Preliminary Exam - Summer 1985

Problem 1 1. Show that a real 2×2 matrix A satisfies $A^2 = -I$ if and only if

$$A = \begin{pmatrix} \pm \sqrt{pq-1} & -p \\ q & \mp \sqrt{pq-1} \end{pmatrix}$$

where p and q are real numbers such that $pq \ge 1$ and both upper or both lower signs should be chosen in the double signs.

2. Show that there is no real 2×2 matrix A such that

$$A^2 = \begin{pmatrix} -1 & 0\\ 0 & -1 - \varepsilon \end{pmatrix}$$

with $\varepsilon > 0$.

Problem 2 1. For $0 \leq \theta \leq \frac{\pi}{2}$, show that

$$\sin\theta \geqslant \frac{2}{\pi}\theta$$

2. By using Part 1, or by any other method, show that if $\lambda < 1$, then

$$\lim_{R \to \infty} R^{\lambda} \int_0^{\frac{\pi}{2}} e^{-R\sin\theta} \, d\theta = 0.$$

Problem 3 Let A be a nonsingular real $n \times n$ matrix. Prove that there exists a unique orthogonal matrix Q and a unique positive definite symmetric matrix B such that A = QB.

Problem 4 Let G be a group of order 120, let H be a subgroup of order 24, and assume that there is at least one left coset of H (other than H itself) which is equal to some right coset of H. Prove that H is a normal subgroup of G.

Problem 5 By the Fundamental Theorem of Algebra, the polynomial $x^3 + 2x^2 + 7x + 1$ has three complex roots, α_1 , α_2 , and α_3 . Compute $\alpha_1^3 + \alpha_2^3 + \alpha_3^3$.

Problem 6 Evaluate the integral

$$\int_0^\infty \frac{x^{a-1}}{x+1} \, dx$$

where a is a complex number. What restrictions must be put on a?

Problem 7 Let

$$f(x) = e^{x^2/2} \int_x^\infty e^{-t^2/2} \, dt$$

for x > 0.

1. Show that
$$0 < f(x) < \frac{1}{x}$$
.

2. Show that f(x) is strictly decreasing for x > 0.

Problem 8 Let f be a real valued continuous function on a compact interval [a, b]. Given $\varepsilon > 0$, show that there is a polynomial p such that p(a) = f(a), p'(a) = 0, and $|p(x) - f(x)| < \varepsilon$ for $x \in [a, b]$.

Problem 9 Let u(x), $0 \leq x \leq 1$, be a real valued C^2 function which satisfies the differential equation

$$u''(x) = e^x u(x).$$

- 1. Show that if $0 < x_0 < 1$, then u cannot have a positive local maximum at x_0 . Similarly, show that u cannot have a negative local minimum at x_0 .
- 2. Now suppose that u(0) = u(1) = 0. Prove that $u(x) \equiv 0, 0 \leq x \leq 1$.

Problem 10 Prove that for each $\lambda > 1$ the equation $z = \lambda - e^{-z}$ in the half-plane $\Re z \ge 0$ has exactly one root, and that this root is real.

- **Problem 11** 1. Let G be a cyclic group, and let $a, b \in G$ be elements which are not squares. Prove that ab is a square.
 - 2. Give an example to show that this result is false if the group is not cyclic.

Problem 12 Let A be an $n \times n$ real matrix and A^t its transpose. Show that A^tA and A^t have the same range.

Problem 13 Let P(z) be a polynomial of degree $\langle k$ with complex coefficients. Let $\omega_1, \ldots, \omega_k$ be the k^{th} roots of unity in \mathbb{C} . Prove that

$$\frac{1}{k}\sum_{i=1}^{k}P(\omega_i)=P(0).$$

Problem 14 Let $M_n(\mathbf{F})$ denote the ring of $n \times n$ matrices over a field \mathbf{F} . For $n \ge 1$, does there exist a ring homomorphism from $M_{n+1}(\mathbf{F})$ onto $M_n(\mathbf{F})$?

Problem 15 For each k > 0, let X_k be the set of analytic functions f(z) on the open unit disc \mathbb{D} such that

$$\sup_{z \in \mathbb{D}} \left\{ (1 - |z|)^k \left| f(z) \right| \right\}$$

is finite. Show that $f \in X_k$ if and only if $f' \in X_{k+1}$.

Problem 16 A function $f : [0,1] \to \mathbb{R}$ is said to be upper semicontinuous if given $x \in [0,1]$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that if $|y-x| < \delta$, then $f(y) < f(x) + \varepsilon$. Prove that an upper semicontinuous function f on [0,1] is bounded above and attains its maximum value at some point $p \in [0,1]$.

Problem 17 Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

where all the a_n are nonnegative reals, and the series has radius of convergence 1. Prove that f(z) cannot be analytically continued to a function analytic in a neighborhood of z = 1.

Problem 18 Solve the differential equations

$$\frac{dy_1}{dx} = -3y_1 + 10y_2,$$
$$\frac{dy_2}{dx} = -3y_1 + 8y_2.$$

Problem 19 Let $A_1 \ge A_2 \ge \cdots \ge A_k \ge 0$. Evaluate

$$\lim_{n \to \infty} \left(A_1^n + A_2^n + \dots + A_k^n \right)^{1/n}$$

Note: See also Problem ??.

Problem 20 Let \mathbf{F} be a field of characteristic p > 0, $p \neq 3$. If α is a zero of the polynomial $f(x) = x^p - x + 3$ in an extension field of \mathbf{F} , show that f(x) has p distinct zeros in the field $\mathbf{F}(\alpha)$.