Homework problems given by Prof. J. Tate in a course on Algebra 250(a) at Harvard in the Fall of 1985.

October 22, 1985

- (1) Suppose f(X) is irreducible and G_f is abelian. Prove that the order of G_f is the degree of f.
- (2) Suppose K/F is a finite Galois extension. Let G = Gal(K/F).
 - (a) Suppose G acts transitively on a set I. Show that there exists a family $(\alpha_i)_{i \in I}$ of elements of K such that $\sigma(\alpha_i) = \alpha_{\sigma i}$ for all $\sigma \in G$.
 - (b) Let n be an integer ≥ 0 and suppose $h: G \hookrightarrow S_n$ is an injective group homomorphism. Show that if F has at least n elements, then there is a polynomial $f(X) \in F[X]$ with distinct roots such that K is a splitting field for f over F and such that $G_f = h(G) \subset \mathcal{S}_n$.
- (3) Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be "variables" and

$$f(X) = \prod_{i=1}^{n} (X - \alpha_i) = X^n - a_1 X^{n-1} + \dots$$

Put :

$$\beta = \sum_{\pi \in \mathcal{A}_n} \alpha_{\pi(2)} \alpha_{\pi(3)}^2 \dots \alpha_{\pi(n)}^{n-1}, \text{ and } \gamma = \sum_{\pi \in \mathcal{S}_n \setminus \mathcal{A}_n} \alpha_{\pi(2)} \alpha_{\pi(3)}^2 \dots \alpha_{\pi(n)}^{n-1}.$$

- (a) Show that $(\beta \gamma)^2 = d_f$ (the discriminant of f).
- (b) Let $b = \beta + \gamma$ and $c = \beta \gamma$. How do you know b and c are in $\mathbb{Z}[a_1, a_2, \dots]$.
- (c) For n = 2 and 3, give b and c explicitly as elements of $\mathbb{Z}[a_1, a_2]$, and of $\mathbb{Z}[a_1, a_2, a_3]$ (Recall : $f(X) = X^n a_1 X^{n-1} + a_2 X^{n-2} \dots$).
- (d) Now drop the assumption that the α_i are "variables". Let F be a field, $a_i \in$ $F, 1 \leq i \leq n$, and suppose $d_f \neq 0$. Let K be a splitting field for f over F, i.e., $K = F(\alpha_1, \ldots, \alpha_n)$ and $G = \operatorname{Gal}(K/F)$. Show that the fixed field of $G_f \cap \mathcal{A}_n$ is the splitting field of the quadratic polynomial $X^2 - bX + c$, regardless of the characteristic.
- (e) $\overline{\text{Let } F} = \mathbb{F}_2(t), t \text{ transcendental. Find } G_f \text{ in the following cases :}$ (i) $f(X) = X^3 + tX + 1;$ (ii) $f(X) = X^3 + t^3X + t^2;$

 - (iii) $f(X) = X^3 + t^2 X + (t+1);$
- (f) Show that if the $a_i \in \mathbb{Z}$, then $d_f \equiv 0$ or 1 (mod 4) (just express d_f in terms of b and c).

(4) Let

$$f(X) = X^4 - a_1 X^3 + a_2 X^2 - a_3 X + a_4 = \prod_{i=1}^4 (X - \alpha_i)$$

with $a_i \in F$, F a field, $\alpha_i \in K = F(\alpha_1, \ldots, \alpha_4)$, the splitting field. Put

$$\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4, \beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4, \beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3,$$

and let :

$$g(X) = (X - \beta_1)(X - \beta_2)(X - \beta_3)$$

= $X^3 - a_2 X^2 + (a_1 a_3 - 4a_4)X + (a_1^2 a_4 + a_3^2 - 4a_2 a_4)$

be the "cubic resolvent" of f. Prove that $d_f = d_g$ (discriminants). Suppose $d_f \neq 0$, and char $F \neq 2$ when necessary. Assume also that f(X) has no root in F.

(a) Show that f has a quadratic factor in F[X] if and only if, for some i,

$$\beta_i \in F$$
 and both $a_1^2 - 4a_2 + 4\beta_i$ and $\beta_i^2 - 4a_4$ are squares in F .

(b) $G_f = \mathcal{S}_4 \iff g$ has no root in F and d_f not a square in F; $G_f = \mathcal{A}_4 \iff g$ has no root in F and d_f is a square in F.

Suppose from now on, that f is irreducible in F[X] and g has a root, say β_1 , in F.

- (c) Show that G_f is a group of order a power of 2, so is contained in a 2-Sylow subgroup of \mathcal{S}_4 .
- (d) Show $G_f = V \stackrel{\text{defn}}{=} \{(1), (12)(34), (13)(24), (14)(23)\}$ if and only if g has three roots in f, if and only if d_f is a square in F.
- (e) Suppose G_f has exactly one root in F. Show that G_f is cyclic of order 4, or is dihedral of order 8, and give a criterion to decide which.
- (f) Find G_f 's for the following five quartic f's :

(i)
$$x^4 + x^3 + x^2 + x + 1;$$

(ii) $x^4 + x + 1;$
(iii) $x^4 + 2;$
(iv) $x^4 + 8x + 12;$
(v) $x^4 - 2x^2 + 9.$

October 29, 1985

- (1) Let $f(X) \in \mathbb{Z}[X]$ be an irreducible quintic. We have seen in class that its group, G_f , has order 120, 60, 20, 10 or 5, being isomorphic to S_5 , \mathcal{A}_5 , or to the group of permutations of \mathbb{F}_5 of the form $x \mapsto ax + b$ for $b \in \mathbb{F}_5$ and for $a \in \mathbb{F}_5^{\times}$, or $a = \pm 1$, or a = 1. For i = 0, 1, 2, 3, 5, let \mathcal{P}_i denote the set of prime numbers p such that the congruence $f(X) \equiv 0 \mod p$ has exactly i incongruent solutions mod p. Assuming the Tschebotaroff density theorem, make a table giving, for each of the five possible G_f 's, the density of \mathcal{P}_i in that case. For example, the density of \mathcal{P}_5 is $\frac{1}{120}, \frac{1}{60}, \frac{1}{20}, \frac{1}{10}$ or $\frac{1}{5}$, i.e., is $|G_f|^{-1}$ in each case.
- (2) Consider the polynomials $A(X) = X^5 X^3 2X^2 2X 1$, $B(X) = X^5 X + 3$, $C(X) = X^5 + X^4 - 4X^3 - 3X^2 + 3X + 1$, $D(X) = X^5 - 5$, $E(X) = X^5 + 10X^3 - 10X^2 + 35X - 18$. Each of these five is irreducible. Their discriminants are : $d_A = 47^2$, $d_B = 252869$ (prime), $d_C = 11^4$, $d_D = 5^9$, $d_E = 2^65^811^{12}$. The following is a table, produced in about 25 hours of running time by my Macintosh, giving for each polynomial the number of primes in \mathcal{P}_i (cf. Problem 1) among the first 360 primes. (Thus, the sum of each row is 360).

	0 roots	1 root	2 roots	3 roots	5 roots
A	147	180	0	$1 \leftarrow p = 47$	32
B	143	131	58	27	1
C	288	$1 \ (p = 11)$	0	0	71
D	78	272	0	0	0
E	142	88	128	0	2

The primes among the first 360 which are in \mathcal{P}_5 , i.e., for which f(X) splits in \mathbb{F}_p are in each case as follows :

A: p = 83, 191, 197, 269, 439, 487, 523, 619, 761, 823, 907, 947,

977, 1193, 1277, 1319, 1447, 1481, 1499, 1579, 1693, 1709, 1741, 1811, 1861, 1867, 2053, 2213, 2221, 2273, 2339, 2351.

- B: just p = 1609.
- C: all primes $p \equiv \pm 1 \pmod{11}$, i.e., $p = 23, 43, 67, 89, \dots$, 2287, 2309, 2311, 2333, 2377, 2399.
- D: p = 31, 191, 251, 271, 601, 641, 761, 1091, 1861, 2381.
- E: just p = 2063 and 2213.

Armed with all this information (you don't really need much of it), and using the simple form of D(X), determine the groups G_B, G_E and G_D . What are the only possibilities for G_A and G_C ? Which of these possibilities do you guess is the correct one?

- (3) Guess what the splitting field of G_C is. Try to prove your guess by guessing the element α in that field whose minimal polynomial is C(X).
- (4) To prove your guess for G_A is not so easy without a clue. To show it by brute force, let α be a root of A(X) and check that in $\mathbb{Z}[\alpha][X]$, we have :

$$A(X) = (X - \alpha)(X^2 - c_1X + c_2)(X^2 - d_1X + d_2),$$

where

$$c_1 = 2\alpha^4 - \alpha^3 - 2\alpha^2 - 3\alpha - 2, d_1 = -2\alpha^4 + \alpha^3 + 2\alpha^2 + 2\alpha + 2, \\ c_2 = -\alpha^4 + \alpha^3 + \alpha^2 + \alpha, d_2 = -\alpha^4 + \alpha^3 + 2\alpha + 1.$$

Please don't hand in your verification of this. But answer the following : What is the quadratic field contained in the splitting field of A(X)?

November 5, 1985

- (1) Let $F \subset K$ be finite fields. Prove that $N_{K/F} : K^{\times} \to F^{\times}$ is surjective.
- (2) Let F be the fraction field of an integral domain A. Prove that A is integrally closed (in F) \iff A has the following property : if f(X) and $g(X) \in F[X]$ are monic and $f(X) \cdot g(X) \in A[X]$, then f(X) and $g(X) \in A[X]$.
- (3) Let $F = \mathbb{Q}(i)$ and $K = F(2^{\frac{1}{4}}, i^{\frac{1}{4}})$, where $2^{\frac{1}{4}}$ is the positive fourth root of 2 and $i^{\frac{1}{4}} = e^{\frac{2\pi i}{16}}$. Determine $\operatorname{Gal}(K/F)$. Is K/\mathbb{Q} Galois, and if so, what is its Galois group?
- (4) (a) A ring of the form $\mathbb{Z}[\alpha]$ has at most two homomorphisms into \mathbb{F}_2 . Why?
 - (b) Let A be the integral closure of \mathbb{Z} in the field $\mathbb{Q}(\sqrt{-7}, \sqrt{17})$. Find a \mathbb{Z} -base for A (cf. class discussion on October 31).
 - (c) Show that A has four distinct homomorphisms into \mathbb{F}_2 (and consequently there does not exist $\alpha \in A$ such that $A = \mathbb{Z}[\alpha]$).
- (5) Find three integers a, b, c such that $\mathbb{Q}(e^{\frac{2\pi i}{4}}) = \mathbb{Q}(\sqrt{a}, \sqrt{b}, \sqrt{c}).$
- (6) (a) Prove that \mathbb{R} has no non-trivial automorphism (hint : show that an automorphism of \mathbb{R} is order-preserving automatically).
 - (b) Show that the only automorphisms of \mathbb{C} which commute with complex conjugation are the identity and complex conjugation.
- (7) Let $\alpha = (2 + \sqrt{2})(3 + \sqrt{3}) = -\sqrt{6}(1 + \sqrt{2})(1 + \sqrt{3})$ and let $\theta = \sqrt{-\alpha} = i\sqrt{\alpha}$. Show $\mathbb{Q}(\theta)/\mathbb{Q}$ is Galois of degree 8. Determine the structure of $G = \text{Gal}(\mathbb{Q}(\theta)/\mathbb{Q})$, and explain why $\mathbb{Q}(\theta)$ is not the splitting field of any polynomial of degree < 8.
- (8) Suppose $[F : \mathbb{Q}]$ is odd. Prove that -1 is not a sum of squares of elements of F.
- (9) Suppose F is a field of characteristic p > 0. The map $x \mapsto x^p x$ is a homomorphism of the additive group of F into itself with kernel \mathbb{F}_p . Suppose $a \in F$ is not in the image, i.e., suppose the polynomial $f(X) = X^p X a$ has no root in F. Show that the splitting field of f(X) is cyclic of degree p over F.

November 12, 1985

- (1) Let e be an idempotent $(e^2 = e)$ in a local ring A (a ring with a unique maximal ideal). Show that e = 0 or 1.
- (2) Suppose A is integrally closed in its fraction field F. Prove that the same is true for A[X] (polynomial ring). (Suggestion : F[X] is integrally closed, being a PID).
- (3) (a) Show that an order B in a quadratic extension of \mathbb{Q} is of the form $B = \mathbb{Z}[\alpha] = \mathbb{Z} + \mathbb{Z}\alpha$, where α is a root of an irreducible monic quadratic polynomial $f(X) = X^2 + rX + s \in \mathbb{Z}[X]$.
 - (b) For each such polynomial f, let $d_f = r^2 4s$ and $B_f = \mathbb{Z}[\alpha] = \mathbb{Z}[\alpha, \beta]$ where α and β are the complex (or real) roots of f. Let g be another irreducible monic quadratic polynomial in $\mathbb{Z}[X]$. Show

$$B_g \subset B_f \iff d_f \square d_g,$$

where $a \equiv b$ means by definition that $b = m^2 a$, for some $m \in \mathbb{Z}$, and when that is the case, show that the additive group B_f/B_g is *cyclic* of order m, where $d_g = m^2 d_f$.

- (c) Thus, $B_g = B_f \iff d_f = d_g$. Show that the integers d which occur as discriminants of quadaratic orders, i.e., the integers d of the form d_f for some f as above, are those $d \equiv 0$ or 1 (mod 4) such that d is not a perfect square.
- (d) Show that B_f is integrally closed if and only if

 $d \equiv d_f, d \equiv 0 \text{ or } 1 \mod 4 \Rightarrow d = d_f,$

and then the other orders in $\mathbb{Q}(B_f)$ are the B_q 's such that $d_f \square d_q$.

(e) Suppose f and g are as in (d), say $d_g = m^2 d_f$. Show for each prime number p such that $p \mid d_g$ that there is a unique prime ideal P of B_g such that $p \in P$, and that $B_g = P + \mathbb{Z}$, i.e., $B_g/P \cong \mathbb{F}_p$. Show $P^2 = pB_g$ if $p \nmid m$, $P^2 = pP$ if $p \mid m$.

November 19, 1985

(1) Let k be a field, $\mathbb{M}_2(k)$ the ring of 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $a, b, c, d \in k$, and let A be the subring of all such matrices with c = 0. The maps $\varphi_1 : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto a$ and $\varphi_2 : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto d$ are homomorphisms of A onto k. Let $P_j = \operatorname{Ker} \varphi_j$ for j = 1, 2.

Since $\dim_k A = 3 < \infty$, A is of finite length as a left A-module.

- (a) Show that A/P_1 and A/P_2 are the only simple A-modules (up to isomorphism).
- (b) Compute P_1^2 , P_1P_2 , P_2P_1 , P_2^2 and $P_1 \cap P_2$. Are these the only two sided ideals of A (besides (0) and A)? What are the left ideals?
- (c) What are the multiplicities of A/P_1 and A/P_2 in the left A-module A?
- (d) Show that A is not isomorphic to the direct product of two non-zero rings.
- (2) Consider the cubic polynomials :

$f_1(X) = X^3 + X^2 + 7X - 8,$	$f_2(X) = X^3 - 8X + 15$
$\equiv (X-6)(X+5)(X+2) \pmod{13}$	$\equiv (X+4)(X+6)(X+7) \pmod{17}$
and is irreducible mod 17, 19 and 29	irred. mod 13, 29, 29
$f_3(X) = X^3 + X^2 - 7X + 12$	$f_4(X) = X^3 + 10X + 1$
$\equiv (X-8)(X+8)(X+1) \pmod{19}$	$\equiv (X-2)(X-3)(X-5) \pmod{29}$
irred. mod 13, 17, 29	irred. mod 13, 17, 19

Each of the four polynomials has discriminant -4027, a prime. Nevertheless, the fields $\mathbb{Q}(\alpha_i)$, α_i a root of $f_i(X)$, are pairwise non-isomorphic. Why?

- (3) Suppose f(X) is a monic cubic with coefficients in a finite field k, and suppose the discriminant of f is not a square in k. Prove that f(X) is the product of a linear polynomial and an irreducible quadratic polynomial in k[X]. Now explain why we didn't give congruences mod p = 2, 3, 5, 7, 11 and 23 in problem 2 (there is an arrow to the 'Why?' question of problem 2).
- (4) Let k be a field (\mathbb{C} or \mathbb{R} if you wish) and let f(X, Y) be an irreducible polynomial in two variables over k, i.e., a prime element in the U. F. D. k[X, Y]. Let A = k[X, Y]/(f). Then A is Noetherian (Tate writes 'noetherian'), and the nonzero prime ideals of A are maximal. Can you show this? Anyway, taking that for granted, let $(x_0, y_0) \in k \times k$ be a point on the curve f(X, Y) = 0, i.e., be such that $f(x_0, y_0) = 0$, and let P be the corresponding maximal ideal of A, consisting of the polynomials p(X, Y) such that $p(x_0, y_0) = 0$, modulo (f). Prove that P is an invertible ideal in A if and only if the point (x_0, y_0) is a "non-singular" point of the curve, in the sense that not both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ vanish at (x_0, y_0) . (Suggestion : Note that the translation $(X, Y) \mapsto (X - x_0, Y - y_0)$, which

is an automorphism of k[X, Y], allows you to assume $(x_0, y_0) = (0, 0)$ without loss of generality).

(5) Let a and b be positive integers such that ab is square free > 1, and let $E = \mathbb{Q}(\sqrt[3]{ab^2})$. Let $\alpha = \sqrt[3]{ab^2}$, and $\beta = \sqrt[3]{a^2b} = ab/\alpha$. Show that if $a^2 \not\equiv b^2 \pmod{9}$, then the integral closure of \mathbb{Z} in E is $\mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\beta$, and the discriminant of the field E is $-27a^2b^2$. What if $a^2 \equiv b^2 \pmod{9}$?

$$X^7 - 7X + 3$$

(I) Suppose $f(X) \in \mathbb{Z}[X]$ is monic irreducible of degree 7, has a square discriminant, and has exactly three real roots. Prove that G_f is isomorphic either to \mathcal{A}_7 or to the group $G_{168} = \operatorname{GL}(3, \mathbb{F}_2) \approx \operatorname{PSL}(2, \mathbb{F}_7)$. Note that G_{168} is isomorphic to a subgroup of \mathcal{S}_7 , in fact of \mathcal{A}_7 , via the action of $G_{168} = \operatorname{GL}_3(\mathbb{F}_2)$ on the 7 non-zero vectors in \mathbb{F}_2^3 .

(By considering Sylow subgroups, especially the ones for 7, this can be done from scratch without too much trouble. But it is even easier if you know that the only non-abelian simple groups of order < 1000 are \mathcal{A}_5 of order $60 = 2^2 \cdot 3 \cdot 5$, G_{168} of order $168 = 2^3 \cdot 3 \cdot 7$, \mathcal{A}_6 of order $360 = 2^3 \cdot 3^2 \cdot 5$, $PSL(2, \mathbb{F}_8)$ of order $504 = 2^3 \cdot 3^2 \cdot 7$, $PSL(2, \mathbb{F}_{11})$ of order $660 = 2^2 \cdot 3 \cdot 5 \cdot 11$).

(II) Let $f(X) = X^7 - 7X + 3$ (shown me by Mr. Elkies). It is easy to check that f(X) satisfies the conditions of (I). For example, $d_f = 3^8 \cdot 7^8$. Moreover, out of the first 360 primes :

$$p = 2, 3, 5, 7, \dots, 2423$$
 :

- f(X) has no root (mod p) for 104 p's;
- f(X) has 1 root (mod p) for 214 p's;
- f(X) has 3 roots (mod p) for 41 p's;
- f(X) has 7 roots (mod p) for 1 p (namely p = 1879);

Is $G_f = G_{168}$, or \mathcal{A}_7 ?

Newton Formulas, Discriminant

$$f(X) = X^n - a_1 X^{n-1} + a_2 X^{n-2} - \dots + (-1)^n a_n = (X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n).$$

Here $a_{\nu} = \sum_{i_1 < i_2 < \dots < i_{\nu}} \alpha_{i_1} \alpha_{i_2} \dots \alpha_{i_{\nu}}.$ Put $S_{\nu} = \sum_i \alpha_i^{\nu}.$

Then :

$$S_{1} - a_{1} = 0.$$

$$S_{2} - a_{1}S_{1} + 2a_{2} = 0.$$

$$S_{3} - a_{1}S_{2} + a_{2}S_{1} - 3a_{3} = 0.$$
...
$$S_{n} - a_{1}S_{n-1} + \dots \pm a_{n}S_{0} = 0.$$
...
$$S_{m} - a_{1}S_{m-1} + \dots \pm a_{n}S_{m-n} = 0, m \ge n.$$

Proof. Write :

$$\prod_{i=1}^{n} (1 - \alpha_i t) = 1 - a_1 t + a_2 t^2 - \dots = \sum_{\nu \ge 0} (-1)^{\nu} a_{\nu} t^{\nu}.$$

Take the logarithmic derivative formally :

$$\sum_{i} \frac{-\alpha_{i}}{1-\alpha_{i}t} = -\sum_{i,\nu} \alpha_{i}^{\nu+1}t^{\nu} = -\sum_{\nu} S_{\nu+1}t^{\nu} = \frac{-a_{1}+2a_{2}t-3a_{3}t^{2}+\dots}{1-a_{1}t+a_{2}t^{2}-a_{3}t^{3}+\dots},$$

cross-multiply and compare coefficients of t^{ν} .

Solving for S_n we get for $n \leq 4$:

$$S_4 = a_1^4 - 4a_1^2a_2 + 2a_2^2 + 4a_1a_3 - 4a_4.$$

$$S_3 = a_1^3 - 3a_1a_2 + 3a_3.$$

$$S_2 = a_1^2 - 2a_2.$$

$$S_1 = a_1.$$

$$S_0 = n.$$

10

Further, the discriminant d_f of f(X) is

$$= d_{f} = \prod_{i < j} (\alpha_{i} - \alpha_{j})^{2} = (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j} (\alpha_{i} - \alpha_{j}) = (-1)^{\frac{n(n-1)}{2}} \prod_{j} f'(\alpha_{j})$$

$$= \det^{2} \begin{bmatrix} 1 & \alpha_{1} & \alpha_{1}^{2} & \dots & \alpha_{1}^{n-1} \\ 1 & \alpha_{2} & \alpha_{2}^{2} & \dots & \alpha_{2}^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \alpha_{n} & \alpha_{n}^{2} & \dots & \alpha_{n}^{n-1} \end{bmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & \dots & \alpha_{1}^{n-1} \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \dots & \alpha_{n} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \dots & \alpha_{n}^{2} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{1}^{n-1} & \alpha_{2}^{n-1} & \alpha_{3}^{n-1} & \dots & \alpha_{n}^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 1 & \alpha_{1} & \alpha_{1}^{2} & \dots & \alpha_{1}^{n-1} \\ 1 & \alpha_{2} & \alpha_{2}^{2} & \dots & \alpha_{2}^{n-1} \\ 1 & \alpha_{3} & \alpha_{3}^{2} & \dots & \alpha_{3}^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_{n} & \alpha_{n}^{2} & \dots & \alpha_{n}^{n-1} \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{bmatrix} S_{0} & S_{1} & S_{2} & \dots & S_{n-1} \\ S_{1} & S_{2} & S_{3} & \dots & S_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{n-1} & S_{n} & S_{n+1} & \dots & S_{2n-2} \end{bmatrix}$$

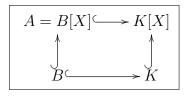
This last can also be written :

$$d_f = (-1)^{\frac{n(n-1)}{2}} R(f, f'),$$

where R is the *resultant*; cf. Lang page 211 (Ch V, §10). **Example :** For $f(X) = X^n + pX + q$, we have $(-1)^{\frac{n(n-1)}{2}} d_f = n^n q^{n-1} + (1-n)^{n-1} p^n$, as can be seen by writing $-\alpha_j f'(\alpha_j) = nq - (1-n)p\alpha_j$ and multiplying over j.

Examples of prime ideals

- (1) Let A be a u.f.d. (unique factorization domain, e.g., $A = \mathbb{Z}[x_1, \ldots, x_n]$ or $A = K[x_1, \ldots, x_n]$, K a field) and let π be a prime element in A. Show :
 - (a) The principal ideal πA is a prime ideal.
 - (b) Every nonzero prime ideal contains one of the form πA .
 - (c) The ideals of the form πA are the minimal elements in the set of nonzero prime ideals, ordered by inclusion, and they are the only nonzero principal prime ideals.
- (2) Let A be a p.i.d. (principal ideal domain, e.g., $A = \mathbb{Z}$ or A = K[X], K a field). Then the ideals of the form πA are maximal, and are the only non-zero prime ideals of A.
- (3) Let B be an integral domain with field of fractions K. Let A = B[X] and let P be a prime ideal of A; then $P \cap B$ is a prime ideal in B.



- (a) If $P \cap B = (0)$, show :
 - (i) PK = P(K[X]) is a prime ideal in AK = K[X].
 - (ii) $P = PK \cap A$.
 - (iii) If B is a u.f.d., then either P = (0), or P = f(X)A, where f(X) is a polynomial with coefficients in B, these coefficients having "no" common divisor (i.e., none except units in B), and f(X) being irreducible in K[X]. Moreover f is determined by P up to a unit (invertible element) of B.
- (b) If $P \cap B = M$, a maximal ideal of B, then, making the identification $A/MA = B[X]/MB[X] \approx (B/M)[X] = k[X]$, where k = B/M, we see that P/MA is a prime ideal in k[X]. Hence show : either P = MA, or P = MA + g(x)A, where g(X) is a polynomial with coefficients in B such that the polynomial $\overline{g}(X)$ which we obtain by reducing the coefficients of $g \pmod{M}$ is an irreducible polynomial in k[X]. Moreover g is determined by P up to multiplication by an element of B not in M and addition of a polynomial whose coefficients are in M.
- (4) Apply (3) to the case where B is a p.i.d., and show that the prime ideals P of A are of the following distinct types :

(I) P = (0).

- (II) P = f(X)A, where f is as in 3.a.iii.
- (III) $P = \pi A$, π a prime element of B.
- (IV) $P = \pi^* A + g(X)$, π^* a prime element of B, and g as in 3b, with $M = \pi B$.

The ideals of type IV are maximal and are not principal. The ideals of type IV which contain a given πA of type III are those for which $\pi^* \sim \pi$, i.e., $\pi^* B = \pi B$.

The ideals of type IV which contain a given f(X)A of type II are those for which $\overline{g}(X)$ divides $\overline{f}(X)$ in k[X], where $k = B/\pi^*B$ and where \overline{g} and \overline{f} denote the polynomials obtained from g and f by reducing their coefficients (mod π^*); hence no ideal of type II is maximal *unless* B has only a finite number of maximal ideals, say $\pi_1 B, \pi_2 B, \ldots, \pi_m B$, in which case, the ideals of type II generated by f(X) of the form $f(X) = 1 + \pi_1 \pi_2 \ldots \pi_m Xh(X)$, with $h(X) \in B(X)$ are maximal (because for every π_i we have $\overline{f} = f(\mod \pi_i) - 1!$

- (5) If C is the field of complex numbers (or any algebraically closed field), apply (4) to B = C[Y] to show that the prime ideals P in the ring A = C[X, Y] are of three distinct types :
 - (I) P = (0).
- (II) and (III) P = f(X, Y)A where f(X, Y) is an irreducible polynomial in two variables with complex coefficients, uniquely determined by P up to a nonzero constant factor.
 - (IV) $P = (X x_0)A + (Y y_0)A$, where x_0 and y_0 are complex numbers uniquely determined by P.

The only maximal ideals are those of type IV, and the ideals of type IV containing a given f(X, Y)A are those for which $f(x_0, y_0) = 0$.

- (6) Let $A = \mathbb{C}[X, Y, Z]$. What are the minimal non-zero prime ideals of A? Try to prove that the only maximal ideals of A are those of the form $(X - x_0, Y - y_0, Z - z_0)$ (special case of Hilbert's Nullstellensatz). The prime ideals of A which are neither maximal nor minimal nonzero are harder to describe. One such is P = (X, Y). But not all of them can be generated by two elements. For example, let $\varphi : A \to \mathbb{C}[T]$ be the homomorphism defined by $\varphi(f(X, Y, Z)) = f(T^3, T^4, T^5)$, and let P be the kernel of φ . Try to show that P is generated by the three elements $Y^2 - XZ, X^3 - YZ, Z^2 - X^2Y$, but on the other hand, P cannot be generated by two elements.
- (7) Let M be a maximal ideal in a ring B and let $A = B/M^n$ for some integer n > 0. Show that the only prime ideal of A is M/M^n . Examples: $A = \mathbb{Z}/1024\mathbb{Z}, A = \mathbb{C}[X]/X^n\mathbb{C}[X]$.
- (8) Let \overline{A} be the ring of power series $c_0 + c_1 z + c_2 z^2 + \ldots$ with complex coefficients c_i which have a nonzero radius of convergence (ring of germs of analytic functions at the origin z = 0 in the complex z-plane). Discuss the prime ideals in A. Do the same for the ring of formal power series A = K[[z]] in one variable z over any field.
- (9) Let E be a compact Hausdorff topological space. Let A be the ring of all continuous real valued functions on E. For each $x \in E$, let M(x) be the maximal ideal of A consisting of the functions $f \in A$ such that f(x) = 0 (i.e., M(x) =Kernel of the homomorphism $f \rightsquigarrow f(x)$). Prove that the map $x \rightsquigarrow M(x)$ is a homeomorphism of E onto the maximal ideal spectrum of A. (You may use the well-known lemma which states that, given two disjoint closed subsets of E (in particular two distinct points of E), there exists a continuous real valued function on E taking the value 0 on one of the sets and the value 1 on the other - if you

don't like too much abstraction, take E to be the closed interval [0, 1] on the real line.) (Hint : the only hard part is to show that every maximal ideal \mathcal{M} of A is of the form M(x) for some $x \in E$. To do this, suppose the contrary. Then for every $x \in E$ there exists a function $f_x \in \mathcal{M}$, but with $f_x(x) \neq 0$. Show that if you replace f_x by $g_x f_x$ with a suitable g_x , you can assume $f_x \in \mathcal{M}$, and $f_x(y) = 1$ for all yin some neighborhood U_x of x. Now these U_x cover E, so already a finite number $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$ cover E etc.).