
Homework problems given by Prof. J. Tate in a course on Algebra 250(a) at
Harvard in the Fall of 1985.

October 22, 1985

(1) Suppose f(X) is irreducible and Gf is abelian. Prove that the order of Gf is the
degree of f .

(2) Suppose K/F is a finite Galois extension. Let G = Gal(K/F ).
(a) Suppose G acts transitively on a set I. Show that there exists a family (αi)i∈I

of elements of K such that σ(αi) = ασi for all σ ∈ G.
(b) Let n be an integer ≥ 0 and suppose h : G ↪→ Sn is an injective group homo-

morphism. Show that if F has at least n elements, then there is a polynomial
f(X) ∈ F [X] with distinct roots such that K is a splitting field for f over F
and such that Gf = h(G) ⊂ Sn.

(3) Let α1, α2, . . . , αn be “variables” and

f(X) =
n∏
i=1

(X − αi) = Xn − a1Xn−1 + . . .

Put :

β =
∑
π∈An

απ(2)α
2
π(3) . . . α

n−1
π(n), and γ =

∑
π∈Sn\An

απ(2)α
2
π(3) . . . α

n−1
π(n).

(a) Show that (β − γ)2 = df (the discriminant of f).
(b) Let b = β + γ and c = βγ. How do you know b and c are in Z[a1, a2, . . . ].
(c) For n = 2 and 3, give b and c explicitly as elements of Z[a1, a2], and of

Z[a1, a2, a3] (Recall : f(X) = Xn − a1Xn−1 + a2X
n−2 − . . . ).

(d) Now drop the assumption that the αi are “variables”. Let F be a field, ai ∈
F , 1 ≤ i ≤ n, and suppose df 6= 0. Let K be a splitting field for f over
F , i.e., K = F (α1, . . . , αn) and G = Gal(K/F ). Show that the fixed field
of Gf ∩ An is the splitting field of the quadratic polynomial X2 − bX + c,
regardless of the characteristic.

(e) Let F = F2(t), t transcendental. Find Gf in the following cases :
(i) f(X) = X3 + tX + 1;

(ii) f(X) = X3 + t3X + t2;
(iii) f(X) = X3 + t2X + (t+ 1);

(f) Show that if the ai ∈ Z, then df ≡ 0 or 1 (mod 4) (just express df in terms of
b and c).

(4) Let

f(X) = X4 − a1X3 + a2X
2 − a3X + a4 =

4∏
i=1

(X − αi)

1
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with ai ∈ F , F a field, αi ∈ K = F (α1, . . . , α4), the splitting field. Put

β1 = α1α2 + α3α4, β2 = α1α3 + α2α4, β3 = α1α4 + α2α3,

and let :

g(X) = (X − β1)(X − β2)(X − β3)
= X3 − a2X2 + (a1a3 − 4a4)X + (a21a4 + a23 − 4a2a4)

be the “cubic resolvent” of f . Prove that df = dg (discriminants). Suppose df 6= 0,
and charF 6= 2 when necessary. Assume also that f(X) has no root in F .
(a) Show that f has a quadratic factor in F [X] if and only if, for some i,

βi ∈ F and both a21 − 4a2 + 4βi and β2
i − 4a4 are squares in F .

(b) Gf = S4 ⇐⇒ g has no root in F and df not a square in F ; Gf = A4 ⇐⇒ g
has no root in F and df is a square in F .

Suppose from now on, that f is irreducible in F [X] and g has a root, say β1, in F .

(c) Show that Gf is a group of order a power of 2, so is contained in a 2-Sylow
subgroup of S4.

(d) Show Gf = V
defn
= {(1), (12)(34), (13)(24), (14)(23)} if and only if g has three

roots in f , if and only if df is a square in F .
(e) Suppose Gf has exactly one root in F . Show that Gf is cyclic of order 4, or is

dihedral of order 8, and give a criterion to decide which.
(f) Find Gf ’s for the following five quartic f ’s :

(i) x4 + x3 + x2 + x+ 1;
(ii) x4 + x+ 1;

(iii) x4 + 2;
(iv) x4 + 8x+ 12;
(v) x4 − 2x2 + 9.
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October 29, 1985

(1) Let f(X) ∈ Z[X] be an irreducible quintic. We have seen in class that its group,
Gf , has order 120, 60, 20, 10 or 5, being isomorphic to S5, A5, or to the group of
permutations of F5 of the form x 7→ ax+ b for b ∈ F5 and for a ∈ F×5 , or a = ±1, or
a = 1. For i = 0, 1, 2, 3, 5, let Pi denote the set of prime numbers p such that the
congruence f(X) ≡ 0modp has exactly i incongruent solutions mod p. Assuming
the Tschebotaroff density theorem, make a table giving, for each of the five possible

Gf ’s, the density of Pi in that case. For example, the density of P5 is
1

120
,

1

60
,

1

20
,

1

10
or

1

5
, i.e., is |Gf |−1 in each case.

(2) Consider the polynomials A(X) = X5 −X3 − 2X2 − 2X − 1, B(X) = X5 −X + 3,
C(X) = X5 +X4 − 4X3 − 3X2 + 3X + 1, D(X) = X5 − 5, E(X) = X5 + 10X3 −
10X2 + 35X − 18. Each of these five is irreducible. Their discriminants are :
dA = 472, dB = 252869 (prime), dC = 114, dD = 59, dE = 26581112. The following is
a table, produced in about 25 hours of running time by my Macintosh, giving for
each polynomial the number of primes in Pi (cf. Problem 1) among the first 360
primes. (Thus, the sum of each row is 360).

0 roots 1 root 2 roots 3 roots 5 roots
A 147 180 0 1 ← p = 47 32
B 143 131 58 27 1
C 288 1 (p = 11) 0 0 71
D 78 272 0 0 0
E 142 88 128 0 2

The primes among the first 360 which are in P5, i.e., for which f(X) splits in Fp
are in each case as follows :

A : p = 83, 191, 197, 269, 439, 487, 523, 619, 761, 823, 907, 947,
977, 1193, 1277, 1319, 1447, 1481, 1499, 1579, 1693, 1709, 1741,
1811, 1861, 1867, 2053, 2213, 2221, 2273, 2339, 2351.

B : just p = 1609.
C : all primes p ≡ ±1( mod 11), i.e., p = 23, 43, 67, 89, . . . ,

2287, 2309, 2311, 2333, 2377, 2399.
D : p = 31, 191, 251, 271, 601, 641, 761, 1091, 1861, 2381.
E : just p = 2063 and 2213.

Armed with all this information (you don’t really need much of it), and using the
simple form of D(X), determine the groups GB, GE and GD. What are the only
possibilities for GA and GC? Which of these possibilities do you guess is the correct
one?
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(3) Guess what the splitting field of GC is. Try to prove your guess by guessing the
element α in that field whose minimal polynomial is C(X).

(4) To prove your guess for GA is not so easy without a clue. To show it by brute force,
let α be a root of A(X) and check that in Z[α][X], we have :

A(X) = (X − α)(X2 − c1X + c2)(X
2 − d1X + d2),

where

c1 = 2α4 − α3 − 2α2 − 3α− 2, d1 = −2α4 + α3 + 2α2 + 2α + 2,

c2 = −α4 + α3 + α2 + α, d2 = −α4 + α3 + 2α + 1.

Please don’t hand in your verification of this. But answer the following : What is
the quadratic field contained in the splitting field of A(X)?
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November 5, 1985

(1) Let F ⊂ K be finite fields. Prove that NK/F : K× → F× is surjective.
(2) Let F be the fraction field of an integral domain A. Prove that A is integrally closed

(in F ) ⇐⇒ A has the following property : if f(X) and g(X) ∈ F [X] are monic
and f(X) · g(X) ∈ A[X], then f(X) and g(X) ∈ A[X].

(3) Let F = Q(i) and K = F (2
1
4 , i

1
4 ), where 2

1
4 is the positive fourth root of 2 and

i
1
4 = e

2πi
16 . Determine Gal(K/F ). Is K/Q Galois, and if so, what is its Galois

group?
(4) (a) A ring of the form Z[α] has at most two homomorphisms into F2. Why?

(b) Let A be the integral closure of Z in the field Q(
√
−7,
√

17). Find a Z-base for
A (cf. class discussion on October 31).

(c) Show that A has four distinct homomorphisms into F2 (and consequently there
does not exist α ∈ A such that A = Z[α]).

(5) Find three integers a, b, c such that Q(e
2πi
4 ) = Q(

√
a,
√
b,
√
c).

(6) (a) Prove that R has no non-trivial automorphism (hint : show that an automor-
phism of R is order-preserving automatically).

(b) Show that the only automorphisms of C which commute with complex conju-
gation are the identity and complex conjugation.

(7) Let α = (2 +
√

2)(3 +
√

3) = −
√

6(1 +
√

2)(1 +
√

3) and let θ =
√
−α = i

√
α. Show

Q(θ)/Q is Galois of degree 8. Determine the structure of G = Gal(Q(θ)/Q), and
explain why Q(θ) is not the splitting field of any polynomial of degree < 8.

(8) Suppose [F : Q] is odd. Prove that −1 is not a sum of squares of elements of F .
(9) Suppose F is a field of characteristic p > 0. The map x 7→ xp−x is a homomorphism

of the additive group of F into itself with kernel Fp. Suppose a ∈ F is not in the
image, i.e., suppose the polynomial f(X) = Xp − X − a has no root in F . Show
that the splitting field of f(X) is cyclic of degree p over F .
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November 12, 1985

(1) Let e be an idempotent (e2 = e) in a local ring A (a ring with a unique maximal
ideal). Show that e = 0 or 1.

(2) Suppose A is integrally closed in its fraction field F . Prove that the same is true
for A[X] (polynomial ring). (Suggestion : F [X] is integrally closed, being a PID).

(3) (a) Show that an order B in a quadratic extension of Q is of the form B = Z[α] =
Z+Zα, where α is a root of an irreducible monic quadratic polynomial f(X) =
X2 + rX + s ∈ Z[X].

(b) For each such polynomial f , let df = r2− 4s and Bf = Z[α] = Z[α, β] where α
and β are the complex (or real) roots of f . Let g be another irreducible monic
quadratic polynomial in Z[X]. Show

Bg ⊂ Bf ⇐⇒ df � dg,

where a� b means by definition that b = m2a, for some m ∈ Z, and when that
is the case, show that the additive group Bf/Bg is cyclic of order m, where
dg = m2df .

(c) Thus, Bg = Bf ⇐⇒ df = dg. Show that the integers d which occur as
discriminants of quadaratic orders, i.e., the integers d of the form df for some
f as above, are those d ≡ 0 or 1 (mod 4) such that d is not a perfect square.

(d) Show that Bf is integrally closed if and only if

d� df , d ≡ 0 or 1 mod 4⇒ d = df ,

and then the other orders in Q(Bf ) are the Bg’s such that df � dg.
(e) Suppose f and g are as in (d), say dg = m2df . Show for each prime number p

such that p | dg that there is a unique prime ideal P of Bg such that p ∈ P ,
and that Bg = P + Z, i.e., Bg/P ∼= Fp. Show P 2 = pBg if p - m, P 2 = pP if
p | m.
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November 19, 1985

(1) Let k be a field, M2(k) the ring of 2× 2 matrices

[
a b
c d

]
with a, b, c, d ∈ k, and let

A be the subring of all such matrices with c = 0. The maps ϕ1 :

[
a b
c d

]
7→ a and

ϕ2 :

[
a b
c d

]
7→ d are homomorphisms of A onto k. Let Pj = Kerϕj for j = 1, 2.

Since dimk A = 3 <∞, A is of finite length as a left A-module.
(a) Show that A/P1 and A/P2 are the only simple A-modules (up to isomorphism).
(b) Compute P 2

1 , P1P2, P2P1, P
2
2 and P1 ∩ P2. Are these the only two sided ideals

of A (besides (0) and A)? What are the left ideals?
(c) What are the multiplicities of A/P1 and A/P2 in the left A-module A?
(d) Show that A is not isomorphic to the direct product of two non-zero rings.

(2) Consider the cubic polynomials :

f1(X) = X3 +X2 + 7X − 8, f2(X) = X3 − 8X + 15
≡ (X − 6)(X + 5)(X + 2) (mod 13) ≡ (X + 4)(X + 6)(X + 7) (mod 17)
and is irreducible mod 17, 19 and 29 irred. mod 13, 29, 29

f3(X) = X3 +X2 − 7X + 12 f4(X) = X3 + 10X + 1
≡ (X − 8)(X + 8)(X + 1) (mod 19) ≡ (X − 2)(X − 3)(X − 5) (mod 29)

irred. mod 13, 17, 29 irred. mod 13, 17, 19

Each of the four polynomials has discriminant −4027, a prime. Nevertheless, the
fields Q(αi), αi a root of fi(X), are pairwise non-isomorphic. Why?

(3) Suppose f(X) is a monic cubic with coefficients in a finite field k, and suppose the
discriminant of f is not a square in k. Prove that f(X) is the product of a linear
polynomial and an irreducible quadratic polynomial in k[X]. Now explain why we
didn’t give congruences mod p = 2, 3, 5, 7, 11 and 23 in problem 2 (there is an arrow
to the ‘Why?’ question of problem 2).

(4) Let k be a field (C or R if you wish) and let f(X, Y ) be an irreducible polynomial
in two variables over k, i.e., a prime element in the U. F. D. k[X, Y ]. Let A =
k[X, Y ]/(f). Then A is Noetherian (Tate writes ‘noetherian’), and the nonzero
prime ideals of A are maximal. Can you show this? Anyway, taking that for
granted, let (x0, y0) ∈ k × k be a point on the curve f(X, Y ) = 0, i.e., be such
that f(x0, y0) = 0, and let P be the corresponding maximal ideal of A, consisting
of the polynomials p(X, Y ) such that p(x0, y0) = 0, modulo (f). Prove that P is
an invertible ideal in A if and only if the point (x0, y0) is a “non-singular” point
of the curve, in the sense that not both partial derivatives ∂f

∂x
and ∂f

∂y
vanish at

(x0, y0). (Suggestion : Note that the translation (X, Y ) 7→ (X − x0, Y − y0), which
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is an automorphism of k[X, Y ], allows you to assume (x0, y0) = (0, 0) without loss
of generality).

(5) Let a and b be positive integers such that ab is square free > 1, and let E = Q(
3
√
ab2).

Let α =
3
√
ab2, and β =

3
√
a2b = ab/α. Show that if a2 6≡ b2 (mod 9), then the

integral closure of Z in E is Z + Zα + Zβ, and the discriminant of the field E is
−27a2b2. What if a2 ≡ b2(mod 9)?
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X7 − 7X + 3

(I) Suppose f(X) ∈ Z[X] is monic irreducible of degree 7, has a square discriminant,
and has exactly three real roots. Prove that Gf is isomorphic either to A7 or to the
group G168 = GL(3,F2) ≈ PSL(2,F7). Note that G168 is isomorphic to a subgroup
of S7, in fact of A7, via the action of G168 = GL3(F2) on the 7 non-zero vectors in
F3
2.

(By considering Sylow subgroups, especially the ones for 7, this can be done from
scratch without too much trouble. But it is even easier if you know that the only
non-abelian simple groups of order < 1000 are A5 of order 60 = 22 · 3 · 5, G168 of
order 168 = 23 ·3 ·7, A6 of order 360 = 23 ·32 ·5, PSL(2,F8) of order 504 = 23 ·32 ·7,
PSL(2,F11) of order 660 = 22 · 3 · 5 · 11).

(II) Let f(X) = X7 − 7X + 3 (shown me by Mr. Elkies). It is easy to check that f(X)
satisfies the conditions of (I). For example, df = 38 · 78. Moreover, out of the first
360 primes :

p = 2, 3, 5, 7, . . . , 2423 :

• f(X) has no root (mod p) for 104 p’s;
• f(X) has 1 root (mod p) for 214 p’s;
• f(X) has 3 roots (mod p) for 41 p’s;
• f(X) has 7 roots (mod p) for 1 p (namely p = 1879);

Is Gf = G168, or A7?
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Newton Formulas, Discriminant

f(X) = Xn − a1Xn−1 + a2X
n−2 − · · ·+ (−1)nan = (X − α1)(X − α2) . . . (X − αn).

Here aν =
∑

i1<i2<···<iν

αi1αi2 . . . αiν . Put Sν =
∑
i

ανi .

Then :

S1 − a1 = 0.
S2 − a1S1 + 2a2 = 0.
S3 − a1S2 + a2S1 − 3a3 = 0.
. . .
Sn − a1Sn−1 + · · · ± anS0 = 0.
. . .
Sm − a1Sm−1 + · · · ± anSm−n = 0,m ≥ n.

Proof. Write :

n∏
i=1

(1− αit) = 1− a1t+ a2t
2 − · · · =

∑
ν≥0

(−1)νaνt
ν .

Take the logarithmic derivative formally :

∑
i

−αi
1− αit

= −
∑
i,ν

αν+1
i tν = −

∑
ν

Sν+1t
ν =

−a1 + 2a2t− 3a3t
2 + . . .

1− a1t+ a2t2 − a3t3 + . . .
,

cross-multiply and compare coefficients of tν . �

Solving for Sn we get for n ≤ 4 :

S4 = a41 − 4a21a2 + 2a22 + 4a1a3 − 4a4.

S3 = a31 − 3a1a2 + 3a3.

S2 = a21 − 2a2.

S1 = a1.

S0 = n.
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Further, the discriminant df of f(X) is

= df =
∏
i<j

(αi − αj)2 = (−1)
n(n−1)

2

∏
i 6=j

(αi − αj) = (−1)
n(n−1)

2

∏
j

f ′(αj)

= det2


1 α1 α2

1 . . . αn−11

1 α2 α2
2 . . . αn−12

. . . . . . . . . . . . . . .
1 αn α2

n . . . αn−1n .



= det




1 1 1 . . . αn−11

α1 α2 α3 . . . αn
α2
1 α2

2 α2
3 . . . α2

n

. . . . . . . . . . . . . . .
αn−11 αn−12 αn−13 . . . αn−1n .

 ·


1 α1 α2
1 . . . αn−11

1 α2 α2
2 . . . αn−12

1 α3 α2
3 . . . αn−13

...
...

1 αn α2
n . . . αn−1n .




= det


S0 S1 S2 . . . Sn−1
S1 S2 S3 . . . Sn
...

...
...

...
Sn−1 Sn Sn+1 · · · S2n−2.

 .
This last can also be written :

df = (−1)
n(n−1)

2 R(f, f ′),

where R is the resultant; cf. Lang page 211 (Ch V, §10).

Example : For f(X) = Xn + pX + q, we have (−1)
n(n−1)

2 df = nnqn−1 + (1 − n)n−1pn, as
can be seen by writing −αjf ′(αj) = nq − (1− n)pαj and multiplying over j.
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Examples of prime ideals

(1) Let A be a u.f.d. (unique factorization domain, e.g., A = Z[x1, . . . , xn] or A =
K[x1, . . . , xn], K a field) and let π be a prime element in A. Show :
(a) The principal ideal πA is a prime ideal.
(b) Every nonzero prime ideal contains one of the form πA.
(c) The ideals of the form πA are the minimal elements in the set of nonzero prime

ideals, ordered by inclusion, and they are the only nonzero principal prime
ideals.

(2) Let A be a p.i.d. (principal ideal domain, e.g., A = Z or A = K[X], K a field).
Then the ideals of the form πA are maximal, and are the only non-zero prime ideals
of A.

(3) Let B be an integral domain with field of fractions K. Let A = B[X] and let P be
a prime ideal of A; then P ∩B is a prime ideal in B.

A = B[X] �
� // K[X]

B
?�

OO

� � // K
?�

OO

(a) If P ∩B = (0), show :
(i) PK = P (K[X]) is a prime ideal in AK = K[X].

(ii) P = PK ∩ A.
(iii) If B is a u.f.d., then either P = (0), or P = f(X)A, where f(X) is a

polynomial with coefficients in B, these coefficients having “no” common
divisor (i.e., none except units in B), and f(X) being irreducible in K[X].
Moreover f is determined by P up to a unit (invertible element) of B.

(b) If P ∩B = M , a maximal ideal of B, then, making the identification A/MA =
B[X]/MB[X] ≈ (B/M)[X] = k[X], where k = B/M , we see that P/MA is a
prime ideal in k[X]. Hence show : either P = MA, or P = MA+g(x)A, where
g(X) is a polynomial with coefficients in B such that the polynomial g(X)
which we obtain by reducing the coefficients of g (mod M) is an irreducible
polynomial in k[X]. Moreover g is determined by P up to multiplication by an
element of B not in M and addition of a polynomial whose coefficients are in
M .

(4) Apply (3) to the case where B is a p.i.d., and show that the prime ideals P of A
are of the following distinct types :
(I) P = (0).

(II) P = f(X)A, where f is as in 3.a.iii.
(III) P = πA, π a prime element of B.
(IV) P = π∗A+ g(X), π∗ a prime element of B, and g as in 3b, with M = πB.
The ideals of type IV are maximal and are not principal. The ideals of type IV
which contain a given πA of type III are those for which π∗ ∼ π, i.e., π∗B = πB.



13

The ideals of type IV which contain a given f(X)A of type II are those for which
g(X) divides f(X) in k[X], where k = B/π∗B and where g and f denote the
polynomials obtained from g and f by reducing their coeffients (mod π∗); hence no
ideal of type II is maximal unless B has only a finite number of maximal ideals, say
π1B, π2B, . . . , πmB, in which case, the ideals of type II generated by f(X) of the
form f(X) = 1 + π1π2 . . . πmXh(X), with h(X) ∈ B(X) are maximal (because for
every πi we have f̄ = f(mod πi)− 1!

(5) If C is the field of complex numbers (or any algebraically closed field), apply (4) to
B = C[Y ] to show that the prime ideals P in the ring A = C[X, Y ] are of three
distinct types :
(I) P = (0).

(II) and (III) P = f(X, Y )A where f(X, Y ) is an irreducible polynomial in two variables
with complex coefficients, uniquely determined by P up to a nonzero constant
factor.

(IV) P = (X − x0)A + (Y − y0)A, where x0 and y0 are complex numbers uniquely
determined by P .

The only maximal ideals are those of type IV, and the ideals of type IV containing
a given f(X, Y )A are those for which f(x0, y0) = 0.

(6) Let A = C[X, Y, Z]. What are the minimal non-zero prime ideals of A? Try to prove
that the only maximal ideals of A are those of the form (X − x0, Y − y0, Z − z0)
(special case of Hilbert’s Nullstellensatz). The prime ideals of A which are neither
maximal nor minimal nonzero are harder to describe. One such is P = (X, Y ). But
not all of them can be generated by two elements. For example, let ϕ : A → C[T ]
be the homomorphism defined by ϕ(f(X, Y, Z)) = f(T 3, T 4, T 5), and let P be the
kernel of ϕ. Try to show that P is generated by the three elements Y 2−XZ,X3−
Y Z,Z2 −X2Y , but on the other hand, P cannot be generated by two elements.

(7) Let M be a maximal ideal in a ring B and let A = B/Mn for some integer n > 0.
Show that the only prime ideal of A is M/Mn.
Examples: A = Z/1024Z, A = C[X]/XnC[X].

(8) Let A be the ring of power series c0 + c1z + c2z
2 + . . . with complex coefficients ci

which have a nonzero radius of convergence (ring of germs of analytic functions at
the origin z = 0 in the complex z-plane). Discuss the prime ideals in A. Do the
same for the ring of formal power series A = K[[z]] in one variable z over any field.

(9) Let E be a compact Hausdorff topological space. Let A be the ring of all con-
tinuous real valued functions on E. For each x ∈ E, let M(x) be the maximal
ideal of A consisting of the functions f ∈ A such that f(x) = 0 (i.e., M(x) =
Kernel of the homomorphism f  f(x)). Prove that the map x  M(x) is a
homeomorphism of E onto the maximal ideal spectrum of A. (You may use the
well-known lemma which states that, given two disjoint closed subsets of E (in
particular two distinct points of E), there exists a continuous real valued function
on E taking the value 0 on one of the sets and the value 1 on the other - if you
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don’t like too much abstraction, take E to be the closed interval [0, 1] on the real
line.) (Hint : the only hard part is to show that every maximal ideal M of A is of
the form M(x) for some x ∈ E. To do this, suppose the contrary. Then for every
x ∈ E there exists a function fx ∈M, but with fx(x) 6= 0. Show that if you replace
fx by gxfx with a suitable gx, you can assume fx ∈ M, and fx(y) = 1 for all y
in some neighborhood Ux of x. Now these Ux cover E, so already a finite number
Ux1 , Ux2 , . . . , Uxn cover E etc.).


