Preliminary Exam - Summer 1984

Problem 1 Show that if a subgroup H of a group G has just one left coset different from itself, then it is a normal subgroup of G.

Problem 2 Let \mathbb{Z} be the ring of integers and $\mathbb{Z}[x]$ the polynomial ring over \mathbb{Z} . Show that

$$x^6 + 539x^5 - 511x + 847$$

is irreducible in $\mathbb{Z}[x]$.

Problem 3 Let $f : \mathbb{R}^m \to \mathbb{R}^n$, $n \ge 2$, be a linear transformation of rank n-1. Let $f(v) = (f_1(v), f_2(v), \ldots, f_n(v))$ for $v \in \mathbb{R}^m$. Show that a necessary and sufficient condition for the system of inequalities $f_i(v) > 0$, $i = 1, \ldots, n$, to have no solution is that there exist real numbers $\lambda_i \ge 0$, not all zero, such that

$$\sum_{i=1}^{n} \lambda_i f_i = 0.$$

Problem 4 Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a real matrix with a, b, c, d > 0. Show that A has an eigenvector

$$\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

with x, y > 0.

- **Problem 5** 1. Show that there is a unique analytic branch outside the unit circle of the function $f(z) = \sqrt{z^2 + z + 1}$ such that f(t) is positive when t > 1.
 - 2. Using the branch determined in Part 1, calculate the integral

$$\frac{1}{2\pi i} \int_{C_r} \frac{dz}{\sqrt{z^2 + z + 1}}$$

where C_r is the positively oriented circle |z| = r and r > 1.

Problem 6 Let $\rho > 0$. Show that for n large enough, all the zeros of

$$f_n(z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \dots + \frac{1}{n!z^n}$$

lie in the circle $|z| < \rho$.

Problem 7 Let $f : \mathbb{R} \to \mathbb{R}$ be C^1 and let

$$u = f(x)$$

$$v = -y + xf(x).$$

If $f'(x_0) \neq 0$, show that this transformation is locally invertible near (x_0, y_0) and the inverse has the form

$$\begin{aligned} x &= g(u) \\ y &= -v + ug(u). \end{aligned}$$

Problem 8 Let $\varphi(s)$ be a C^2 function on [1,2] with φ and φ' vanishing at s = 1, 2. Prove that there is a constant C > 0 such that for any $\lambda > 1$,

$$\left| \int_{1}^{2} e^{i\lambda x} \varphi(x) \, dx \right| \leqslant \frac{C}{\lambda^{2}} \cdot$$

Problem 9 Consider the solution curve (x(t), y(t)) to the equations

$$\frac{dx}{dt} = 1 + \frac{1}{2}x^2 \sin y$$
$$\frac{dy}{dt} = 3 - x^2$$

with initial conditions x(0) = 0 and y(0) = 0. Prove that the solution must cross the line x = 1 in the xy plane by the time t = 2.

Problem 10 Let $C^{1/3}$ be the set of real valued functions f on the closed interval [0, 1] such that

- 1. f(0) = 0;
- 2. ||f|| is finite, where by definition

$$||f|| = \sup\left\{\frac{|f(x) - f(y)|}{|x - y|^{1/3}} \mid x \neq y\right\}.$$

Verify that $\|\cdot\|$ is a norm for the space $C^{1/3}$, and prove that $C^{1/3}$ is complete with respect to this norm.

Problem 11 Let S_n denote the group of permutations of n objects. Find four different subgroups of S_4 isomorphic to S_3 and nine isomorphic to S_2 .

Problem 12 Let \mathbf{F}_q be a finite field with q elements and let V be an n-dimensional vector space over \mathbf{F}_q .

- 1. Determine the number of elements in V.
- 2. Let $GL_n(\mathbf{F}_q)$ denote the group of all $n \times n$ nonsingular matrices A over \mathbf{F}_q . Determine the order of $GL_n(\mathbf{F}_q)$.
- 3. Let $SL_n(\mathbf{F}_q)$ denote the subgroup of $GL_n(\mathbf{F}_q)$ consisting of matrices with determinant 1. Find the order of $SL_n(\mathbf{F}_q)$.

Problem 13 Let A be a 2×2 matrix over \mathbb{C} which is not a scalar multiple of the identity matrix I. Show that any 2×2 matrix X over \mathbb{C} commuting with A has the form $X = \alpha I + \beta A$, where $\alpha, \beta \in \mathbb{C}$.

Problem 14 Suppose V is an n-dimensional vector space over the field \mathbf{F} . Let $W \subset V$ be a subspace of dimension r < n. Show that

 $W = \bigcap \{U \mid U \text{ is an } (n-1) - dimensional \ subspace \ of \ V \ and \ W \subset U \}.$

Problem 15 Let \mathbb{Z}_3 be the field of integers mod 3 and $\mathbb{Z}_3[x]$ the corresponding polynomial ring. Decompose $x^3 + x + 2$ into irreducible factors in $\mathbb{Z}_3[x]$.

Problem 16 Let p(z) be a nonconstant polynomial with real coefficients such that for some real number a, $p(a) \neq 0$ but p'(a) = p''(a) = 0. Prove that the equation p(z) = 0 has a nonreal root.

Problem 17 Suppose

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

has radius of convergence R > 0. Show that

$$h(z) = \sum_{n=0}^{\infty} \frac{a_n z^n}{n!}$$

is entire and that for 0 < r < R, there is a constant M such that

$$|h(z)| \leqslant M e^{|z|/r}.$$

Problem 18 Show there is a unique continuous real valued function $f : [0,1] \rightarrow \mathbb{R}$ such that

$$f(x) = \sin x + \int_0^1 \frac{f(y)}{e^{x+y+1}} \, dy.$$

Problem 19 Let x(t) be the solution of the differential equation

$$x''(t) + 8x'(t) + 25x(t) = 2\cos t$$

with initial conditions x(0) = 0 and x'(0) = 0. Show that for suitable constants α and δ ,

$$\lim_{t \to \infty} \left(x(t) - \alpha \cos(t - \delta) \right) = 0.$$

Problem 20 Evaluate

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 4x + 20} \, dx \, .$$