formula for f_n .

Note: See also Problem ??.

Problem 11 Show that the equation

$$x\left(1+\log\left(\frac{1}{\varepsilon\sqrt{x}}\right)\right) = 1, \quad x > 0, \quad \varepsilon > 0,$$

has, for each sufficiently small $\varepsilon > 0$, exactly two solutions. Let $x(\varepsilon)$ be the smaller one. Show that

- 1. $x(\varepsilon) \to 0 \text{ as } \varepsilon \to 0+;$
- yet for any s > 0,
- 2. $\varepsilon^{-s}x(\varepsilon) \to \infty \text{ as } \varepsilon \to 0+.$

Problem 12 Show that no commutative ring with identity has additive group isomorphic to \mathbb{Q}/\mathbb{Z} .

Problem 13 Let G be an additive group, and $u, v : G \to G$ homomorphisms. Show that the map $f : G \to G$, f(x) = x - v(u(x)) is surjective if the map $h : G \to G$, h(x) = x - u(v(x)) is surjective.

Problem 14 Let $I \subset \mathbb{R}$ be the open interval from 0 to 1.Let $f : I \to \mathbb{C}$ be C^1 (i.e., the real and imaginary parts are continuously differentiable). Suppose that $f(t) \to 0$, $f'(t) \to C \neq 0$ as $t \to 0+$. Show that the function g(t) = |f(t)| is C^1 for sufficiently small t > 0 and that $\lim_{t\to 0+} g'(t)$ exists, and evaluate the limit.

Problem 15 Let V be a finite-dimensional vector space over the rationals \mathbb{Q} and let M be an automorphism of V such that M fixes no nonzero vector in V. Suppose that M^p is the identity map on V, where p is a prime number. Show that the dimension of V is divisible by p - 1.

Problem 16 Let $\{f_n\}$ be a sequence of continuous functions defined from $[0,1] \to \mathbb{R}$ such that

$$\int_0^1 \left(f_n(x) - f_m(x) \right)^2 \, dx \to 0 \ as \ n, m \to \infty.$$

Let $K: [0,1] \times [0,1] \to \mathbb{R}$ be continuous. Define $g_n: [0,1] \to \mathbb{R}$ by

$$g_n(x) = \int_0^1 K(x, y) f_n(y) \, dy$$

Prove that the sequence $\{g_n\}$ converges uniformly.

Problem 17 Suppose that f(z) and g(z) are entire functions such that $|f(z)| \leq |g(z)|$ for all z. Show that f(z) = cg(z) for some constant $c \in \mathbb{C}$.

Problem 18 Let A and B be square matrices of rational numbers such that $CAC^{-1} = B$ for some real matrix C. Prove that such a C can be chosen to have rational entries.

Problem 19 Prove that the number of roots of the equation $z^{2n} + \alpha^2 z^{2n-1} + \beta^2 = 0$ (*n* a natural number, α and β real, nonzero) that have positive real part is

- 1. n if n is even, and
- 2. n-1 if n is odd.

Problem 20 Let y = y(x) be a solution of the differential equation y'' = -|y|with $-\infty < x < \infty$, y(0) = 1, and y'(0) = 0.

- 1. Show that y is an even function.
- 2. Show that y has exactly one zero on the positive real axis.