Preliminary Exam - Summer 1982

Problem 1 Determine the Jordan Canonical Form of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{pmatrix}.$$

Problem 2 Compute the integral

$$\int_0^\infty \frac{x^{50}}{x^{100}+1} \, dx \, .$$

Problem 3 Let K be a nonempty compact set in a metric space with distance function d. Suppose that $\varphi: K \to K$ satisfies

$$d(\varphi(x),\varphi(y)) < d(x,y)$$

for all $x \neq y$ in K. Show there exists precisely one point $x \in K$ such that $x = \varphi(x)$.

Problem 4 Let G be a group with generators a and b satisfying

$$a^{-1}b^2a = b^3, \qquad b^{-1}a^2b = a^3$$

Is G trivial?

Problem 5 Let $0 < a_0 \leq a_1 \leq \cdots \leq a_n$. Prove that the equation

$$a_0 z^n + a_1 z^{n-1} + \dots + a_n = 0$$

has no roots in the disc |z| < 1.

Problem 6 Suppose f is a differentiable real valued function such that f'(x) > f(x) for all $x \in \mathbb{R}$ and f(0) = 0. Prove that f(x) > 0 for all positive x.

Problem 7 Let V be the vector space of all real 3×3 matrices and let A be the diagonal matrix

(1)	0	0	
0	2	0 .	
$\setminus 0$	0	1/	

Calculate the determinant of the linear transformation T on V defined by $T(X) = \frac{1}{2}(AX + XA)$.

Problem 8 Let n be a positive integer.

1. Show that the binomial coefficient

$$c_n = \binom{2n}{n}$$

is even.

2. Prove that c_n is divisible by 4 if and only if n is not a power of 2.

Problem 9 Determine the complex numbers z for which the power series

$$\sum_{n=1}^{\infty} \frac{z^n}{n^{\log n}}$$

and its term by term derivatives of all orders converge absolutely.

Problem 10 For complex numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$, prove

$$\limsup_{n} \left| \sum_{j=1}^{k} \alpha_{j}^{n} \right|^{1/n} = \sup_{j} |\alpha_{j}|.$$

Note: See also Problem ??.

Problem 11 Let s(y) and t(y) be real differentiable functions of $y, -\infty < y < \infty$, such that the complex function

$$f(x+iy) = e^x \left(s(y) + it(y) \right)$$

is complex analytic with s(0) = 1 and t(0) = 0. Determine s(y) and t(y).

Problem 12 Determine (with proofs) which of the following polynomials are irreducible over the field \mathbb{Q} of rationals.

- 1. $x^2 + 3$
- 2. $x^2 169$
- 3. $x^3 + x^2 + x + 1$
- 4. $x^3 + 2x^2 + 3x + 4$.

Problem 13 Let $f : [0, \pi] \to \mathbb{R}$ be continuous and such that

$$\int_0^\pi f(x)\sin nx\,dx = 0$$

for all integers $n \ge 1$. Is f identically 0?

Problem 14 Let A be a real $n \times n$ matrix such that $\langle Ax, x \rangle \ge 0$ for every real n-vector x. Show that Au = 0 if and only if $A^t u = 0$.

Problem 15 Let f(z) be analytic on the open unit disc $\mathbb{D}=\{z||z|<1\}$. Prove that there is a sequence (z_n) in \mathbb{D} such that $|z_n| \to 1$ and $(f(z_n))$ is bounded.

Problem 16 A square matrix A is nilpotent if $A^k = 0$ for some positive integer k.

- 1. If A and B are nilpotent, is A + B nilpotent? Proof or counterexample.
- 2. Prove: If A is nilpotent, then I A is invertible.

Problem 17 Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ and assume that 0 is a regular value of f (*i.e.*, the differential of f has rank 2 at each point of $f^{-1}(0)$). Prove that $\mathbb{R}^3 \setminus f^{-1}(0)$ is arcwise connected.

Problem 18 Let *E* be the set of all continuous real valued functions $u : [0,1] \rightarrow \mathbb{R}$ satisfying

$$|u(x) - u(y)| \le |x - y|, \quad 0 \le x, y \le 1, \quad u(0) = 0.$$

Let $\varphi: E \to \mathbb{R}$ be defined by

$$\varphi(u) = \int_0^1 \left(u(x)^2 - u(x) \right) \, dx \, .$$

Show that φ achieves its maximum value at some element of E.

Problem 19 Let V be a finite-dimensional vector space over the rationals \mathbb{Q} and let M be an automorphism of V such that M fixes no nonzero vector in V. Suppose that M^p is the identity map on V, where p is a prime number. Show that the dimension of V is divisible by p - 1.

Problem 20 Let $M_{2\times 2}$ be the four-dimensional vector space of all 2×2 real matrices and define $f: M_{2\times 2} \to M_{2\times 2}$ by $f(X) = X^2$.

1. Show that f has a local inverse near the point

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

2. Show that f does not have a local inverse near the point

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$