CONTENTS

Kari Eifler

Solutions to Texas A&M’s Real Analysis Qual Courses

Kari Eifler

August 29, 2019

These are the solutions to the majority of the available past real qualifying exams for Texas A&M.

Incomplete/non-existent solutions are marked in red. If you find any errors/typos or have solutions

to the unsolved questions, please email me at keifer@math.tamu.edul

Contents

(1

August 2019|

2

January 2019|

3

August 2018|

[4

January 2018|

B

August 2017

January 2017|

August 2016|

January 2016|

0

August 2015|

[10 January 2015|

10

17

25

32

40

46

53

59


mailto:keifler@math.tamu.edu

CONTENTS Kari Eifler

(11 August 2014| 65
(12 January 2014| 71
13 August 2013| 75
(14 January 2013| 81
15 August 2012 87
[16 January 2012 92

[T7 August 2011] 97




1

AUGUST 2019 Kari Eifler

1

August 2019

Problem 1. Let (X, M, pn) be a measure space and f a measurable non-negative function on X.
Define v : M — [0, 00] by

(a)

(b)

V(E) = /E fdu.

Prove that v is a measure

Proof. Indeed, it’s clear that v(E) = fE fdp > 0 for all E since f is assumed to be non-
negative. It’s equally clear that v(0) = [, fdu = 0.

We are only left to prove countable additivity. Take a countable collection {E;} of pairwise dis-
joint sets in M, so we see for finitely many

N N

N
fiu= [ Xy mddn=3" [xesdu=Y" [ fau=> v,
k=1

k=1"Er k=1

v (UszlEk) = /

N
Up—1 Lk

By the monotone convergence theorem (the finite sums of characteristic functions form an in-
creasing sequence that converges to the infinite sum pointwise), then v is countably additive.
Hence, v is a measure. O

Prove that g € L*(v) if and only if gf € L* (1) and in that case [y gdv = [ gfdp.

Proof. First we show that v < p. Indeed, if u(F) = 0 then choose an increasing sequence of
simple functions f,, such that f, — f. Then by monotone convergence theorem and the defini-
tion of integral for simple functions, we have

v(E) = /Efdu = /E(lim frn)du = lim/Efnd;L =0.

Then we may apply Radon-Nikodym theorem to see that f = Z—Z and see that ¢ € LY(v) if

and only if [, |gldv < oo which is equivalent to [ |g|fdp = [y |g|§—”1du < oo. Since f is

non-negative, this is equivalent to having [ + l9fldp < oo. Radon-Nikodym also tells us that
Jx gdv = [ gfdp. O

Problem 2. (a) State Fatou’s lemma

Proof. For f, € L™ then

/lim inf f,, <lim inf/fn

(b) State the dominated convergence theorem
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Proof. Let g, g, € LT be measurable, |f,| < g,, p-a.e., fn — f and g, — f p-a.e. with [ g, —
J g <oco. Then [ f, — [ f. Moreover, [ |f — f,| = 0. O

(c) Let fn,gn,hn, [,g,h be measurable functions on R™ satisfying fr, < gn < hn, fn — [ a.e.,

gn — g a.e., and h, = h a.e. Suppose moreover that f,h € L' and [ f, = [ f, [hn — [h.
Prove that g € L' and [ g, = [g.

Proof. here O

Problem 3. Let {A;}72 | be measurable subsets of a measure space and define By, to be the set of
all points which are contained in at least m of the sets {Ax}>,. Prove that B, is measurable and

p(Br) < 3 (AL,
k=1

Proof. Let C = {F C N| |F| = m} which is a countable infinite set. Then we may express
Bn=J A
FeCieF
Therefore, each B,, is measurable.

here O

Problem 4. Let E be a subset of R which is not Lebesque measurable. Prove that there exists an
1 > 0 such that for any two Lebesgue measurable sets A, B satisfying A C E C B one has A(B\A) >
1, where A denotes Lebesgue measure.

Proof. here ]

Problem 5. Let {A}72, be Lebesgue measurable sets in R™ equipped with Lebesque measure .

(a) Prove that if Ay, C Agy1 for all k then MU Ag) = limy_ o0 A(Ag)

Proof. We will assume that \ is subadditive, so A(U®Ax) < >°7° A(Ay).Then by setting Ay = 0,
we have

o0

AURAR) =Y MANA 1) = Tim 2": AANA 1) = Tim A(Ay).

1

(b) Prove that if Agt1 C Ay for all k and M A1) < oo then MN$2, Ag) = limy_ 00 A(Ax)

Proof. Let Bj = Al\Aj so By C By C ...,and /\(Al) = )\(B]) + /\(A]), and U(l)ij =
E\(N°A;). Then by part (a), we have
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J—00 J—00

1

Since A(A41) < oo, we may subtract it from both sides to yield the desired result. O

(c) Give an example showing that without assuming A(A1) < oo the conclusion of the previous part
does not hold.

Proof. Consider A; = [j,00) so that for each j, A(4;) = co but NA; =0 so A(N°4;)=0. O

Problem 6. Let X and Y be Banach spaces. Show that the linear space X &Y is a Banach space
under the norm ||(z,y)|| = ||z|| + ||lyl|. Also determine (with justification) the dual (X &Y)*.

Proof. here ]

Problem 7. For each n € N define on £>° the linear functional @n(x) = n='>°)_, x(k). Let ¢ be
the weak* cluster point of the sequence {@,}. Show that ¢ does not belong to the image of {* under
the canonical embedding £* — (£°°)*.

Proof. here 0

Problem 8. LetT : X — Y be a surjective linear map between Banach spaces and suppose that
there is a A > 0 such that ||Tz|| > A||z|| for all z € X. Show that T is bounded.

Proof. here 0

Problem 9. Let X be a compact metric space and p a reqular Borel measure on X. Let f : X —
[0,00) be a continuous function and for each n € N set f,(x) = f(x)" for all x € X. Show that
J fadp — p(supp f) as n — oo where supp f = {z € X | f(z) > 0}.

Proof. here O

Problem 10. Let X be a compact metric space and let x € X. Suppose that the point mass §; is
the weak™* limit of a sequence of atomless Radon measures on X (viewing all of these measures as
elements of C(X)*). Show that every neighborhood of x is uncountable.

Proof. here O

2 January 2019

Problem 1. True or false (prove or give a counter example)

(a) Let E C R be a Borel set, then {(z,y) € R? |z —y € E} is a Borel set in R2.
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Proof. TRUE.
Define f(z,y) = x —y : R> — R. This is continuous. Let

A:={SCR| f1(9) is a Borel set of R*}

Then A is a o-algebra (easy to check). If S is open, then f~1(S) is open in R?, thus Borel. So
{open sets} C A and so the Borel algebra is a subset of A. In particular, E € A. O

(b) Let E C Q :=[0,1] x [0,1]. Assume that for every z,y € [0,1] the sets E, = {y € [0,1] | (z,y) €
E} and EY = {z € [0,1] | (z,y) € E} are Borel. Then E is Borel.

Proof. FALSE.

Consider a non-Borel set A C [0,1]. Set E = {(z,z) | « € A}. Then each EY and E, is a
singleton which is Borel, but E is not. O

(c) A function f : R — R is called Lipschitz if there exits a M > 0 such that Vx,y € R, |f(z) —
f@)| < M|z —y|. If A C R is Lebesgue measureable and f is Lipschitz then f(A) is Lebesque
measurable.

Proof. TRUE.

Since A is Lebesgue measurable, then we can write A = (U;K;)UN where each K; is a compact
set and N has Lebesgue measure zero. Then f(A) = (U; f(K;)) U f(N). It’s clear that each
f(K;) is Lebesgue measurable, since f is Lipschitz. We are only left to see that f(IV) is also
Lebesgue measurable.

Indeed, for every € > 0 we can write N C Uy By where each By is a ball of radius r; and
> m(By) < e. But then by Lipschitz continuity, f(B)) is contained in a ball of radius My,
where M is the Lipschitz constant of f. Thus, m(f(Br)) < Mm(By) so that m(f(N)) <
MY, m(B) < Me. Let ¢ — 0so f(IN) must have outer measure equal to zero, hence it is a

null set. O

Problem 2. Let (X, F,u) be a measure space. is it true that for every measurable essentially bounded
f X — R we have lim,, || fllp = || flloo ¢ Give an answer both in the case that p is finite and the
case that p is o-finite.

Proof. If p is finite: By Holder, we know that || f||, < |/f|lq when p < q. Also, || f]l, < ||flleo for all p.
Therefore, |[f[l, /< [[flloc and so limy, || £l <[] floc-

On the other hand, for every € >0, let F = {z | |f(z)| > ||fllcc — €} and 0 < p(E) < 1 since ||f|lcc =
esssup | f ()| < co. Then || f|[5 > [5 [f1” > (|fllec — €)"n(E). Take p = 00 5o limy || fll, = || flloc — €,
implying Timy, |[f1[, = [|f]lco-

If 41 is o-finite: No, this is not true. Consider f(z) = < on [1,00). Then lim,, || f|l, = 0 # || fll =
1. O

Problem 3. Let f : R — R Lebesgue integrable and for n € N define

gule)=n [ fan
(z,x+1/n)
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(a) Prove that lim, o gn = f A-a.e.

Proof. This is Lebesgue Differentiation Theorem, with F,. = (x,z +r). O
(b) Prove that for every n € N, [p [gnl|d\ < [5 | fldA.

Proof. here! O

(¢) Prove lim,,_,, fR |gn|dX = fR |f|dA.

Proof. Apply dominated convergence theorem with parts (a) and (b). O
Problem 4. Let f € L'((0,1]2, \2) such that f(o 2% (0] FdA2 = 0 for every z,y € (0,1]. Prove that
f=0 Xs-a.e.

Proof. First note that

(a,b) x (¢;d) = | J((0,b—1/n] x (0,d — 1/n])\ ((0,a] x (0,1] U (0,1] x (0,b])

n

And since all open rectangles generate all Borel sets in R?, then we have that for every Borel set
B CR?, [;fdx=0.

Since every Lebesgue set A is of the form A = BU N where B is a Borel measurable set and N is a
set of measure zero. Hence, [ 4 fdh2 = 0 for any Lebesgue measurable set A.

Now consider AT = {x | f(z) > 0} and A_ = {z | f(z) < 0}. Since both are measurable, then
Jas fdra =0= [, fdXo. Hence, f =0 Ay-a.e. O

Problem 5. Let )\ be the Lebesgue measure on R. Let E C R be Lebesgue measurable such that
0 < A(E) < oo. Prove that for all 0 < v < 1 there exists an open interval I C R such that

ANENT) > yA(D).

Proof. Choose an open set O D E such that A(E) > yA(O). We can write O = U;O; for open and
disjoint intervals O;. Hence

E=En0=EnlJ0O:=JEn0)

%

Suppose to the contrary that A(E N O;) < yA(O;) for all i. Then
AE) = A (U(E N oi)) =S MNENO0:) <73 M0:) =7A(0)

which is a contradiction with the fact that A(E) > yA(O). Hence, it must be that for some &k, A(E N
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Problem 6. Let X be a compact metrizable space and {u,} a sequence of Borel measures on X
with un(X) = 1 for every n. Consider the linear map ¢ : C(X) — £°(N) defined by o(f) =
(fX fdun)n. What conditions on the sequence {un} are equivalent to ¢ being an isometry? Provide
justification.

Proof. We would require, for all f € C(X)

sup £ (o)) = [ = H ( / fdun) [ s

here O

= sup
00 n

Problem 7. Let X be a compact metric space and {fn} a sequence in C(X). Prove that {f,} con-
verges weakly in C(X) if and only if it converges pointwise and sup,, || fr| < co. Also, give an exam-
ple of an X and a sequence {f,} in C(X) which converges weakly but not uniformly.

Proof. By considering f,, — f, we may assume without loss of generality that f,, converges to 0.

=) We know C[0,1]* = M](0,1]. Then f,, — 0 weakly implies [ f,du — 0 for all p € M0, 1].
Choose = d; so

/fnddt = fot) >0 Vte[0,1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

X : C[0,1] — C[0,1]** = M]0,1]*
X(fn)(p) = p(fn)

Since p(fn) — 0 then X(f,)(p) — 0 for all p € M]J0,1]. Since convergent sequences are bounded,
then sup, [X(fu) ()] < M.

By the uniform boundedness theorem, sup,, ||[X(f.)|| < co. By isometry, ||fu| = IX(fn)]l so sup,, ||frl] <
0.

<) By Dominated Convergence Theorem, f,, — 0 in L' (). So therefore, | [ fodu| < [|fn|d|p| — 0.
So fn — 0 weakly.

Example: Take X = [0, 1] and consider the functions

nw z €10,1/n]
falz) =< —nx+2 x€(1/n,2/n]
0 z € (2/n,1]
Then they converge to 0 weakly, but not strongly. O



2 JANUARY 2019 Kari Eifler

Problem 8. Let X be a Banach space. Show that if X** is separable then so is X. Also, give an
example, with justification, to show that the converse is false.
Proof. We will show the weaker result that states that if the dual X* is separable, then so is X.

Let X* be separable. Consider the unit sphere Sx- = {¢ € X* | ||¢|| = 1}. Then Sx~ is separable
and so we can let {¢,} be a countable dense subset of Sx-.

For each n € N, choose z,, € N with ||z,|| = 1 such that |¢,(x,)| > 1/2. Let D = span{z1, z2,...}.

Then D is countable; ex. we can consider the following set countable and dense subset of D:

n

U D (a; +ibj)z; | aj,b € Q

neN | j=1

We want to show that D = X. Suppose it were not, then there ewould be some ¢ € Sx- with
¢|p = 0. Since {¢,} is dense, there exists some n such that || — ¢, || < 1/4. Therefore,

1 1
5 < Jon(@n)| = lon(zn) — @(@n)| < llon —@llllznll < 1
This is a contradiction and hence, D = X.
example. ¢y is separable, but £°° = ¢{* is not separable. O

Problem 9. (a) Let X be a compact metrizable space. Describe the dual of C(X) according to the
Riesz representation theorem.

Proof. For every ¢ € C'(X)*, there exists a unique finite regular signed measure p on the Borel
subsets of X such that

o(f) = /deu

for each f € C(X). Moreover, ||¢| = |p|(X).
O

(b) Consider the spaces X = {1/n | n € N} U{0} and Y = [0,1] with the topologies inherited from
R. Prove that there does not exist a bijective bounded linear map from C(X) to C(Y).

Proof. By contradiction. Suppose there exists a bijective bounded linear map T : C(X) —

C(Y). Then by the Open Mapping Theorem (or more accurately, the corollary that is the Bounded

Inverse Theorem), then T~ is a bijective bounded linear map from C(Y') to C(X). This says
that the two spaces are isomorphic.

Therefore, the duals of these two spaces should also be isomorphic, C(X)* = C(Y)*. But by the
Riesz-representation theorem, here! O

Problem 10. Let X be a Banach space and Y a subspace of X. Show that ||z + Y| = inf{||z + y|| |
y € Y} defines a norm on X/Y if and only if Y is closed.
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Proof. <) Suppose Y is closed. It’s easy to see ||z + Y|| is well-defined and a semi-norm. Suppose
|l + Y| = 0. Then there exists y, € Y such that ||z — y,|| — 0. Since Y is closed, then z € Y.
Therefore, x +Y =Y = 0+ Y which is the zero vector in X/Y.

=) Suppose this is a norm. Take any convergent sequence ¥, in Y with y, — ¢’. Then inf,cy ||y —
Yl < |lyn — ¥'|| = 0 and so ||y’ + Y|| = 0. Since this is a norm, then ¥’ + Y =0+ Y =Y and so
1y’ € Y. Hence Y must be closed. O]

3 August 2018

(Solve any 10 of the following 12 problems)

Problem 1. Let p and v be positive measures on the same measurable space with v finite and abso-
lutely continuous with respect to . Show that for every e > 0, there exists 6 > 0 such that u(F) < §
implies v(E) < e.

Proof. Suppose for contradiction that 3e > 0 such that u(F) < 6 then v(E) > e for all 6 > 0 adn
for some E. We'll construct the set E,, to be some set with u(E,) < 27" Let F}, = U2, E, so
p(Fy) <2700

Let F =N, Fy so u(F) = 0. Since v < p, then v(F) = 0.
However, since F}, is a decreasing sequence, we have

v(F) =limv (N}_, Fy) = limv(F,) > e

Contradiction! O

Problem 2. Let ji be a positive measure. Suppose that (f,)%, is a Cauchy sequence in L*(p).
Show that for all € > 0 there exists a § > 0 such that p(E) < § implies

Vn>1

/ fndp‘ <e.
E

You may use without proof the result of problem #1.

Proof. Let € > 0. Since {f,} is Cauchy in L(u), there exists f € L'(mu) such that f, — f in
L' (u) as n — oo, since L'(p) is a Banach space.

Define v(E) == | [, fdpu)|.

Then by Problem 1, there exists some § > 0 such that v(E) = | [, fdu| < ¢/2 when p(E) < 6, thenf
or large enough n (say n > N) we have

[

€

/E(fnf+f)du‘ﬁ'/Efnfdu’Jr‘/Efdu‘<;+2e

10
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for u(E) < 6.

For each i, N, we can find §; such that UE fidu| < € when u(E) < J;. By the same reasoning as
above, if we set 6 = min{dy,...,dn—_1,d} then UE fndu’ < € whenever p(FE) < 0 for all n € N. O

Problem 3. Let f:[0,1] — [0,00) be Lebesgue measurable. For n € N define

fn
1+ fn

9n =

(a) Explain why fol gn(t)dt exists and is finite for all n.

Proof. Since g,, = % <1 for all n, then fol gndx < fol 1dz =1 for all n. O

(b) Prove that lim,, fol gn(t)dt exists and find an expression for it. Make sure to state which major
theorems you are using in your proof.

Proof. Define By = {2 |0 < f(x) <1}, Ea ={x | f(z) =1} and E3 = {z | f(x) > 1}.

If 7 € By then g, () = pips — 0. So by DCT, lim, [, gndz = [ Odz = 0.

If x € FEy then g, (z) = 1_{_;‘2«) = % for all n and so

3

1 1
lim | gpdz= / —dz = —m(Ey).
o By 2 2

If x € FE5 then g, (z) = 1_{;9&) — 1 and so by DCT,

n

lim | gpdz = / dz = m(E3).
Bs Es

Thus,

1
1
lim/ gndx = lim gndx +/ gndx +/ gndx = —m(Es3) + m(Es).
nJo nJE, Es E3 2
O

Problem 4. Consider C([0,1]) endowed with its usual uniform norm. Prove or disprove that there
is a bounded linear functional ¢ on C([0,1]) such that for all polynomials p, we have ©(p) = p'(0),
where p' is the derivative of p.

Proof. DISPROVE.

Consider p, = 1 — (z — 1)" so then ||pn|lec = 1 but p/,(0) = n — oo. If such a ¢ existed, then
n = lp(pn)| = len)|l < c|lpn|| which cannot happen. O

Problem 5. (a) Define the product topology on the Cartesian product yeaXa of a family of topo-
logical spaces (Xa)aca

Proof. here! O

11
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(b)

(c)

State Tychonoff’s compactness theorem.
Proof. If {X,} is a family of compact topological spaces then II,c 4 X, is compact. O
State and prove the Banach-Alaoglu theorem (Hint: Use Tychonoff’s theorem)

Proof. Thoerem: Let X be a normed vector space. The closed unit ball {f € X* | ||f|| < 1} is
compact in the weak*-topology.

For all x € X, let D, := {£ | |¢] < ||z||} € C. Then D, is compact, and by Tychonoff’s theorem,
D :=Tl,ex D, is comapct. Define complex function ¢ with ¢(z) < ||z||.

We define B* C D to consist of linear functions of D. We claim B* is closed. Indeed, let {fa}
be a net in B* that converges to f. Then
faz +by) = tim fu(az + by) = lim(afa(@) + bfa(y)) = alim fu(@) + blim fa(y) = af (@) + bf(y).

So f € B*. Since closed subsets of comapct spaces are compact, then B* is compact in the
weak*-topology. O

Problem 6. Let (X,d) be a compact metric space.

(¢)

(b)

Problem 7. Let K > 0 and let Lipy be the set of functions f : R — R satisfying |f(z) — f(y)| <

Show that X has a countable, dense set {x,, | n € N}.

Proof. If X is countable, we are done. So suppose X is uncountable. Since X is compact, for
all n € N, X can be covered by finitely many balls of radius % For each n, choose such a finite
cover with balls centered at the points {17?};\[:"1 Then the collection E := U, {7} }; is count-
able.

For z € X, for all n € N, x € B(1/n,27) for some z} € E so E is dense. O

Let fr, : X — [0,00) be fr(z) = d(z,x,). Show that if v,y € X and f,(z) = fn(y) for alln € N,
then x = y.

Proof. We then have that d(x, z,) = d(y,x,) for all n. We know for all m € N we can find z,,
such that d(x,z,,,) < 1/m so d(y,zn) < 1/m. So we can find a sequence {z,, }5°_; such that
Ty — x and x,, — y as m — oo. But X is a metric space and thus Hausdorff, so limits are
unique. Therefore, x = y. O

K|z —yl.

(a) Prove that

277 sup | fi(z) — fo(x)]

z€[—7,J]

M

d(f1, f2)

<
I
<)

defines a metric on Lipg

12
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Proof. First, suppose d(f1, f2) = 0. Then Z 02 ‘supwe[fj!j] |f1(@)=fa(z)| = 0 s0 sup,ep_; 1 [f1(z)—
f2(x)| = 0 for all 5. Thus, fi(x ) fa(x) for all x.

It’s trivial to see that d(f1, f2) = d(fe, f1).

Finally,we’ll show the triangle inequality. This again follows directly: |fi(x) — fa(x)| < |fi(x) —
f3(@)| + |f3(z) — fo(z)| for all z. Taking sup on both sodies and multiplying by 277 we get

d(f1, f2) < d(f1, f3) +d(f1, f2)- O
(b) Prove that Lipy is a complete metric space

Proof. Suppose (f) is a Cauchy sequence in Lip. Then for every € > 0 there exists N € N
such that d(fi, fm) = 272, 277 sup,e(_; 51 |fi(z) — fa(2)] < €. Then for each j and = € [—j, j]
we have | f,, (z) — fm(z)] < €.

Thus, {f,(§)} is Cauchy sequence on [—j, j] for each £. But we can find f(x) such that f,(x) —
f(@).

We want to show that d(f,, f) — 0. Since f,(x) — f(x), then for all € > 0 we can find some
N € N such that for all n > N, |f,(x) — f(z)| < e. THen

d(fn: f) Z2J . Ifn — |<Z2 Je=e
z€[—]

So d(fn, f) — 0. To see f € Lipg,

[f(@) = fy)| = |lim fu(2) —lim fu(y)| = lim [ fu(2) = fa(y)] < Klim |z —y| = Kz —y|.

Problem 8. Let X,Y be topological spaces. A map f : X — Y is said to be proper if for every
compact subset K CY, the inverse image f~1(K) is compact.

(a) Suppose X is a compact space and Y is Hausdorff. Prove that every continuous map f: X =Y
18 proper.

Proof. Let K C Y be compact. Since Y is Hausdorff, then K is closed. Since f is continuous,

and Y\ K is open in Y then f~}(Y\K) is open in X. So f~1(K) = X\f~1(Y\K) is closed.

Since X is compact, f~1(K) is compact. O
(b) Give an example of a continuous map which is not proper.

Proof. Consider the constant function 1 : R — R which sends = — 1. So 171({1}) = R. O

(¢) Suppose f : R™ — R™ is a proper continuous map. Prove that f is a closed map, ie. f(C) is
closed in R™ whenever C is a closed subset of R™.

Proof. Let {y,} C f(C) with y,, — y. Define A = {y} U {y,} (compact). Then f~1(A) is
compact, so there exists z,, € f~1(A) N C such that f(z,) = y,. Find a convergent subsequence
Tp, With x,, — z for x € C'N f71(A). By continuity of f, we have f(z) = y. O

13
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Problem 9. Consider the interval [—m, 7| equipped with Lebesgue measure . For n € Z, consider
the functions f, € C([—m,7]) given by fn(t) = ™.

(a)

(b)

(c)

Prove that spanc{f, | n € Z} is dense in the space
A={f € C([=m 7)) | f(=m) = f(m)}
with respect to the uniform norm.

Proof. Let B = spang{fn,} C A C C([-m,7]). Note that B separates points and is closed under
complex conjugates. By Stone-Weierstrass, B is dense in C[—m, 7] hence also dense in B. O

Show that {\}2‘7 |ne Z} is an orthonormal basis for the Hilbert space L*([—m, ], ).

Proof. Note that

1/2

=V2r

s

1 bl = \ [ entea

—T

For n # m,

™ i(n—m)t
3 —in € T
(fr> fm) = / eMeT M dt = 7‘_7‘, =0.

- n—m
So they are orthonormal. O
Is the following statement true or false?:
“For every f € A, f =limy_ 00 5= Zngzﬂf’ fn) fr with respect to the uniform norm.”

Give a brief explanation why or why not.

Proof. TRUE.

Claim: Y% (f, fa)fn exists. By Pythagorean theorem, ||Y-% (f, fa) ful| = 2" I(f, fa) full-
By Bessel’s inequality, > (f, fn)fn is bounded so it exists.

Let g := f — > (f, fa) fn so that

(9, fm) = (fs fm) — Z (s fadfs fm) = (fs fm) = (f, fm) = 0.
By completeness of Hilbert spaces, g = 0. So f = >""_(f, fn)[n- O

Problem 10. Let (X, - ||) be a normed linear space and let (X*,|| - ||x+) denote its dual Banach
space of bounded linear functionals. Recall that ||¢||x« = sup|, =y l(z)] for ¢ € X~

(a)

Prove that for each x € X, there exits ¢ € X* with ||p|x+ =1 and ||z]| = ¢(z).

14
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(b)

(c)

Proof. We will prove the more general case: let M be closed and z € X\M. Then there exists
¢ € X* such that ¢(x) = inf ey ||z — y|| and ||¢]| =1 and @[y = 0.

Restrict to the space M +Cz and define ¢(y+Ax) = Ninfyear [z —y||. Then ¢(x) = inf e p ||z —
yll and ¢|n =
Since ¢(z) = ||z, then 1 = H = ‘ < [|¢| and

@y + A0)| < [o(w)] + [6(A)| = 0+ [Mlg(x)| = [A] inf |z —yll < [Af[z - Ayl = Az +yll.

A
Therefore, [|¢|| = sup, , ‘ﬁ&yx-:yﬂ)l <1so [|¢]=1.

Finally, if we define p(z) = ||z|| for x € M + Cz then by Hahn-Banach, ¢ can be extended to v
on all z with ¢|pr4ce = ¢. To prove the result, set M = {0}. O

Prove that the linear map ¢ : X — X** given by

18 an isometry.

Proof. Fix x € X, so

(@) _ 1@

[Dllx~ gex- [[ollx-

By part (a), there exists ¢ € X* such that ||¢||x~ = 1 and ¢(z) = ||z||, which implies that
]l < fle(2)] x--
Also, for any ¢ € X, |¢(z)| < [|¢]lx-[lz| and so

(@)l =

19(@)] _ llelll]l
t(z)|| < sup < = (|z||.
l[e()]l S92 olx- I ]
So ||¢e(x)]| = ||=]| and so ¢ is an isometry. O

A Banach space X is called reflexive if o(X) = X**. Prove that the Banach space
O ={feN=C|flh=1f(k) < oco}.
k

is not reflexive.

Hint: Consider a weak-+ cluster point of the sequence (t(fn))nen € (€1)**, where f, € (2 is the
unit vector

_JUn k<n
fn(k){() k>n

Proof. here! O

15
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Problem 11. Let (gn)nen € C([0,1]) be a sequence of non-negative continuous functions. Assume
that for each k =0,1,2,... the limit

1

lim z* g, (x)dx exists.
n— o0 0

Prove that there exists a unique finite positive Radom measure u on [0,1] such that

| f@dut) = im [ f@ign@ids for ail £ € C(0.1).
0 y 0

Proof. Define M := lim,, fol gn(z)dz < co. Let A = span{z* | k € N}. For each ¢ € A, by linearity,
lim,, fol &(2)gn(z)dx exists.

By Stone-Weierstrass, A is dense in C[0, 1], so for every f € C]0, 1], lim, fol f(@)gn(x)de.

Next, let ¢ : C[0,1] — C be defined by ¢(f) = lim fol f(z)gn(x)dx. Linearity is obvious. Moreover,
for every f € CJ0,1],

1 1 1
()1 = fim [ fan(@yte] <tim [ 11(@)lgu @)l < 1l | gu(@)do = M)

Hence, ¢ is a bounded linear functional on C[0,1].

By Riesz-Representation, there exists a positive Radon measure p such taht

1 1
lim / F(@)gn(2)dz = 6(f) = / f@du(z)  Yf e o1,
O

Problem 12. Let X be a locally compact Hausdorff space equipped with a Radon probability mea-
sure . Let E C L*(X, i) be a closed linear subspace and assume that E is contained in Co(X). The
goal of this problem is to prove that dim(E) < oo by justifying the following steps:

(a) There exists a constant 1 < K < oo such that

[fllz < [Ifllw < Kl fll2 forall f € E,

where || - ||, denotes the uniform norm. Hint: us the closed graph theorem for one of the inequal-
ities.

(b) For each x € X, there exists a unique g, € E such that ||g:||2 < K and

f(@) =(f,9z) for all f € E.

(c) Let (fi)icr be any orthonormal basis for E. Then

16



4 JANUARY 2018 Kari Eifler

SN f@ P =llg:l3 < K> forallz € X.

il
(d) dim(E) = |I| < K2.
Proof. See January 2017, Problem #b5 for a solution to a similar question. O
4 January 2018
Problem 1. Suppose Uy,Us, ... are open subsets of [0,1]. In each case, either prove the statement

or disprove it.

(a) If \(N52, Uy) = 0 then for some n > 1, we have AN(Uy,) < 1, where X is Lebesgue measure and
U, is the closure of U, in the usual topology on [0,1].

Proof. FALSE. Let r,, be an enumeration of the rationals on [0,1], and set a, ,, = 1/2"T™. Set

Un = Um(rm — An,m>Tm + an,m)

These are open since they are a union of open intervals. Moreover, since Q C U,, then \(U,,) =
A([0,1]) = 1. But by upper continuity of the Lebesgue measure, then

A(NU,) =Hm A (U(ry, — @nms Tn + Gnom)) = 0.

(b) If NS, U,, = 0, then for some n > 1, the set [0,1]\U,, contains a non-empty open interval.

Proof. TRUE. Recall that the Baire Category Theorem states that under these assumptions, if
each U, is dense in [0, 1] then N2, U, is also dense in [0, 1]. Then since we have that N2, U,

is not dense, then there must be some n such that [0, 1]\U,, is not dense. This precisely means
that U,, contains a non-empty open interval. O

Problem 2. Let X be a separable compact metric space and show that C(X) is separable.

Proof. Remark: If X is a compact metric space, then X is separable. So the separable assumption
is superfluous.

Suppose d is the metric on X and (x,,) is a dense countable subset of X. For each n € N, de-
fine the functional f, by f,(x) := d(x,x,). Then each f, is a continuous functional. Consider

F = {1, f1, f2,...} and consider the subalgebra generated by the rational span of F', call it Q[F]
(this is still countable, we can consider the span, then cosider the set where two elements of it are
multiplied together, then the set where three elements are multiplied together, etc). This is count-
able and dense in A := R[F]. so it is sufficient to show that A is dense in C(X).

17
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We will attempt to use the Stone Weierstrass Theorem:

By definition, R[F] contains the constant function 1. We are left to show it separates points. Take
two points  # y in X. Since {x,} is dense, then there must exist some m such that d(x,z,,) <
td(z,y) #0. If d(y,2m) = d(z, zp,) then

2
) < d, ) + Ay, 2) = 2, 20) < 2o y).
This cannot be true under our assumption d(z,y) # 0. So then f,,(y) = d(y,zm) # d(z,zm) =
fm(x). So f, separates x and y.

Therefore, by Stone-Weierstrass, A is dense in C(X). But Q[F] is countable and dense in A, so
therefore C(X) is separable. O

Problem 3. Let f:]0,1] — R be a bounded Lebesque measurable function such that

1
/ ft)e™dt =0
0
for everyn € {0,1,2,...}. Prove that f(t) =0 for almost every t € [0, 1].
Proof. Let f(t) =0 on t = 0,1. Using Stone-Weierstrass to show we can pass to the case fol fg) =

0 for all g € C[0, 1].

By a standard density argument, we may pass to the case where g is a step function. We claim that
f=0a.e.

Assume not. WLOG there exists some E = {z € [0,1] | f(z) > 0} with m(E) > 0 (else consider
—f)-

Since f is bounded, then E, := {x € [1,2] | f(z) = oo} is a null set. Define F,, := {z € [0,1]
1/n < f(x) <n}. We can write E = (|J,, En) UFEo. So there exists some N such that m(Ey) = a >
0.

We can write A as a finite disjoint union of open intervals, A = U, I;, such that m(EyAA) < €
and A C Ey.

Put g = >, Xy,, then flzg(:c)f(x) = [, f(x)dz. Since

< Nm(ENAA) < Ne

f@ - [ 1)

En

If we choose € small enough, we see the contradiction since fol g(x)f(z) > 0. O

Problem 4. (a) Prove that every compact subset of a Hausdorff space is closed.
Proof. Let A be a compact subset of the Hausdorff space X. To show A is closed, we’ll show

A° = X\A is open. Take z € X\ A. Then for every y € A, there are disjoint sets U, and V,, with
z €V, and y € U,.

18
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The collection of open sets {U, | y € A} forms an open cover of A. Since A is compact, this
open cover has a finite subcover, Uy, ,Uy,,...,U,, . Let

U:.=u,U, V=NV,

Since each U,, and V,, are disjoint, then U and V are disjoint. Also, AC U and z € V.

Thus, for every point € X\ A we have found an open set V' containing x which is disjoint from
A. So X\ A is open and A is closed. O

(b) Let f : X — Y be a bijective continuous function between topological spaces. Suppose that X is
compact and Y is Hausdorff and prove that f is a homeomorphism.

Proof. Let g = f~'. We need to show that ¢ is continuous.

For every V. C X, we have g71(V) = f(V). We want to show that if V is closed in X then
g Y(V) is closed in Y.

Suppose V is closed in X. Since X is compact, V' is compact by part (a). So f(V) is compact
since the continuous image of a compact space is compact.

Since Y is Hausdorff, f(V') is closed by the fact that a compact subspace of Hausdorff space is
closed. But f(V) = g=1(V) so g~ (V) is closed. So g is continuous and f is a homeomorphism.
O

(¢) Prove or disprove that if X is a dense subset of a topological space Y and if X is Hausdorff in
the relative topology, then Y is also Hausdorff.

Proof. FALSE. Consider Y = {a, b} with discrete topology 7 = {0, {a,b}}. Let X = {a} with

relative topology Tx = {0, {a}}.

Then it’s easy to see X is dense in Y (since every open set containing an element of Y has nonempty
intersection with X, trivially). Since X has only a single element, it’s Hausdorff in the relative
topology trivially. But Y is not Hausdorff. O

Problem 5. Prove that the following limit exists and compute its value:
o [ (5 0

Proof. Solution from Sheagan John

Let us first note an important simplification of the integrand, by considering the Taylor series ex-
pansion of cosx around a neighbourhood of 0.

D,
COSJ?—kZ (2k)'x k
=0

Letting f(z) := (cosz)e™2* and fi(z) := e‘zx((;—igfx% then it’s clear that {f} is a convergent
sequence which converges to f(z).
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Now, since |cosx| < 1 we further have that for some positive constant ¢ < 2

|fn(2)] < c|f(x)] = c|cosze™*| = c|cosz|e™** < ce™**

—2x

Since g(z) = ce is integrable on the positive half line

e —c
/ ce W dp = —e %
0

oo

_c
2 )

the dominated convergence theorem can be applied to the original Lebesgue integral limit, with
fn — f, and with g as the dominating function.

: "I D o) e " _/Oo _/Oo —2z
nhHmOO ; (Z (Qk)!x e dx—nhHmoo ; fn(z) doz = ; f(x) de = ; e “Tcosx dx

k=0
Recall that the Laplace transform of cosz is fooo e~*"cosatdt = L{cosazr}(s) = 555z Therefore,
. . 2
the last integral is equal to 577 = 2/5. O
Problem 6. Let X and Y be Banach spaces (over C)

(a) A linear map T : X — Y is called adjointable if T*f € X* for every f € Y*. Prove that T is
adjointable if and only if T € B(X,Y).

Proof. <) if T € B(X,Y) then by definition, for every f € Y*, we have T*f € X*

=) Suppose T*f € X* for every f € Y*. We will use the Closed Graph Theorem. Suppose
zn, — x in X and that Tx, — y in Y. Then since T* f € X* for every f € Y* we can apply this
to the convergence to see that

f(Ten) = (T7f)(xn) = (T"f)(2) = f(Tx)  VfeY”

By the Hahn-Banach theorem, Y* separates points in Y so therefore, Tx,, — Tx. Uniqueness
of limits implies T'r = y and so the graph of T is closed. By the Closed Graph Theorem, T is
bounded. O

(b) Suppose a bounded linear functional ¢ : X* — C is weak*- continuous. Show (from the defini-
tions) that there exists © € X such that ¥ (¢) = ¢(z).

Proof. Define the functional

evy, : X" —=C

[ 1)
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We want to show that every bounded, linear, weak*-continuous functional ¢ : X* — C is of this
form.

Indeed, since v is weak™-continuous, then it is weak* continuous at 0. Thus, the set {f € X* |
[&(f)] < 1} is weak™ open and must containa neighborhood of 0. By definition of weak™® topol-
ogy, there must exist x1,...,x, € X such that

Vizgy,..,zn) ={f € X* | [f(z)| <Li=1,....,n} C{f € X" | [¢(f)| <1}.

Then we will next show that NP, ker(ev,,) C ker(¢)).

Indeed, let f € ker(evy,) so |f(z;)| = 0foralli = 1,...,n. Take ¢ > 0 and conser g = 1 f, so
lg(x;)| = £|f(z;)] = 0 for all i = 1,...,n. In particular, g € V(z1,...,2,) and so then we have
if [¢(g)| < 1 then |p(f)| < e. But € is arbitrary so ¢(f) =0, i.e. f € ker(¢)).

Now recall the linear algebra trick that says if for linear functionals ker(T") C ker(S) then S is a
scalar multiple of T'. In this case, we get that 1 is a linear combination of the ev,,, i.e. is of the
form ev, where z is a linear combination of the z;’s.

Moreover, because the weak™ topology is Hausdorff, = is necessarily unique. O

(c) Let S € B(Y*,X*). Prove that S is weak*-weak*-continuous if and only if S = T* for some
T e B(X,Y).

Proof. <) If S = T* then if f, — f is a weak™ convergent net in Y* then for any y € Y,
fa(y) = f(y). Therefore,

(Sfa—Sf)(@) = (Tx) (fo — ) = 0.
cX* —0

So S is weak*-weak* continuous.

=) Suppose S : Y* — X* is weak*-weak* continuous. Then the evaluation function on z,
ev,(S) is weak* continuous on Y* (where ev,(S) : Y* — C, (ev,(9))(f) = (Sf)(x)).

By part (b), we know that ev,(S) is of the form evy(,) for some unique T'(z) € Y. Since T'(z) is
uniquely determined, it follows that 7T is linear.

We will now check that T is continuous by the closed graph theorem: if x, — x adn Tz, — y
in norm then for each ¢ € Y* we have

(¢,y) = lim{p, Txy,) = lim(S¢, x,,) = (S, x) = (¢, Tx).
And so y = Tz as desired. So T is bounded and therefore, S = T* is bounded as well. O
Problem 7. Let (f,)32, be a sequence of functions f, : [0,1] = R.

NOTE: I think we also require continuous....

(a) What does it mean for {f, | n > 1} to be equicontinuous?

Proof. {fn | n > 1} is said to be equicontinuous if for every e > 0, there exists a § > 0 such that
for all z,y € [0,1], if |z — y| < 6 then |f(z) — f(y)| < e O
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(b)

(c)

(d)

Suppose that for every n, f, is differentiable and |f! (t)| <1 for all t. Prove that {f, | n > 1} is
equicontinuous.

Proof. Since |f! (t)] <1 for all ¢, then for all n, we have by the mean value theorem that

le—yl T

Hence, for any fixed € > 0, setting § = € and for | — y| < ¢ then

|fn(1') - fn(y)l < |$ —yl <d=c=e

Suppose the hypothesis of (b) holds and assume in addition that |f,(0)] < 1 for everyn > 1.
Prove that there exists a continuous function f : [0,1] — R and a subsequence (fnk))pe; con-
verging uniformly to f.

Proof. This is essentially the Arzela-Ascoli Theorem. Since |f,(0)] < 1 for all n and since
|fL(¢)] < 1for all ¢, then |f,(¢)] < 2 for all t € [0,1] and for all n. That is, {f,} is uniformly
bounded. It’s also equicontinuous by part (b). Therefore, Arzela-Ascoli theorem states that
there is a subsequence {f,, } which converges uniformly. Let f be the limit, and we finish by
recalling that the uniform convergence of continuous functions is also continuous.

Note: it might be good to know the Arzela-Ascoli Theorem. O
Show by example that the limit function f need not be differentiable.

Proof. Take f,(z) = /22 + 1/n so f,(0) = ﬁ < 1 for all n and so {f,} is uniformly bounded.

Next, we can see that f/ (z) = ﬁl/n so that for z € [0,1] we have [f; (z)| < /15 < 1l as
desired.
However, it’s also clear that the limit must be f = |z| which is not differentiable. O

Problem 8. Let ‘H be a complex Hilbert space. Given a non-empty set E C H and x € H, put
dist(x, E) = inf{||z —y|| | y € E} and E+ = {x € H | (z,y) = 0 Vy € E}.

(a)

Let Ho C H be a closed subspace and © € H. Prove that there exists xog € Ho such that ||z —
JL'()H = diSt(J?,Ho).

Proof. Let § = dist(x, Hp). Then there exists a sequence (y,,) € Ho such that 0, := ||z — yn|| —
§. We will show that (y,) is Cauchy. Indeed,

0 < lyn = ymll® = ~llyn +ym — 221 +2(lyn — z[* + [lym — z[|*) < —46% +2(3; +57,) — 0.

where we use the fact that
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(b)

(c)

(d)

2

4 %—x < 45.
——
EHo

”yn + Ym — 27;“2

Thus, (y,) is a Cauchy sequence and so because we are in a Hilbert space, (y,) converges to
some point xg € H. Since Hy is closed and y,, € Ho for all n then we get that x¢ € Ho. Finally,
|z — 2ol = lim ||z — yy|| = limd,, = 4.

Ezxercise: it can be shown if H, is convex, then the choice of xg is unique! O
With x and xog as above, prove that x — xg is orthogonal to H.

Proof. Let y € Ho be an arbitrary vector with ||y|| = 1, set o := (x — x,y). Then since @(x —
70,y) = aa = |a|? and aly,x — x¢) = aa = |a|?, we have

Iz = (wo+ay)|* = llo—z0—ayl|® = llz—wol* &z —z0,y) — aly, x —z0) +|a|* = | — o>~ |a]*.

So since g + ay € Hp then || — xo — ay|| > || — xo||. Hence oo = 0.

Therefore, for any nonzero y € Hy we can write

(x = 0,y) = [lyll{x — zo,y/llyll) = lyl|0 = 0.

So (x — xg,y) =0 for all y € Hg so z — zg L Hyo. O
Prove that H = Ho @ Hy (the algebraic direct sum)

Proof. This follows immediately from parts (a) and (b). Take some arbitrary € H. We can
find the appropriate xq as above, so x = ¢ + (z — x9) € Ho ® H -

The fact that it is a direct sum follows from the fact that Ho N Hg = {0}. O
Let E C H be non-empty. Prove that (EX)* = E if and only if E is a closed subspace.

Proof. If E is closed, then the above parts (a),(b), and (c) apply and prove that (EPerp)t =
E. To see the converse, we will instead show that (E+)+ = FE. The desired result will then

immediately follow.

Since E C E then B C E* and therefore, (E+)1 C (EL)J—. Since FE is closed, then (EL)J- =
Eso (EH)* CE.

Conversely, since E+ is closed for every E (independent of whether E is closed or not) then

(E4)* is closed and so since E C (E+)%, then by the monotonicity of topological closure we
have that £ C (EL)L = (E+)*L.

Therefore, (E+)* = E. O

Problem 9. Let V be a vector space over R or C. Recall that a Hamel basis for V is a linearly in-

dependent subset of V whose linear span equals V.
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(a) Let S C V and suppose the linear span of S equals V. Show that V' has a Hamel basis that is a
subset of S.

Proof. Choose a Hamel basis B of S. Then it is easy to check that B is a Hamel basis of V. [J

(b) Suppose V' has an infinite Hamel basis and show that all hamel bases of V have the same cardi-
nality.

Proof. Suppose that {v;}icr and {u;};cs are two infinite bases for V. For each ¢ € I, then v; is
in the linear span of {u;};cs. Therefore, there exists a finite subset J; C J such that v; is in the
linear span of the vectors {u;};cs,. Therefore, V' = span({v;}icr) C span{u;};cus,. Since no
proper subset of {u;};es can span V, it follows that J = U;e;J;. Therefore |J| < |I].

A symmetric argument shows that |I| < |J]. O

Problem 10. Suppose (X, M, p) is a finite measure space and A C M is an algebra of sets with a
finitely additive complex measure p : A — C such that |(E)| < p(E) for all E € A. Show that there
exists a complex measure v : M — C whose restriction to A is p and such that |v(E)| < p(E) for all
EeM.

Hint: you may want to consider the subspace V. C L(p) that is spanned by the set of characteristic
functions Xg for E € A, and a certain linear functional on V.
Proof. Solution from Minh Kha.

For each subalgebra U of M, we define Sy, to be the set of all simple functions of the form > | ¢;Xg,

7

where ¢; € R, F; € U. Then S 4 is a vector subspace of Sp,.

Now define p : Syq — R such that

p(f)ZSUP{Z|C¢P(Ei) | f—ZCiXEmEiﬂEJ’—Q)VZ.?éjaEieMaCiER} Vf € Sm
=1

=1

It’s not difficult to check that p satisfies p(f + g) < p(f) + p(g) for all f,g € Sxrq and p(tf) = tp(f)
for allt € RT, f € Sy Thus, p is a seminorm and is just an extension of the total variation of the
measure p when you apply to the function f = 1.

Define a linear map T : S4 — R defined by

T(f) = /X fdu Vf€Sa

This is linear because of the finite additive property of p. Then |T(f)| < p(f) for all f € S4. By

Hahn-Banach, we get a linear extension of T on Sy, which we denote by T'. Moreover, this exten-
sion T : Syq — R satisfies |T'(f)| < p(f) for all f € Sp.

Now, we define a finite additive measure v on M by letting v(E) = T(Xg) for all E € M. Thus,
via=pand [v(E)| < p(E) for all E € M.
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To check the countably additive property of v, consider any countable collection of disjoint measur-
able subsets E; € M and so Xu,p, = »_; Xg,. Thus, v(U;E;) = >, v(E;) since the series >, T(E;)
converges (use |T(f)] < p(f) for all f € Sy and properties of the measure p).

For the complex case, repeat the trick by proving the complex version of the Hahn-Banach theorem
from the real version. O

5 August 2017

Problem 1. Let (2, A, 1) be a measure space and let {f,} be a sequence of measurable functions
on X. Prove, directly from the definition of convergence almost everywhere, that if Y pl|fal >
1/n] < oo, then the sequence {fn} converges almost everywhere to zero. Deduce that every sequence
of measurable functions that converges in measure to zero has a subsequence that converges almost
everywhere to zero.

Proof. Let E = {z € Q| lim,, | f,(x)| = 0}. We want u(E°) = 0. Let

oo o0

M=) J{ze|lfulx)|>1/n}

m=1n=m

Since

u(@ {weﬂ||fn<x>|>i})<iu({xeﬂ||fn<x>|>i}) 5o

n=m n=m

Therefore, (M) = 0 and

M= J ) {zeQ||ful@)] < 1/n}.

m=1n=m
Note: fn(z) — 0 if and only if Ve > 0, AN s.t. Vn > N, |f,(2)] <e.

So for any € M¢ choose 1/N < e s.t. Vn > N we have |f,(z)| < 2 < & <e.

Therefore M© C E, so E¢ C M, implying u(E€) = 0. So then {f,} converges almost everywhere to
ZETO.

Step 2: We will show that if f,, — 0 in measure, then there exists a subsequence that converges to 0
pointwise almost everywhere.

Suppose for every € > 0, u({z | | fn(z)| > €}) — 0. Choose a subsequence {f,, } such that if

Ej = {1’ | |f71/]‘ (I) - fnj+1 (I)‘ > 27j}
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satisfies pu(E;) < 277, Let Fj, = U2, Ej so p(Fy) < Dk 279 <217k Let F = Ny Fy, so u(F) = 0.

For © ¢ Fj. and for i > j > k then

i—1 i—1
@) = fn, (@) <D | (2) = frgyn (@) £ D220 <277 50 as k= oo,
=5 =3

So fn, is pointwise Cauchy on = ¢ F, so let

otherwise

~Jlim fp,(z) ¢ F
-

So fn, — 0 almost everywhere and f,, — f in measure since

pz | [fn(2) = f(@)] = €}) < pa | |fn(x) = fn,(2)] 2 €/2}) + p{z | |fn,(x) = f(2)] = €})

—0 —0

and
n({z | 1f(@)] = e}) < pa | 1f(@) = fal@)] = /2} + p{z | | fn(x)] = €/2})
—0 —0
so f =0 almost everywhere. Thus, {f,,} converges to 0 almost everywhere. O

Problem 2. Show that there is a sequence of nonnegative functions {fn} in L'(R) such that || f,||L1®) —
0, but for any x € R, limsup,, fn(z) = co.

Proof. We will explicitely construct such a sequence. Consider the following pattern:

To cover [—1,1] let

fi=VIX[ 1, fo = V1X.

so that || fil|z1m) =1 = | f2|lL1(r). To cover [~2,2], next let

3= \/§X[72,71‘5], fa= \/§X[71.571] o f10= \/§X[1‘5,2]

so then % = fsllerw) = I fallLrwy = - .- = [ f10ll L1 (r)- Next, we cover [—3, 3] so that

fii= \/EX[73,72.666]7 N TS \/gx[2,666,3]

so that % = [[fullzrw = .- = [[fasllzr(w). If we continue in this fashion, we get the desired
functions.
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Explicitely, for n = S8 122 + k = L(N — 1)(N)(2N — 1) + k where N € N, 0 < k < 2N?, then we
set

fn= \/NX[,N+JC/N,7N+(I€+1)/N]

so that || fnllL1r) = ﬁ but for every z € R, it’s clear that limsup,, f,(z) = cc. O

Problem 3. Construct a sequence of nonnegative Lebesgue measurable functions {f,} on [0, 1] such
that

(a) fn — 0 almost everywhere, and
(b) for any interval [a,b] C [0,1],

b
lim fu(z)dz =b— a.

n—roo a

Proof. Claim. For any f > 0 that is continuous on [0, 1], nf[z z_‘_%](f(y) — f(@)dy = o(3).

For any e > 0, IN € N such that 0 < z < & then f(z)— f(0) < . Hence for n > N, nf[o %](f(:c)f
f(0)) < nez.

A clear extension to this is that f[m I+l](f(y) — f(x)dy = o(3).

Let f,(z) := ZZ;(% nX(x &1, and let €, N be as above. Clearly f, is measurable and satisfies (a)
above. To prove (b), observe that, for n > N,

k+1

I = nfXE kg 2y~ f‘

n’n

Hence | [(ffn = f)I < 3520 I = o(1).
This holds for all f € C([0,1]), so in particular, it will hold for f = X4y O

Problem 4. In this problem the measure is Lebesgue measure on [0,1]. The norm on L*°[0,1] is
the essential supremum norm, which for a continuous function is the same as the supremum norm.

(a) Prove or disprove that L°°[0,1] is separable in the norm topology.

Proof. L*°[0,1] is not separable in the norm topology. Consider the collection of functions f, =
X[_r, for real 1 > 7 > 0. Since there are uncountably many such 7 and since || f, — fr/[lc = 1
for any r # r/, it’s impossible to have a countable subset of L>°[0, 1] that is dense in it. O
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(b) Recall that L>=[0,1] = (L'[0,1])*. What is the weak* closure in L°°[0,1] of the unit ball of
C[0,1]¢ Prove your assertion.

*

Proof. More general claim: For X an infinite dimensional Banach space, S < = Bx-.

We know for any z1, g, ...,2, € X, there exists some zf # 0 such that z{(z;) = 0. Indeed,
if this were not true then otherwise, x§(z;) # 0 for some 4, let ¢ : X* — R"™ be p(z*) =
(x*(x1),...,2*(zy,)) then ¢ is injective so dim(X™*) < dim(R™) = n. Contradiction, so true.

Now for any x* € Bx~, consider it’s neighborhood (open under the w*-neighborhood)

V=nitfy® € X[ |@i(z" —y")| = [27(i) — y™ (2:)| < €}

for each {z;}? , choose such an zf # 0 from the claim.
Consider the line {z* + tzf | t € R} in X*.

Since for any Z;,

Ti(x™ +tal —a*) = t4;(x]) = tog(z) =0 < e

Then {a* + tzj | t € R} C V. Since ||z* + taj| is continuous about ¢, then we can find ¢y such
that ||z* + tozj]| =1 = VN Sx~ # 0.

Since any neighborhood of * contains a neighborhood of the form V as above (i.e. these Vs
are a neighborhood basis) then By« C Sx*w .

On the other hand, for any z§ € Bx-, by Hahn-Banach separation Theorem, we know there
exists x € X and ¢ € R such that 2*(x) < ¢ < z§(z) for all z* € Bx-.

Then for all {x} C Bx~, z3(z) < ¢ < z§(x). Therefore, 2 isn’t an accumulation point of Bx~

*

which implies BX*w = Bx=«. Thus, SX*w - BX*w = Bx+ so Bx+ = SX*w . O]

Problem 5. Prove that if a1, as,...,an are complex numbers, then

(a) [ 130, axexp(2mikt)|Pdt < S0 |agl?, if 1 < p <2, and

(b) Jo | n ar exp(2mikt)|Pdt > Sn ayl?, if 2 < p < oo.
Proof. Note first the following facts:

e {exp(2mikt)} is orthonormal in L?

e For a finite measure space and p < g, then

1Fllp < w279 £l

e For a discrete X and p < gq, ||fllq < [|f]lp-
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Since {exp(wmikt)} is orthonormal, then

N

Z ay, exp(2mikt)

k=1

2

N
D laxf”
k=1

2

Then if we let a = (a1,...,an) and f = Z,ivzl ay exp(2mikt), we see that for 1 < p < 2, we have

/

To see (b), then similarly for 2 < p < oo,
/1
)

Problem 6. Prove that if X is an infinite dimensional Banach space and X* is separable in the
norm topology, then there is a sequence {x,} of norm one vectors in X such that {z,} converges
weakly to zero.

p

N
> awexp(2rikt)| dt = |fIIF <[|f]5 = llall5 < [lal-

k=1

N p
> anexp(2mikt)| di = |[fIh = | fI5 = lalls = [lal}-

k=1

Proof. Suppose {z}} is a dense, countable subset of X*.
Claim: For every n, then N}_, ker(z}) is non-trivial.

Indeed, assume to the contrary that N}'_, ker(z}) = {0}. Then the map

F:X—>F"

rn

is linear and injective. Let {e1,...,em,} be a basis for FI(X). Choose yr, € F~*({ex}). For all z €
X, we can write F(z) = Y.7" aze;. so F(z — Y a;y;) = Y. aze; — Y ae; = 0 so x is in the span and
then X must be finite dimensional, contradiction! So the claim holds.

Now, choose z, € Sx N (N}_; ker(xy)). Fix 2* € X*, € > 0, so AN € N such that ||z* — 2}/ < e.
Then for all n > N, z,, € ker(z}) so

2% (2n)| = (2" — 2p) ()| < [l27 — 2N | <€

So then z*(z,) — 0. O

Problem 7. Prove or disprove each of the following statements.
(a) If {fn} is a sequence in C[0,1] that converges weakly, then also {f2} converges weakly.
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Proof. YES. Recall that f, € C[0,1] converges weakly if and only if it converges pointwise and
is uniformly bounded.

Suppose f,, — f weakly, let M := sup,, || fu|| < co. Then f, — f pointwise so f2 — f? pointwise
and sup,, || f2|| = M? < cc. So f2 — f? weakly. O

(b) If {f.} is a sequence in L?[0,1] that converges weakly, then also {f2} converges weakly. (Lebesgue
measure on [0,1])

Proof. NO. Take f,(2) = 273X (1 /n11(2), 50 fn = f =273 in norm but f2(z) = 27%3X(1 /1) (2)
but

1 1
/0 ()™ 3da = /0 & X1 /n,1) = log(n) — oo.
O

Problem 8. Let {f,} be a sequence of continuous functions on R that converges pointwise to a real
valued function f. Prove that for each a < b, the function f is continuous at some point of [a, b].

Hint: Let Ey i = [|fn — fm] < 1/E].

Proof. Fix some [a,b] C [0,1]. By Egoroff’s Theorem, f,, — f uniformly outside a set of measure
b_T“. Then f must be continuous outside of this set.

Note: Likely, the question was meant to prove Egoroff’s theorem, see Folland for that proof! O

Problem 9. Let X and Y be compact Hausdorff spaces and let S be the set of all real functions on
X XY of the form h(z,y) = f(x)g(y) with f in C(X) and g in C(Y).

Prove or disprove that the linear span of S is dense in C(X xY).

Proof. We will use Stone-Weirstrass theorem here. Note that if hi(x,y) = f1(x)g1(y) and he(z,y) =
f2(x)g2(y) are two functions in S, then

(hih2)(z,y) = hi(z,y)h2(z,y) = f1(2)g1(y) f2(2)92(y) = (f1.f2)(z)(9192) ()

where if f1, fo € C(X) then so is f1fo (and similarly, g192 € C(Y)). So then S is an algebra. Thus,
it follows that span(S) is an algebra as well.

Next, S separates points. Indeed, suppose (z,y) # (2/,3') in X x Y. If 2 # 2’ then choose some
f € C(X) that separates z and z’. Take g € C(Y) to be the constant function g = 1. Then letting
h(z,y) := f(x)g(y) = f(x), h separates the two points. If z = 2’ then y # ¥’ so the same trick
works, setting f = 1 € C(X) and choosing g to separate y and y’, letting h(z,y) := f(2)g(y) = 9(y)
to then separate points.

Therefore, by the Stone-Weierstass theorem, span(.S) is dense in C(X x Y). O

Problem 10. Let X be a Hilbert space and assume that {x,} is a sequence in X that converges
weakly to zero. Prove that there is a subsequence {yx} of {x,} such that the sequence ||[N~* Zszl vl
converges to zero.
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Caution: the same statement is NOT true in all Banach spaces, not even in all reflexive Banach
spaces.

Proof. Note: This is the Banach-Saks Theorem

We shall successively choose the ny in the following manner. Beginning for definiteness with nq, = 1,
let no be the first index such that |(f1, f,)| < 1 (this choice is possible since {f1, f,) — 0 asn —

00). In general, after having chosen fn,, fn,,-- -, fn,, we choose ny41 so that

| =

a"'?|<fnk7fnk+1>| S

| =

[(Fnas )| <

Since {f,} converges weakly, then it is bounded and so || f,|| forms a bounded sequence, say || f,| <
M so by expanding the inner product, we get

which then implies

2<kM2+2><1+4><%+...+2(k—1)><ﬁ <M2+2
- <

k2 k

2

k

Problem 11. Let F C C([0,1]) be a family of continuous functions such that

(a) the derivative f'(t) exists for allt € (0,1) and f € F.

(b) supscp |f(0)] < oo and supjep SUPye (0,1 |7/ (®)] < oo.
Prove that F is precompact in the Banach space C([0,1]) equipped with the norm || f|| = sup,cjo 17 [f(t)]-

Proof. We will use the Arzela-Ascoli Theorem.

To see I is equicontinuous, fix some € > 0, and let 6 = §; where M = sup s p Supye (0,1 |f' ()] < oo.

Then by the mean value theorem, for any a < b, there exists some ¢ € (a,b) such that f'(c) =
HO=I 5o that [£(b) = f(a)| < |f/(c)llb—al < M|b—a] < M6 =,

To see F' is pointwise bounded, we see that for any b € [0, 1], then for some ¢ € [0, b], we have f(b) =
f'(e)b+ f(0), so that

|f(b)] < M + sup | £(0)].
fer

That is, F' is uniformly bounded!

Then by Arzela-Ascoli, F is compact. O

31



6 JANUARY 2017 Kari Eifler

Problem 12. Let {x,} be a weakly Cauchy sequence in a normed linear space X. Prove that

(a) x, is norm bounded in X

Proof. Let ¢ denote the space of convergent sequences, and consider the map

T: X*—c

By the Uniform Boundedness Principle, T is closed. Then by the closed graph theorem, T is
continuous, so ||T'|| < co. By Hahn-Banach Theorem, ||T|| = sup,, ||2xl- O

(b) There exists x** in X** such that x,, converges weak* to x**, and ||x**|| < liminf ||2,]|.

Proof. Since (x,) is weakly Cauchy, then for every z* € X* the sequence (z*(z,)) is Cauchy,
hence convergent. We can define

X" = C

¥ lima* (z,)
n

ok

Uniform boundedness shows that ||| is bounded, hence z** is bounded. Finally,

| ()| = liminf |&* (2,)] < lim inf |2*][||za]| = (nminfnxnu) (||x*|\).

So then [|z**| < liminf ||z, ]|. O

6 January 2017

Problem 1. Let (2, A, 1) be a measure space. Prove directly from the definition of convergence
almost everywhere that if for all n, u ({a: € Q| |fulz)| > %}) <n=3/2, then f, = 0 p-a.e.

Proof. Let E = {xz € Q| lim, |f,(x)| = 0}. We want p(E°) = 0. Let

M=) Jtzrellfu@l>1/n}

m=1n=m

Since

u@{xemm( B }) im ({eeniinwi>1}) < Zn >y,

n=m =
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Therefore, (M) = 0 and

= UJ N{zelfal@) < 1/n}.

m=1n=m

Note: fn(x) — 0 if and only if Ve > 0, IN s.t. ¥n > N, |fp(z)| < e

So for any & € M¢ choose 1/N < e s.t. Vn > N we have |f,(z)| < 2 < & <e.

Therefore M¢ C E, so E€ C M, implying pu(E€) = 0. O
Problem 2. Find all f in L*(1,2) such that for every natural number n we have ff 22" f(z)dx = 0.
Give reasons for all assertions you make.

Proof. Let f(x) =0 on x = 1,2. We now consider f € L[1,2]. Using Stone-Weierstrass to show we
can pass to the case ff g(x)f(x) =0 for all g € C[1,2].

By a standard density argument, we may pass to the case where g is a step function. We claim that
f=0ae.

Assume not. WLOG there exists some E = {z € [1,2] | f(z) > 0} with m(E) > 0 (else consider
=)

Since f € L'[1,2] then E = {x € [1,2] | f(z) = oo} is a null set. Define E,, := {z € [1,2] | 1/n <
f(xz) <n}. We can write £ = (UJ,, En) U Ex. So there exists some N such that m(Ey) = a > 0.

We can write A as a finite disjoint union of open intervals, A = U, I;, such that m(EyAA) < €
and A Q EN.

Put g = >, Xy,, then flzg(as fE x)dz. Since

mﬂ@—éﬂ@

If we choose € small enough, we see the contradiction since f12 g(x)f(x) > 0. O

< Nm(ENAA) < Ne

Problem 3. A. Prove that there exists a sequence of measurable functions g, on [0,1] such that

(a) gn(x) >0 for any x € [0,1];
(b) lim,, gn(x) =0ae.;
(¢) For any continuous function f € C[0,1],

n— oo

| Vgn(x)dx =
1m0fg z/f

Proof. (Solution from Ting Lu, TeX-ed by John Weeks)

It suffices to assume f is non-negative. Any f € (0, 1] is uniformly continuous since [0, 1] is
compact. The following lemma will then come in handy:

Claim. With f as above, nf$ ot ] (f(y) — f(z)dy = o(2).
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For any e > 0, 3N € N such that 0 < x < % then f(z) — f(0) < e. Hence forn > N,
n g 1) (F() — F(0)) < nes.

A clear extension to this is that f[a:,er%] (f(y) = f(z))dy = o().

Let g,(z) := Z;é nX[k ki1, and let e, N be as above. Clearly g, is measurable and satisfies
(a) and (b) above. To prove (c), observe that, for n > N,

k+1
Iy = A X g )~ f|
" E+% k+1
[T - f|
k k
(%)
=o|—].
n
Hence | [(fgn — f)l < 352g Ik = o(1). D

B. If gy, is a sequence of measurable functions on [0,1] such that (a), (b), and (c) are satisfied,
what can you say about fol sup,, gn()dx ?

Proof. here O

Problem 4. We say that a sequence {a,}22 ¢ in [0,1] is equidistributed (in [0,1]) if and only if for
all intervals [c,d] C [0,1],

Hai,...,an} Ne,d)|

lim =d—c
n— 00 n
(Here |A| denotes the number of elements in the set A.)
Let un = > 1<n<n Oa, with dq, the point measure at a,, that is, for any subset S € [0,1],
1 ifa, €8
Gu(5) =4 TES
0 ifa, ¢S

Show that {a,} C [0,1] is equidistributed if and only if

1 1
lim / fduN:/ fdm,
N—oo Jg 0

for all continuous functions on [0,1], where m is Lebesque measure.

Proof. Note that {a,} is equidistributed if and only if

lim Hai,...,an}Nle, d)|
n n

=d-c
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if and only if

1 1
lim | fduny = / fdm  for f simple functions (since we can take f = X[, q))
nJo 0

=) It’s easy to see if {a,} is equidistributed for f = X 4.

1 1
X s ‘{al,...,CLN}ﬁ[C,dH . .
hj{[n/o fd,uN—hJ{]n N =d—c= Ofdm

Thus, ”=" holds for step functions.

Using Darboux’s definition of integral for f € C]0, 1], Ve > 0 there exists step functions fy, fo such
that f1 < f < f3 and fol(f2 — f1)dz < e where the lower sum is

N
/ filz 1 Zf (an) < hmmf—Zf (an)

1

and the upper sum is

1 1 & 1 &
/o fa(@)dx = h]{,nﬁ Xl:fz(an) z lim;up N ;f(an)

Then

N

N
hm;up zl: an) —hmln Nzl: an)| < e.

Therefore limp % Zjlv f(ay,) exists and by definition must be fol fdu.

<) If we know limg fol gndpre = fol gndp for all g, € C[0,1]. Let f = X|.,qj, choose g, — f in L'
and each g, “\ f positive, g, € C[0,1] with gn|c.q) =1 = flic,a-

We want to show limg fol fdug = fol fdm. Indeed,
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[ s Lo

/Cdfd/m/cdfdm|
/CdgnduK —/cd fdm|

d d
— [ e - / fdm
C1 C1
S/ gnduK—/ Jfdm
0 0
1 1
/gnduxf/ gndm'+
0 0

<

1 1
/ gndm 7/ fdm‘ — 0.
0 0

Problem 5. Consider the space C([0,1]) of real-valued continuous functions on the unit interval
[0,1]. We denote by || flloc = sup,cpo,1) |f(2)] the supremum norm of f € C([0,1]) and by ||f|2 :==

(fol |f(2)|2dz)? the L2-norm of f € C([0,1)). Let S be a closed linear subspace of (C([0,1]), ] - [loo)-
Show that if S is complete in the norm || - ||2, then S is finite-dimensional.

Proof. Let T : (S, |- |l2) = (S, ]| - l|so) by T(x) = z. Note that both spaces are complete.

Assume x,, = z in || - ||z and T(z,) = y in || - || then

IT(zn) = yll2 < IT(2n) = ylloc = 0.

So

2 =yllz < lle = T(@n)ll2 + [1T(zn) = yll2 < |z = znlla + [T (2n) = yllo = 0

sox=T(x)=y.

Therefore, by closed graph theorem, we know T is bounded. So there exists some C such that || f|/oc <
CllA 12

Now let fi,..., fn be an orthonormal family in S. Then for all fixed x € [0, 1]

fi@)? + - fa(@)? < MA@+ + (@) falloe < Cllfr(@) fr 4+ ful@) fall2

So then because f,,’s are orthogonal and || fx||3 = 1,

(fi@)?* + -+ fu(@))? S C2 (A @PIANE + -+ Fa@Pl1fall3) = C*(F1(@)? + - + ful@)?)
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Then fi(z)? + -+ fu(2)? < C?. So

1 1
”:/ f1($)2+"'+fn(90)2d£v§/ C?de = C? = n < C?
0 0

Thus, the number of orthogonal family in S is at most C2. So S is finite dimensional. O

Problem 6. Prove that if a function f :[0,1] — R is Lipschitz, with

|f(x) = f(y)] < Mz -y

for all z,y € [0,1], then there is a sequence of continuously differentialbe functions fy, : [0,1] — R
such that

(i) |fl(x)] <M for all x € ]0,1];

(i1) fu(z) — f(x) for all z € [0,1].

Proof. 1t’s easy to prove f is aboslutely continuous = f is of bounded variable = f is differentiable
a.e. = [’ exists a.e.

Also, when [’ exists, |f/(x)] < M.

Then there exists simple @1, ¢o,... such that 0 < |¢1| < |pa] < -+ < o] < -+ < |f/| £ M and
¢, — f/ uniformly on [0, 1] where f’ exists. Define

fula) = / ot + 10)  f(x) = / " Pt + 1(0)

Then |f] (2)| = |¢n(z)| < M and for all z € [0, 1],

fule) — F(2)] < / Jont) — FB)ldt 5 0

since ¢,, converges to f’ uniformly. O

Problem 7. Given f : R — R bounded and uniformly continuous and K, with K, € L'(R) for
n=1,2,3,... such that

(i) |Knlh <M <00, n=1,2,3,...
(i) ffooo K,(x)dr — 1 as n — oo.

(iii) f{me|>5} |Kn(z)] = 0 as n — oo for all § > 0.

Show that K, x f — f uniformly, where
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K * f(x /K — y)dy.

Proof. For all z € R,

Ko f() - |<\K*f [ dy\ ]/ Ko() () dy — £(2)
< [" 1Kl =) - ()Idy+||f||oo‘/ Kol dy—l\
< [ IRWllre = y) - f@ldy+ e

— 00

=/ |Kn(y)||f($—y)—f($)|dy+/ Kn@)f(x —y) — f(z)|dy + ce
B(0,5) B(0,5)¢
For fB(O@ | K ()| f(x —y) — f(x)|dy, by uniform continuity we ahve

|l - s@ldy<e [ (galdy < Rl < et
B(0,5) B(0,6)

For fB(O 5 | K ()| f(x —y) — f(z)|dy, by the third assumption we have
[ i -y - Sy <20l [ Kal)ldy < 20e
B(0,6)¢ B(0,8)c
Let € — 0, so we've got it. O

Problem 8. (a) Construct a Lebesque measurable subset A of R so that for all reals a < b, 0 <
m(AN [a,b]) <b—a where m is Lebesgue measure on R.

Proof. Enumerate all rational intervals I, I, .... For each I, construct a fat Cantor set IN,, C

I, with positive measure.
Since N, is nowhere dense, there exists some interval INn C I,, and 1:; NN, = 0.
Construct another fat Cantor set M,, C I:L and define A := UM,,.

Now, for all I = [a,b] there exists some n such that N, C I,, C I with N, N A = 0 (can be done
by induction). We see m(AN1I) > m(M,) > 0 and

m(ANT) <m(I\N,) =m(I) —m(N,) <m(I)=>b-—a.

(b) Suppose A C R is a Lebesque measurable set and assume that

b—a

2

m(AN (a,b)) <
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for any a,b € R, a < b. Prove that u(A) = 0.

Proof. Consider an open set U 2 A with m(U\A) < e. Then U = U2, (a;,b;) and measurable.
So

m(U)=m(ANTU)+mUNAY) <m(ANU) +e¢

Since

(AN = m (AN (U2 (00, 00)) = Y m(A0 (@,b)) < Y 25 = Zm(©)

then

m(U)<%m(U)+e = mU)<2 = m(A)<mlU)—0

Problem 9. Prove or disprove that the unit ball of L7(0,1) is norm closed in L'(0,1).

Proof. Let

1
B::{f|/0 |f|7dm§1}.

Let {f,} C B such that f, — f in L'. We want to show f € B < fol |f|7dx < 1.

Since f,, — f in L', then f,, — f in measure. Thus, there exists a subsequence f,,, such that f,, —

f a.e.

Therefore, |f,,|” — |f|” a.e.. By Fatou’s Lemma,

1 1
/ |f|7d33 < liminf/ \fnk|7dx <1.
0 k 0
O

Problem 10. Let C be the Banach space of convergent sequences of real numbers under the supre-
mum norm. Compute the extreme points of the closed unit ball, B, of C and determine whether B
is the closed convex hull of its extreme points.

Proof. If |z(m)| < 1 for some m then there exists 6 > 0 such that |xz(m) —d] < 1, |z(m) +J] < 1.

Define y1,y2 € B such that

y1(n) = z(n) for n #m and y;(m) = z(m) + 4§
y2(n) = z(n) for n # m and ya(m) = x(m) — ¢
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Then y; # yo and x = %(yl + y2) so z is not an extreme point.

If |z(n)| = 1 for all n, if z = Ay1 + (1 — X)ys for y1 # y2 € B then since |y;(n)| < n,

[z(n)] = 1= [Ay1(n) + (1 = Ng2(n)| < Alya(n)] + (1 = A)lya(n)] <1

Equality holds only when y;(n) = y2(n) = £1. So y1 = y2 so z is indeed an extreme point. Also, x
needs to be convergent so

Ext(B) ={z | |z(n)] =1 3N s.t. z(n)=1or —1foralln > N}.

Problem in my proof of determining whether B is the closed convex hull of it’s extreme points. O

Problem 11. Show that every conver continuous function defined on the convex unit ball of a re-
flexive Banach space achieves a minimum. (A convex function on a convexr subset A of a normed
space is a real valued function, f, on A s.t. for every x,y € A and every 0 < A < 1 we have

JAz+ 1 =Ny) <Af(z)+ 1 =A)[f(y).)

Proof. Recall the following classical result in convex analysis: f is lower-semicontinuous convex <
f is weakly lower-semicontinuous convex = f can achieve minimum (since the unit ball is weak-
compact).

Then by Alaoglu, closed unit ball of a reflexive Banach space is weak-compact = weak™-compact.

here O

7 August 2016

Problem 1. Let A be the set of all real valued functions on [0,1] for which f(0) = 0 and |f(t) —
f(8)|1/2St—sforall0§3<t§1

(a) Prove that A is a compact subset of C|0,1].

Proof. It should be clear to the reader that this question requires Arezela-Ascoli Theorem. To
see A is equicontinuous, fix z € [0,1] and € > 0. Then for y € B( /€, z),

[f(2) = fy)l < o —yl* <e

For pointwise bounded, for = € [0, 1] then |f(x)|*/? = |f(x) — f(0)|*/? < z implies |f(z)| < 2.

To see A is closed, take a sequence {f,} C A such that f, — f (i.e. for all open U containing
f, there exists N such that for all n > N, f,, € U), then

[F() = F) () = Fa(O + [ £a(t) = Fa(s)] + [fuls) = f(s)] < 2¢ + [t — s

This holds for all € > 0 so |f(t) — f(s)| < |t — s>
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Clearly, f(0) =0 so f € A. Thus A is closed so by Arzela-Ascoli, A is compact in C[0, 1]. O
(b) Prove that A is a compact subset of L1]0,1]

Proof. Consider the map

id : C[0,1] — L*[0,1]
f=1rf
Since ||id || = fol |fldz < ||f|lo, id is & bounded map.

From (a), A is compact in C0,1] so id(A) = A C L0, 1] is also compact.

Remark: A is also closed in L0, 1] since all compact subsets of a metric space is closed. O

Problem 2. (a) Let f(x) be a real valued function on the real line that is differentiable almost ev-
erywhere. Prove that f'(xz) is a Lebesque measurable function.

Proof. Let

fle+1/n) - f(z)
1/n

fn92) =

so fn — [’ almost everywhere. Since f is differentiable almost everywhere, then f is continuous
almost everywhere.

Claim: f is Lebesgue measurable

Let D = {all discontinuities of f} so m(D) = 0 and D is measurable. Let E = D¢ = {x |
f is continuous at x} so F is measurable too.

f~H(a,00)) = 7 ((a,00) N E)U f~((a, 00) N E)
Since f|g is continuous, f~!(a,00) N E = f|5'(a,00) is open in E. So f~'(a,00)NE =UNE
for some open set U C R. Then f~!(a,00) N E is measurable.

Now f~!(a,00) N E¢ C E°, so completeness implies f~1(a,00) N E€ is measurable. Thus, f is
Lebesgue measurable so the claim holds.

So each f, is measurable, thus f/ = lim f,, almost everywhere is also Lebesgue measurable. O

(b) Prove that if f is a continuous real valued function on the real line, then the set of points at
which [ is differentiable is measurable.

Proof. Let

fl@+h) - f(x)

F(xz,h) = W

which is continuous on R x (R\{0}). If z is a differentiable point of f, then for all € > 0, there
exists a § > 0 and some Y such that for all h with |h| < §, we have |F(z,h) = Y| <e. ie.
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D = {z | differentiable point of f} = mUU ﬂ {z | |F(x,h) = Y| < €}

e 6 Y |hl<e
For fixed €,6,Y, h then {z | |[F(z,h) — Y| < €} is open, thus Borel.
By taking only rational €,6,Y, h we have D Borel measurable. O

Problem 3. (a) Let f be a real valued function on the unit interval [0,1]. Prove that the set of
points at which f is discontinuous is a countable union of closed subsets.

Proof. f is continuous at p if for all n, there exists an open U containing p such that |f(z) —
f(y)] < 1/n for all x,y € U. Fix n and let

V, = U{p s.t. there exists an appropriate U} = U{appropriate U}
P

Hence, V,, is open. Then

{points where f is continuous} = ﬂ Vi

n

So {points where f is discontinuous} = | J,, V¢ where V¢ is closed. O

(b) Prove that there does not exist a real valued function on [0, 1] that is continuous at all rational
points but discontinuous at all irrational points.

Proof. By (a), the irrational poitns would be a countable union of closed subsets. Note that be-
cause any open set in [0, 1] contains a rational point, then if Q[Co,1] = UU,, F» where F), is closed
and F° = (). Then

[07 1] = Q[O,l] U Q[Co’l] = U {q} U (U Fn>

q€Q

So [0, 1] is a countable union of nowhere dense sets. This contradicts Baire-Category Theorem.
O

Problem 4. Let (2, A, ) be a finite measure space and let (f,,) be a sequence of measurable func-
tions on X that converges pointwise to zero. Prove that (f,) converges in measure to zero. Show
that the converse is false for [0,1] with Lebesgue measure.

Proof. Fix ¢ > 0. To show pu({z | |fo(z)| > €}) — 0, we need ¥m 3N, such that Yn > N,
p{z | fu(@)] > €}) < 1/m.

By Egoroff’s Theorem, there exists some F C X with u(E) < 1/m and f, = 0 uniformly on E°.

Thus, 3N, such that for n > Ny, |fn(2)| < € for all x € E° so
1
ple | 1fae) > D) <p(E) < = wn> N,
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Thus, p({z | [fu(z)| > €}) = 0.

Counterexample: Let fi = X 1], f2 = X[o,1/2), f3 = X[1/2,1]s - -5 fn = X[jj2r (j41)/2%) for n =
2F +5,0<j <2

So f, does not approach 0 pointwise, but f,, — 0 in L', hence in measure. O

Problem 5. If f is Lebesgue integrable on the real line, prove that limp,_q [ | f(x+h)— f(x)|dz = 0.

Proof. Recall: the set C.(R) of continuous, compactly supported functions is dense in L!(R).

Fix € > 0 and find g € C.(R) with ||f — g|j1 < €. Since g is continuous, lim, |g(z + 1/n) — g(z)| =0
ofr all z.

Since g is compactly supported, then there exists some compact K such that supp(g) C K.

So there exists a compact K’ such that supp(g) Usupp(g(x + 1/n)) C K’ for all n (this follows from
1/n > 1 for all n since we can take K' = {k+x | k € K,z € [0,1]}).

Dini’s theorem implies that |g(z + 1/n) — g(z)| = 0 so

/ Rlg(z + 1/n) — g(z)|dz = / 9z + 1/n) — g(z)|dz - 0

/

So then

/R @+ 1/n) — f(2)lde
< / @+ 1/n) — gl + 1/n)|de + / gz + 1/n) — g()|dz + / 9(2) — f(@))dz

<26—&—/R|g(x+1/n)—g(x)|dx—>26

Since it holds for all € > 0 then lim,, [, |f(z +1/n) — f(x)|dz = 0. O
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Problem 6. Prove or disprove that there exists a sequence (Py,) of polynomials such that (P, (t))
converges to one for every t € [0, 1] but fol P, (t)dt converges to two as n — oo.

Proof. Consider

n’x x € [0,1/n]
fo(@) = —nPz+2n+1 z€[1/n,2/n]
1 x € [2/n,1]

(that is, fy linearly connects the points (0,1),(1/n,n+ 1), (2/n,1),(1,1).)
S0 fu(z) — 0 for all z € [0,1] but [ fo,(z)dx = 2.

Then by Stone-Weierstrass, we can find polynomials P, such that ||f, — Pnllcc < 27". Then Vx

[Po(x) = 1] < |Po(z) = fu(2)] + [fu(z) = 1] =0

and [ |fn(z) = Pu(2)|dz — 0 50 [ Py(z)dx — 2. O

Problem 7. Let (f,) be a uniformly bounded sequence of continuous functions on [0,1] that con-
verges pointwise to zero. Prove that 0 is in the norm closure in C[0,1] of the convexr hull of (fy)
(the norm is of course the sup norm on C[0,1]).

Proof. By the Geometrical version of the Hahn-Banach,

comv{fu} " = conv{fu}

———weak
We just need to show that 0 € conv{f,} K, By Riesz-Representation Theorem, C[0,1]* = M]0, 1].
For all p € MJ0,1],

Jndp
[0,1]

<)
[0,1

)

]Ifn,ldlu\ —0

by Dominated Convergence Theorem. Thus, f,, — 0 weakly. O

Problem 8. Assume that X is a reflexive Banach space and ¢ is a continuous linear functional on
X. Prove that ¢ achieves its norm; that is, prove that there is a norm one vector x in X such that
o(x) = ||z||. Show by example that there is a continuous linear functional on the Banach space £1
that does not achieve its norm.

Proof. Recall: X reflexive = By is weak-compact = By is weak-sequentially compact.

There exists a sequence {z,} C By such that ¢(z,) 7 |||

Choose a weakly-convergent subsequence {x,, } that converges to z € Bx. Then for all p € X*,

‘P(mnk) - ‘P(I)
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In particular,

||¢H = liTILn (b(xn) = h’in (b(xnk) = (b(.%‘)

Alternative Proof. For all ¢ € X*, by Hahn-Banach Separation Theorem, there exists some z** €
X** such that ||z**||x+ =1 and x**(¢) = ||} x+-

Since X is reflexive, 3x € X such that £ = 2** so

[0l x- = 2™ () = () = ¢().

Counterexample: Choose y = (1 —1/n), € ¢£>°. Then Vz € {1,

£

n=1

y(r) =

)= 3 (1= ) ol < X el =Bl = 1 = ol

O

Problem 9. Suppose that X is a non separable Banach space. Prove that there is an uncountable
subset A of the unit ball of X such that for oll x # w in X, ||z — y|| > 0.9.

Proof. By transfinite induction, construct (z,)a < wy C Bx where w; is the uncountable ordinal.

Given a < wy, let U, := span{zs | 8 < a} which is separable.

Since X is not separable, U, C X.

By Riesz-Lemma, there exists ||z,|| = 1 such that d(z,,U,) > 1 — € (put € > 0.1).
So (zq) satisfies ||xq — || > 0.9 and is uncountable.

Alternative Proof if it were not restricted to Bx. Fix r > 0. Zornicate over all subsets A C X such
that Vo # y, |z —y|| > r.

Find a maximal subset A, C X as above. If A, is uncountable, by scaling of r, we’re done.

Suppose not, so each A, is countable. Enumerate as {z], },,. By maximality, for all z € X, Ve > 0 if
r > 1/€ then there exists n € N such taht ||z — )| <7 < e (i.e. d(z,A,) <7 Vre X).

Let A ={J,cqAq so A is a countable dense subset of X. Contradiction!

Therefore, there exists ¢ € Q such that A, is uncountable. Consider A’ = {0(‘1—930 | x € A} so for all
ry €A,

o’ 'n]xyanm>09

Thus, there eixsts an uncountable A C X such that for all z,y € A, || — y|| > 0.9. O
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Problem 10. If A is a Borel subset of the line, then E = {(x,y) | © —y € A} is a Borel subset of
the plane. If the Lebesgue measure of A is 0, then the Lebesgue measure of E is 0.

Proof. Define f(z,y) = x —y : R> — R. This is continuous. Let

A:={SCR| f9) is a Borel set of R?}

Then A is a o-algebra (easy to check). If S is open, then f~1(S) is open in R?, thus Borel. So {open sets} C
A and so the Borel algebra is a subset of A. In particular, A € A.

Let E = f~1(A) which is a Borel set of R?. If m(A) = 0, let

EV={zeR|(z,y) e E}=y+ A

This is a null set since m(y + A) = m(A) = 0. Thus, (m x m)(E) = [ m(EY)dm(y) = 0. O

8 January 2016

Problem 1. Let E be a measurable subset of [0,1]. Suppose there exists a € (0,1) such that

m(ENJ)>a-m(J)
for all subintervals J of [0,1]. Prove that m(E) = 1.

Proof. Tt’s easy to see that m(FE) < 1.

For any open U C [0, 1], write U = U2, I; where each I; is an open interval. Then

m(ENU) = Zm(E NI > Zam([i) = am(U).

Assume m(E) < 1, so m(E€) := a > 0. We may find some open U O E€ such that m(U N E) =
m(U\E®) < e. So

e>m(UNE)>am(U) > am(E) = aa > 0.

Letting € — 0, this leads to a contradiction. O

Problem 2. Let f,g € L*([0,1]). Suppose
1 1
/ x”f(x)dzz/ x"g(z)dx
0 0
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for all integers n > 0. Prove that f(x) = g(x) a.e.
Proof. See # 2 from January 2017. O
Problem 3. Let f,g € L*([0,1]). Assume for all functions ¢ € C*[0,1] with ¢(0) = ¢(1) we have

1 1
/ F(t)! (1)t = — / o(o(t)dt,
0 0

Show that f is absolutely continuous and f' = g a.e.

Proof. Fix x € [0,1] and construct h,, via

nt t€0,1/n]
(1) = 1 te[l/n,x]

l—n(t—2z) tez,z+1/n]

0 tez+1/n,1]

(i.e. hy(t) linearly connects the points (0,0),(1/n,1), (z,1), (z + 1/n,0), and (1,0).

Since C*°[0, 1] is dense in || « ||«, We may use this example rather than some ¢ € C*[0, 1] (i.e. pass
to the continuous case). Then

1/n

1 z+1/n
/0 FOR,(t)dt = ; f(t)ndt+0+/ f@)(=n)dt +0 — f(0) — f(x)

where the limit follows from Lebesgue Differentiation Theorem. Also,

1 1/n T z+1/n z+1/n
/ g(t)hn(t)dt:/ nt g(1) dt+/ g(t)dt+/ g(t)dt—/ n(t— 2)g(t) dt + 0
0 0 ~~ 1/n z z —
—0 —0 as t—x

z+1/n
— O+/ g(t)dt — 0
1/n

where the limit again follows from Lebesgue Differentiation Theorem. Taking the limit as n — oo

on both sides, we get [ g(t)dt = lim,, fll/—:ll/n g(t)dt. So

1 1 x
£0) = @) =tim [ 5010 =tim= [ gm0t == [ g

Implying f(z) = f(0) + [, g(t)dt. Then
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flz+h) - f(x) FO0) + [ g()dt — £(0) — [ g(t)dt

!/ _ . _ . _ . —
o=~ = h T
and f is absolutely continuous. O

Problem 4. Let {g,} be a sequence of measureable functions on [0,1] such that

(i) |gn(z)| < C, for a.e. x €[0,1]

(i) and lim, foa gn(x)dz =0 for every a € [0,1].

Prove that for each f € L1([0,1]), we have

1
lim f(x)gn(x)dx = 0.

n—oo 0

Proof. Let S = span{X[pq | @ € [0,1]}. Then S is dense in the space of step functions in L'. Step
function space is dense in L! so S is dense in L. Then for every f € L'[0, 1] there exists a sequence
hp = ZlK:"i Ki(m)X[O,ai] — fin L'

For a fixed m,

1 Ko, a;
lim / hingndz = > K™ lim / gn(z)dz =0
m Jo i—1 mJo

where the second equality follows from (ii). For every € > 0, we can choose some m such that ||h,, —
f||1 < €.

For that m, choose soem N such that ‘fol hmgndx’ < e for all m > N. Then

/O f(2)gn(2)dz| < / (F(@) = hon(2)) gn ()| + / i (@) g ()l
< elf = bl + €
<(c+1)e
Thus, fol f(x)gn(z)dx = 0. O

Problem 5. (a) Let X be a normed vector space and'Y be a closed linear subspace of X. Assume
Y is a proper subspace, that is, Y # X. Show that, for all 0 < e < 1, there is an element x € X
such that ||z|]| =1 and

inf — >1-—
ylgyl\x yll €
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Proof. Fix some zo € X\Y, denote infycy |29 — y|| = d > 0. Now for every € > 0 choose some
§ > 0 such that -4 > 1 —e.

d+3
Choose yo € Y such that ||zg — yo|| < d+ 9. Let z = Hig:gg\l so ||z|| =1 and
. . o — Yo 1 . , d
inf ||t —y| = inf ||———— —y|| = —— inf ||xg — >——>1—¢
i = ot | ety o] = g o= 1>

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector space, then the unit
ball of X is mot compact.

Proof. If we construct a sequence {x,} such that there are no convergent subsequences, we are
done.

Assume we have chosen {x1,72,...,2,-1} C Bx. Let Y = span{z1,22,...,7,_1}. By part (a),
there exists some z,, € B such that ||z,| =1 and inf ey ||z, —y|| > 1/2.

Then we have a sequence {z,} C Bx such that ||z, — z,,|| > 1/2 for all n # m so no convergent
subsequence may exist. O

Problem 6. Let {fr} be a sequence of increasing functions on [0,1]. Suppose

> fila)
k=1

converges for all x € [0,1]. Denote the limit function by f, that is,

f@) =3 fula).
k=1

Prove that

@) => filx), ae xel01].

k=1

Proof. Tt’s easy to see f is increasing, so it’s differentiable almost everywhere. Let Fy = 25:1 fn
so Fy — f for all € [0,1]. Choose an increasing sequence Ny, such taht 0 < f(1) — Fy, (1) < 2k,
Then

o0 oo

(f(1) = Fr () <Y 27 =1.
k=1

k=1

Now, let g(x) = Zl?;l (f(x) - FN—k(x)) = 2211 Zzosz,.g.l fn(x)

. [o’e) .. . . .. .
Since >~ n, 41 fn(7) is increasing as x increases, then g is increasing.
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So 0 < g(x) < g(1) <1 and g is differentiable almost everywhere. Now,

o+ h) — () = 7 S (a4 h) — F (4 1) = (F(@) ~ F, (1),
k=1
So since f'(x) = Fn, (z) = 22"y, 41 fa(2) is increasing, ¢'(x) > 3777, f'(x) —Fy, (x) > 0. Therefore,
Yooy f'(x) = Fy, (x) converges. So limy, Fy, (x) = f'(x), implying f'(z) = Zk:l f1.(x) almost
everywhere. O

Problem 7. Suppose f,g : [a,b] = R are both continuous and of bounded variation. Show that the
set

{(f(t),9(t)) € R? | € [a, b]}

cannot cover the entire unit square [0, 1] x [0, 1].

Proof. Define r(t) = (f(t),g(t)). Since R? is finite dimensional, /! ~ ¢2. Since f and g have bounded
variation, so does r. Thus, we know that whenever a = zp < 1 < 22 < ... < x, = b we have

S () = r(@ia)|l2 < M.

Now suppose [0,1] x [0,1] can be covered. Divide [0, 1] x [0, 1] into n? small squares with center z;
and the length of each edge is 1/n. Then choose t; such that r(t;) = z;.

Now relabel/reorder the t; in increasing order so that s; < sp < ... < s,2. Then since the distance
between two centers is at least 1/n,

n?-1 n?—1

S Ir(sgen) = r(ss)lla > S 1/n=""" ~ o0,
j=1

Jj=1

This is a contradiction! O

Problem 8. Prove the following two statements:

(a) Suppose f is a measurable function on [0, 1], then

[ fllzee = lim [|flz»
p—00

Proof. Tn [0,1], by Holder, we know that £, < [|flly when p < ¢. Also, [|fll, < |fllo for all p
Therefore, ||pr /< || flloo and so lim,, ||pr < |1 flloo-

On the other hand, for every € > 0, let E = {z | [f(z)] > ||f]lcoc — €} and 0 < p(E) < 1 since
I£lloe = esssup|f(z)]. Then |[f|I5 > [5 |f[P > ([l — €)”p(E). Take p — oo so lim, || f]l, >
[ flloo — €, implying limy, [ f{l, > || f|oo- O

(b) If f,, >0 and f, — f in measure, then [ f <liminf [ f,.
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Proof. Choose a subsequence { f,,, } such that limy [ f,, = liminf [ f,. Since f, — f in mea-
sure, f,, — f in measure, so there exists a further subsequence { fnkz} — f a.e. Then by Fa-
tou’s Lemma,

/f = /11?1 f"kz < limzinf/fnkl = liin inf f,,, = limninf/fn.

Problem 9. Suppose {f,} is a sequence of functions in L([0,1]) such that ||fullre < 1. If f is
measurable and f, — f in measure, then

(a) € L2([0,1]);

Proof. f, — f in measure implies {f,,} — f almost everwhere which implies |f,, > — |f|?
almost everywhere. By Fatou’s Lemma,

1 1
/ |f|?dx < lim/ | | Pde < 1.
0 nJo
So f € L2 O
(b) fn — f weakly in L?;

Proof. Let g € L?. We want to show that f,g — fgin L'. Now, f, — f in measure, then
fng — fg in measure and thus is Cauchy in measure.

Define A, ,, = {z € [0,1] | | fng(z) — fmg(x)| > €}. Then

1
/ Fng—fonglde = / Fag(@)— Fong (@) dat / g (@)= Fng(@)|d < / Fugl| Frglda-te.
0

Am,n (0,1\Am,n Am,n

We know for all € > 0 there exists some ¢ > 0 such that p(A4, ) <9,

1/2 1/2 1/2
/ gl < ( / Ifn|2dw> ( / g|2dx> < ( / g|2> <e
A A7TL,7L Am,,n Am,,n

m,n

since ¢ € L?. Then since {f,g} is Cauchy in measure, there exists some N such that for all
m,n > N, u(Amn) < 0. Then fol |fng — fmgldr < 3¢ implies {f,g} is Cauchy in L.

Therefore, there exists some h € L' such taht f,g — hin L.

We know f,g — fg in measure, so f,, g — fg almost everywhere. Also, Ve > 0, 3§ > 0 such
that [, [fn.g| < € for all A such that p(A) <.

Therefore, {f,,} is uniformly integrable. By Viteli Convergence Theorem, f,,, g — fg in L.
Thus, h = fg so f,g — fgin L'. So f, — f weakly.

Note: We could also have used the uniqueness of limit in the measure. O

(c) fn — [ with respect to norm in LP for 1 <p < 2.

o1
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Proof. Define E,, = {z | |fn(z) — f(x)| > €}. From problem 8 on this exam, we know || f,, ||, <

[fnll2 < 1 and |[f]l, < [|f]l2 < oo. Then

Jit=tr= [ Aa=sps [ A= pras<et [ np i

where the inequality follows from the fact that |a — b|P < 2P~1(|a|? + |b|P).

Since f, — f in measure and m(E,) — 0 as n — oo, so since f € L” then [, |f|Pdz — 0 as

n — oQ.

For some A C [0, 1], we have

1
/A fal? = / FalPXa < 1 PllypXallaja—y = [ FalZm(A) =5 < m(4)75.

So similar to the previous case, we can take m(E,) small enough such that [, |fn[Pdz < € for

any fixed 1 <p < 2. O
There are a few hints in the qual
Problem 10. Suppose E is a measurable subset of [0, 1] with Lebesque measure m(E) = %.
Show that there exists a number x € [0,1] such that for all v € (0,1),
r
m(EN(z—rax+r))> T
Hint: Use the Hardy-Littlewood maximal inequality
3
m(fa € R | Mf(2) > o}) < 2||fll
for all f € LY(R). Here M f denotes the Hardy-Littlewood Maximal function of f.
Proof. The Hardy-Littlewood Maximal function of X 4 is
L[t 1
MX 4 = sup — Xa(x)dx =sup —m(AN(x—r,z+71)).
r>0 21 Jp r>0 4T
Assume the result is not true. Then Vz € [0,1], 3r, € (0,1) such that m(E N (z — z,,z + x,)) < 5.
This happens if and only if im(E N(z —ry,x+1r,)) < 1/8 which is equivalent to 2im m(E°N (z —
T, T+ 1Tg)) > %.
Now set A = E° so MXa(z) > L. However,
7 8 24 1 24
1| M >y <3l =2 = =
m({z € 0,1 MXa(@) 2 £}) < 32 lall = 2o =
But we need it to be equal to 1. Contradiction! O
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9 August 2015
Problem 1. Let f: R — R be a Borel measurable function. For each t € R define

filz) = ft+z), xeR.

Prove that fi(x) is a Borel measurable function (in x) for each fized t € R.

Proof. We see that

fi i (—o0,a) ={z | flx +t) € (—o0,a)} ={x |z +t € f ! (~00,a)} = f ((~00,a)) —t =B —t.

Since Ty(z) = x + t is continuous, then T; ' (B) = B — t is Borel. O

Problem 2. Justify the statement that

smmy slnxy)
[ [ [ [ g,

w‘ dxdy < co. But

Proof. We just need to show that fol fol 1y

/2
(z —y)sin(zy)
:£2+ 2 ‘d dy—/ /

So the function is in L' and Fubini gives us the desired result. O

/2
rcosf — rsm9’| |d7“d9<2/ / drdd — \/3m < oo,

Problem 3. Assume that (f,) is a sequence in C[0,1].

(a) Show that (fy) converges weakly to 0 if and only if (fn) is bounded in C[0,1] and lim, o fn(t) =
0 for all t € [0,1].

Proof. =) We know C[0,1]* = M[0,1]. Then f,, — 0 weakly implies [ f,du — 0 for all p €
M]0,1]. Choose p = d; so

/fnd5t = fu(t) =0 Vtel0,1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

X :CJ0,1] — C[0,1]** = M]J0,1]*
X(fn)(p) = p(fn)
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Since u(fn) — 0 then X(f,)(1n) — 0for all u € M][0,1]. Since convergent sequences are
bounded, then sup,, |X(f,)(p)| < M.

By the uniform boundedness theorem, sup,, ||[X(fn)|| < oo. By isometry, || fn]| = ||X(fn)] so
sup,, || fnll < oo.

<) By Dominated Convergence Theorem, f,, — 0 in L' (u). So therefore, | [ fodu| < [|fald|u| —
0. So f, — 0 weakly. O

(b) Show that if (f,) converges weakly in C|0,1], then it converges in norm in L,[0,1] for all 1 <
p < o0.

Proof. WLOG f, — 0 weakly. By (a) we know f,(t) — 0 and ||f,]|e is bounded. Thus,
| fr ()P — 0 pointwise and ||| fn||loo is bounded.

By the Dominated Convergence Theorem, we have || f, ||, — 0. O

Problem 4. Let A be a Lebesgue null set in R. Prove that

B:={e" |z e A}
1s also a null set.

Proof. First, assume A C [0,1]. Then f(z) = e® is Lipschitz-continuous (i.e. |f(x)— f(y)| < M|z —y]
for some M). Since m(A) = 0, we can find U2 | By, where B, are open intervals such that A C
U By, and m (U2 By) < €. Then

m(f(A)) < m (f (U2, BL) < 3 Mm(By) < Me.

So m(f(A)) = 0. Now we can write A = US2 ANn,n+1]so m(f(4) =3 _m(f(AN[n,n+

n=-—oo oo

1])) =0. O
Problem 5. (a) Define absolute continuity of a function f : R — R and of a function f : [a,b] —
R.

Proof. The function f : [a,b] — R is absolutely continuous if Ve > 0, 36 > 0 such that when-
ever a finite sequence of disjoint subintervals (zy,yx) C I satisfies Zszl(yk — zp) < 0 then

Yo [f (k) = fap)] < e O

(b) Show that if f and g are absolutely continuous on [a,b], a,b € R, a < b, then f - g is absolutely
continuous on [a,b].

Proof. Since f and g are continuous on [a, b], then they achieve a maximum so we can let My =
sup{f(z) | a < x < b} < oo, My =sup{g(z) | a <z < b}.

Fix € > 0. Then there exists some d¢,d, > 0 such that
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€

Sy —ar) <y = Z|f<yk>—f<xk>\<2Mg

€

Dol —m) <8 = Y 1f ) — fla)l < 20,

Choose finite and disjoint such that ) yx — 2 < min(dys,dy). Then

D 1 we)a(ue) = Fa)g@)l < Y1 )alyr) = Fu)g@)| + D1 (wr)g(an) — far)g(an)]
< 1 Fwlla(ur) — gl + > lg(@n)l|f () — f ()]
< My lglur) — gzl + My > | f(y) = f(ax)]

€

€
< Mfi?Mf —|—M972M
g

=€
This is what we wanted. O

(c) Give an example to show that (b) is false if [a,b] is replaced by R.

Proof. Take f(x) = g(x) = x so fg = 2%. Then

|(z+6)2 — 22| = |2 + 20z + 0% — 2% = |202 + 0%| - 00 as z — oo.
So there does not exist any d such that |fg(y) — fg(z)| < € (even for just one intervall) O

Problem 6. Let X and Y be Banach spaces and T : X — Y be a one-to-one, bounded and linear
operator for which the range T(X) is closed in Y. Show that for each continuous linear functional ¢
on X there is a continuous linear functional ¢ on'Y, so that ¢ =Y oT.

Proof. Since T : X — T(X) is bijective, by teh open mapping theorem, T~! is bounded so ¢po T~ €
T(X)*.
Then by the Hahn-Banach, there exists some ¢ € Y* such that ¥(y) = (¢ o T 1)(y) for all y € Y.

For any z € X, T(z) =y € Y and we have

Since this is true forall z € X, ¢ = o T. O

Problem 7. State the Open Mapping Theorema nd the Closed Graph Theorem for Banach spaces.
Derive the Open Mapping Theorem from the Closed Graph Theorem.

Proof. Assume T : X — Y is surjective, linear, and bounded. WLOG we want to show B(0,d) C
T(B(0,1)) for some § > 0. Define
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G:Y — X/ker(T)
y— [x] =z +ker(T) wherey=Tx

Then G is well-defined, because T is surjective.
Claim: G is closed.
Assume y, — y in Y and G(y,) — [z] in X/ ker(T). WTS G(y) = [z] & Tx = y.

We have T'z,, = yp, so since [z,] — [z] then ||[z,] — [z]|| = inf.cker7 ||€n — 2 — 2|| = 0. Then take
(zn) C ker(T') such that ||z, — 2z — z,|| < 1/n. So z, — 2z, — . Then

1T (zn — 2n) = T(@)|| < |T|[|xn — 2 — 24| = 0.

Thus, T(x, — 2,) = T(z,) = T(z). And also T'(z,, — 2z,) = T(2n) = yn — y. Together, these imply
T(x) =y. So G is closed, and the claim holds.

By the closed graph theorem, G is bounded so there exists some § > 0 such that G(B(0,0)) C
B(0,1) in X/ ker(T). Now, let y € B(0,9) so then [z] = G(y) € B(0,1). Thus, if inf_cyer(r) |2 —2| <
1, then there exists some zy € ker(T') such that ||z — zp|| < 1. This implies y = Tz = T'(z — 20) €

T(B(0,1)) so B(0,8) C T(B(0,1)). O
Problem 8. Let Y be a closed subspace of a Banach space X, with norm || - ||. Let || - |1 be a norm
on'Y which is equivalent to || - ||, meaning that there is a C > 1 so that

1
5||y|\1 <yl < Cllylls for ally €Y.

Let S be the set of all linear functions ¢ : X — R, so that

(i) lo(y)| < llylly for ally €Y, and
(i) |o(x)| < C||z|| for all x € X.

Prove the following statements

(a) ||z|l2 :=supyegs |9(x)|, z € X, defines a norm on X.

Proof. Easy to check. O

() llyllz = llylls fory €Y.

Proof. Since [¢(y)| < [lyllx then [[y[l2 < [|y[l:.

On the other hand, from the Hahn-Banach separation theorem, for all y # 0, there exists some
¢ € X* such that [|¢] =1 and ¢(y) = [lyllx so [lyll2 > [yl
To check that ¢ € S: [¢(y)| = [lyll» and |p(z)| < [|[l[lz]| = |- O
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(¢) The norms || - |2 and || - || are equivalent on X.

Proof. We just need to consider this on X\Y. For x € X\Y, we have

[z||2 = sup [¢(z)| < C||z]|.
peS

Again by Hahn-Banach, for & # 0, there exists some ¢ € X* such that ¢(z) = ||Z|| and ||¢] = 1.

Define ¢ = ¢ so [[¢]| = &.
Then to see ¢ € S:

o [b(2)] < &lle]l < Cllall for all 2 € X
o [ < Lyl < llylh forall y € v

So v € S and |Z]| > [(2)| = 5|Z] so Fll=ll < [lzll2 < Ca]. H

Problem 9. Let f be increasing on [0,1] and let

fle+h) = flz—h)

g(z) = limsup , for0 <z <1.
h—0 2h
Prove that if A= {x € (0,1) | g(x) > 1} then
() = f(0) = m*(A).
Proof. For x € A,
lim sup feth) —fle—h) >1
h—0 2h

so for all € > 0, there exists some h > 0 such that 2h < € and W > 1 if and only if
flx+h)— f(x—h) > 2h.

Let I = {(x —h,z+h) | ® € A,2h < ¢,(x — h,z + h) C [0,1]}. Then I covers A in the sense
of Vitali. By Vitali’s Lemma, for every ¢ > 0, there exists I, I, ..., I,, disjoint from I such that
m* (A\U, I;) < e.

Since m*(A) = m* (A\ U, I;) + m* (U I;) for all I; then write I; = (x; — h;,x; + h;) and
1 —hi <z +h <xz9—hy <...<2xy+ h,. Then

m*(A) < e+ 2h; <e+ Y |f(wi+hi) = flai— hi)|.
=1 i=1

Since f is increasing, > i, (f(z;i + hi) — f(z; — hi)) < f(1) — f(0).
So m*(A) < e+ f(1) = f(0) so m*(A) < f(1) = f(0). 0
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Problem 10. (a) State a version of the Stone-Weierstrass Theorem.

(b)

(c)

Proof. See textbook. O

Let A be a uniformly dense subspace of C[0,1] and let

B:{F(m)F(m):/Oxf(t)dt, nggLfeA}.

Prove that B is uniformly dense in

Co[0,1] := {g € C[0,1] | g(0) = 0}.

Proof. Define B' = {F(z) | F(z) = [ f(t)dt,0 < x <1, f € C[0,1]}. First show B is dense in
B’
For every F € B', G = B, F(z) = [; f(t)dt and G(z) = [ g(t)dt. Then

1
IF(z) = G(@)]loo < / 1 = gldt < |If = glloo-

Since A is dense in C|0, 1], then ||f — g|lco < €50 ||F' — G||oc < €. So B is indeed dense in B’.

Then we will show B’ is an algebra (in order to use Stone-Weierstrass). Let F,G € B’ so

F)Gla) = [ s0at [aas= [ [ foaasa = [ roarcwsaa = [ [ et @sde
Since F'(t)g(t) + G(t)f(t) € C[0,1] then FG € B’.
Also, x = fol 1dt € B’ so B’ separates points.

By Stone-Weierstrass, B’ is dense in Cy[0, 1] since any function F' € B, F(0) = 0. So B is dense
in Co[0,1]. 0

Prove that the span of {sin(nzx) | n € N} is dense in Cpl0,1].

Proof. sin(nz) = [’ ncos(nx)dt. From part (b), it is sufficient to show

A = span{n cos(nx)} = span{cos(nt)}
is dense in C'[0,1]. A is an algebra:

e cos(nt) cos(mt) = L (cos((m + n)t) + cos((m —n)t)) € A
e cos(t) separates [0, 1] (since 1 < 7/2) so A is dense in C[0,1].
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10 January 2015

Problem 1. Let f € LY(R). If

b
/ f(x)dz =0
for all rational numbers a < b, prove that f(x) =0 for almost all x € R.
Proof. Let E* := {x | f(x) > 0}. Assume m(E") > 0 (the same argument will show E~ := {z |
f(z) < 0} has measure zero).

There exists some n such that ET N [n,n + 1] has positive measure. Consider F closed in R and
F C E*tN[n,n+1] with m(F) > 0. Then [n,n+1]\F is open in [n,n+1]. Thus, [n,n+1]\F = U2, I,
for I, being disjoint open intervals in [n,n + 1].

For all I, = (an, by ), there exists some (an, )i, (bn;): € Q such that a,, — a, and b,, — b,. Since

b
| e = [ F@aagde S @, 0,0 = £@Xi0

then |f(2)X(a,, b, < |f(2)] € L' so by Dominated Convergence Theorem, fabn f(x)dx = 0.

Since [, f(z)dz > 0, by condition we know f:H f(z)dz = 0 for all n. So then f[n Rt 1\F flz)dz <
0.

So there exists some I, = (@, by,) such that fI f(x)dz < 0. Contradiction!
Proof #2 as in Problem 8 from August 2014, not restricted to rationals with f € L'.

For every open U, write U = U2, (ay, by,) for disjoint open intervals, so

/Uf(x)dx - i /b f(@)dz = 0.

n=1

For every compact K C (a,b) then (a,b)\K is open in R and

/Kf(z:)da:/abf(:c)dx/(mb)\K f(2)dz

(because each is finite). Suppose ET = {x | f(z) > 0} has positive measure. Since E¥ = U, E,
where E,, = {z | f(x) > 1/n} so there must exist some n such that m(E,) > 0.

By inner regularity, there exists some K C E,, with m(K) > 0. Then

0= /Kf(:v)dx > /K %dm =) >0

n
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Contradiction! O

Problem 2. Let {g,}5%, and g be in L*(R) and satisfy

lim |lg, — gll1 = 0.
n—oo
Prove that there is a subsequence of {gn}52 that converges pointwise almost everywhere to g.

Proof. Step 1: Suppose g, — g in L'. Let E, = {z | |f.(z) — f(z)| > €}. Then

Jit-nz[ U £ 2 (B

So then pi(Ey ) <1 [|fn— f| = 0.

Step 2: We will show that if g, — ¢ in measure, then there exists a subsequence that converges to g
pointwise almost everywhere.

Suppose for every € > 0, u({z | | fn(z) — f(x)| > €}) — 0. Choose a subsequence {g, } such that if

Ej = {.’I} | |gn3 (LL') —O9njiq (.’E)| > 2_j}
satisfies (B;) < 277, Let Fy, = U2, Ej so u(Fy) < 3272, 277 < 217K Let F = N Fy, so p(F) = 0.

For © ¢ F and for i > j > k then

i—1
|9, (z) = gn, (z)| < Z |9, (%) = Gnyr (2)] <D 26<277 50 as k — oo,
=

S0 gn,, is pointwise Cauchy on z ¢ F', so let

fz) =

0 otherwise

{nmgm (x) ¢ F

S0 gn, — f almost everywhere and g, — f in measure since

p{z | gn(z) = f(2)] = €}) < p{z | |ga(2) = gn, ()| > €/2}) + p({z | [gn, (x) — f(2)] > €})

—0 —0

and

p{z [1f(@) —g(@)] = e}) < p{a |1 (@) = gn(2)] = €/2} + p({z | |lgn(z) — g(z)| = €/2})

—0 —0
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so f = g almost everywhere. Thus, {g,, } converges to g almost everywhere. O

Problem 3. Let (X, M, ) be a measure space with u(X) < oo. Let N C M be a o-algebra. If f >
0 is M-measurable and u-integrable then prove that there exists an N'-measurable and p-integrable
function g > 0 so that

/gd,u:/fd,u, EeN.
E E

Proof. Define v(E) = [, fdu a finite positive measure on (X, N, ). Then since u(E) = 0, v(E) =0
so V<K .

Then by Radon-Nikodym Theorem, there exists some g : X — [0,00) and N-measurable and g €
L'(p) such that v(E) = [, gdp. Then

V(E):/Efdu:/Egd,u VE e N.

Note: Folland doesn’t mention positive but there are other versions that give positive. O
Problem 4. (a) State the closed graph theorem.
Proof. See wikipedia. O
(b) If H is a Hilbert space and T : H — H is a linear operator satisfying
(Tz,y) = (z,Ty), =z,yeH,
then prove that T is bounded.

Proof. Let x,, — = and Tx,, — y. We want to show Tz = y.

(Txp,z) = (X0, Tz) = (x,Tz) = Tz, z).
—_———
—(y,2)
So (Tx —y,z) =0 for all z € H so then Tx —y =0 and so Tz = y. O

Problem 5. Let f,g € L*(R). Prove that h € L*(R), where h(x) is defined by

) = [ f)ate = )dy
whenever this integral is finite.

Proof. We want to show that [, [h(x)|dz = [; | [ f(y)g(z — y)dy| dz < co. Indeed,
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g(x —y)dy

do< [ [ 1ot = 9)ldyds
= L1701 ([ lote = wiaz ) a
= [ rllghsdy
= lals | 1£0)idy

= llgllall fllx < o0

Problem 6. Let f,g € C[0,1] with f(z) < g(x) for all z € [0, 1].
(a) Prove that there is a polynomial p(x) so that

f(@) <p(z) <g(x), xe[0,1].

Proof. Let ¢ = inf{g(z) — f(x) | = € [0,1]}. Since h(z) = g(x) — f(x) > 0 on [0, 1] and attains a
minimum on the compact set [0, 1] then the inf is attained and thus is positive. So € > 0.

By Stone-Weierstrass, polynomials are dense in C[0, 1] so there exists a polynomial p(z) such

that Hp— (%)‘ < €/2. Then
() < TDZID € L (4a) + gla) + (ola) — £(2) = 3 (20(a)) = 9(x)
pla) > TDEID € 250y 4 gla) — (o) — F(a) = g (2F () = )

So f(z) < p(z) < g(x).
Remark: Let M = max{g(z) — f(z)} then

960 - 1) < fato) - (152 @+ (£52) @ - 00

Alternative Proof. Let M := min,¢jo1) g(z) — f(z). By Stone-Weierstrass, there exists some p(x)
polynomial such that ||p(z) — g(x)|lcc < M/3. Let p(z) = p(x) — M /2. Then

<M—|—
— +te
2

M M _ M,
3 2

o(x) — pla) = 9(a) — pla) + - > :
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(b) Prove that there is an increasing sequence of polynomial {p,(x)}>2, so that

f(x) <pulz) <g(@), 2€][0,1],
and p, — g uniformly on [0,1].
Proof. Find py such taht g — 3 < p; < g with ||p1 — (%)H < 1. Then |g(z) — p1(z)] <
1,1 _1
1411
1T1=32

Recursively find a polynomial p,, such that p,_1 < p, < ¢ with ’ Dn — (MT"“) H < 2%1,

implying

M, _1 1 11
\g(x) _pn(x)‘ < 9 + gnt1l — gntl + on+l ~ on”

So M,, < 2—1” Then for every € > 0 choose N such that 2% <€, 80 for all n > N

Ipn(z) — g(z)| < QLN <e Vrxelo1].

Alternative Proof. From part (a) we can find f(z) < pi(z) < g(z). Repeating, we can find
p1(z) < p2(x) < g(x). By requiring €, instead of M, in ||p(x) — g(z)|le < € and letting €, — 0,
we get

5

- - €n €n
lPn(2) = 9(2)|loo < [|Pn(®) = Pn()[loo + [P (2) — glloo < 5 t 5 =gt 0

O

Problem 7. If f € L?(R), g € L3*(R), and h € L%(R) then prove that the product fgh is in L'(R).

Proof. Nete: ||, = (] frdz) /% = (f 14wy " = 112,

Then it follows that

1/3

1/2 1/3
I£ghlly < 1 £ll2llghllz < [1FI2lglPIRP137 < £ 112 (g lp=s/2lRlla=s) " < IF12(lglslRlle) " < co.

_ _ 1,1 _2,1_
Whereweusep—3/2,q—3505—}—5—54—5—1. O

Problem 8. (a) A point y in a metric space Y is isolated if the set {y} is both open and closed in
Y. Prove taht y €Y is isolated if and only if the complement {y}© is not dense in Y.

Proof. =) If y is isolated, then {y} is open. But {y}*N{y} = 0 so {y}° is not dense.

<) Trivially, {y} is closed since we’re in a metric space. Suppose {y}¢ is not dense in Y. Then
there exists an open U # @ such that U N {y}¢ = 0 (since A is dense in Y < for all open U # 0,
UNA#0D).

But if UN{y}¢ =0 then U C {y}°“ = {y} so U = {y} is open. O
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(b) Let X be a countable nonempty complete metric space. Prove that the set of isolated points is
dense in X.

Proof. Let Y C X be the set of isolated points. Let X\Y = {z;}32, (or {z;}7_,).

Since the singleton {z;} is not an isolated point, by (a) we know {z;}¢ is dense in X, so {z;}¢ =
X. So each {z}° is open and dense in X.

By Baire-Category, Y = M52, {z;}¢ (or N7_;{2;}¢) is also dense in Y. O
Problem 9. Suppose that f € LP(R) for all p € (1,2) and that sup,ey o) [|fll, < 0o. Prove that
f € L*(R) and that

i £l = 11

Proof. Let A ={z | |f(z)] > 1}, B ={z | |f(x)] < 1}. Then by Monotone Convergence Theorem,
fA |f|pdCC a fA |f|2d.’£.

Let p, T 2. WLOG assume p; = 3/2. We know on B, |f|P < |f|*/? € L'(B). By Dominated
Convergence Theorem, [, |f[Pdz — [ |f|*de which implies [, |f[Pdx — [; |f[*dz.

2
Therefore, 17— [I£13 so [LFIE/2 — £l as p — 2.
Also, since M = sup,¢(1 o) | f]lp < 0, then I£I[B/27Y < MP/21 for all p € (1,2).
Then MP/2=1 — 1 as p — 2 which implies || ]|/ — || f|l, — 0 as p — 2.

So then, ||f|l, = || fll2 as p = 2 and || f]|2 < oo since M < . O

Problem 10. Let (X,|| - ||) be a normed vector space with a subspace Y and let || - |1 be another
norm on Y that satisfies

1
vl <yl < Ky, y ey,

where K > 1 is a fized constant. Define S to be the set of linear functionals ¢ : X — R satisfying

(@) [oW)l < llyll, y €Y,
(i) |¢(z)| < K|z, v € X.

Prove the following statements:

(a) ||z||2 := sup{|p(x)| | $ € S} defines a norm on X.
Proof. See August 2015 O

(b) ForyeY, [lylr = llyll2-

Proof. See August 2015 O
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(¢) The norms | - | and | - ||2 are equivalent on X.

Proof. See August 2015 O

11  Awugust 2014

Problem 1. Forn € N, let f, : [0,1] — R be continuous, and assume that for every x € [0,1]
the sequence (f,(x)) is decreasing. Suppose that f, converges pointwise to a continuous function f.
Show that this convergence is uniform.

Proof. WLOG: by replacing f, by fn(z) — f(x), these are still continuous and decreasing pointwise.
So we want to prove f, = 0.
This is precisely Dini’s Theorem (aka freebie question).

Fix € > 0 and let U,, = f,,*((—1,¢)) = {z € X | gn(z) < €} which is open. Then for all z, f,,(z) \, 0

n

so there exists N such that for all n > N, |f,(z)| < € which implies z € U,,.

So [0,1] = U,U,. By compactness of [0, 1], there exists a finite subcover Uy, U,,, ..., Uy, for ny <
ng < ... < ng but since U,, C Up4;1 then U,, CU,, C... CU,,.

Therefore, [0,1] C U, =: Uy so for all z € [0,1], then z € fy'((—=1,¢)) & |fn(z)| < e
Decreasing f,, implies that for all n > N, |f,(z)| < € for all z € [0,1]. O

Problem 2. Let f € L'(0,00). For x > 0, define

oo)= [ F(e
0
Prove that g(x) is differentiable for x > 0 with derivative
g (z) = / —tf(t)e tdt.
0

Proof. Since

| e = [asn ([ evar)a= [ —il””lf(t)ldtJr/O ke <2 [ Ifolar < .

By Fubini, h(z) = [ [ —tf(t)e"Vdtdy = [;° f(t)e "dt + c.
So h(z) = g(x) + c.

From the definition of h, we know h/(xz) = ¢’(x) and thus g(z) is differentiable. And h is differen-
tiable since it’s absolutely continuous. O
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Problem 3. Let f : R — R be a Lebesgue integrable function such that

b
/ f(x)dx =0 for every a < b.
Show that f(x) =0 for almost every x € R.

Proof. See question 1 from January 2015. O

Problem 4. Let f be Lebesque measurable on [0,1] with f(x) > 0 a.e. Suppose (Ey) is a sequence
of measurable sets in [0, 1] with the property that fEk f(z)dz — 0 as k — oo.

Prove that m(Ey) — 0 as k — oo.
Proof. Let Fp, = {x | f(z) > 1/m} so F,, C Fp,41.
Since f(z) > 0 almost everywhere, then
m (UpZy Fy) = limm(F,) = 1.

Fix € > 0, so there exists N such that m(F¢) < ¢/2 for n > N. Now,

1
—m(Ey N Fy) < / f(z)dx < (x)dz — 0 as k — oo.
N ErNFN Ey,

So there exists some K such that m(E, N Fy) < €/2 for all k¥ > K. Thus,

m(Ek):m(EKﬂFN)—i—m(EkﬁFf\‘,)<g—&—g:e vk > K.
O

Problem 5. Let (f,) be a sequence of continuous functions on [0,1] such that for each x € [0,1]
there is an N = N, so that

fn(x) >0 for alln > N,.

Show that there is an open nonempty set U C [0,1] and an N € N, so that f,(x) > 0 for alln > N
and all z € U.

Proof. Let

B, :={z| fm(x) 2 0¥m>n} = () {z| fulz) > 0}

n=m
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so E, is closed and E,, D E, 1. For all x € [0,1] there exists N = N, such taht f,,(z) > 0 for all
m > N. Thus, x € Ey.

Then, [0,1] = US2, E,,. Since [0,1] is compact, by Baire-Category we know there exists N such that
Ex. #0 (ie. EY #0).

Let U = EY; be open, non-empty so for all x € U, f,(x) > 0 for all n > N. O

Problem 6. (a) Define the w*-topology on the dual X* of a Banach space X .

(b)

Proof. See wikipedia! O

Let X be an infinite dimensional Banach space. What is the w*-closure of

Sx» ={a" € X" |||z"]| =1}?

(as usual, prove your answer.)

*

Proof. Claim: Sx- = Bx-.

We know for any z1, o, ...,2, € X, there exists some zf # 0 such that z{(z;) = 0. Indeed,
if this were not true then otherwise, x§(z;) # 0 for some 4, let ¢ : X* — R"™ be p(z*) =
(x*(x1),...,2*(zy,)) then ¢ is injective so dim(X™*) < dim(R™) = n. Contradiction, so true.

Now for any x* € Bx~, consider it’s neighborhood (open under the w*-neighborhood)

V=nicdy" € X[ |@i(z" —y")| = [27(i) — y™ (2:)| < €}

for each {z;}? , choose such an zf # 0 from the claim.
Consider the line {z* + tz§ | t € R} in X*.

Since for any &,

Ti(x* +tal —a*) = td;(x]) = tog(z) =0 < e

Then {a* + tzj | t € R} C V. Since ||z* + ta|| is continuous about ¢, then we can find ¢y such
that ||z* + tozj]| =1 = VN Sx~ # 0.

Since any neighborhood of * contains a neighborhood of the form V' as above (i.e. these Vs
are a neighborhood basis) then By« C Sx*w .

On the other hand, for any z§ € Bx-, by Hahn-Banach separation Theorem, we know there
exists x € X and ¢ € R such that 2*(z) < ¢ < z§(z) for all z* € Bx-.

Then for all {z}} C Bx-, z}(x) < ¢ < z{(x). Therefore, zj isn’t an accumulation point of Bx-

*

which implies By~ = Bx~. Thus, Sx-  C Bx~ = Bx+soBx+=Sx- . O

Problem 7. (a) State the Riesz Representation Theorem for the dual Ly (1) of Ly(p), 1 < p < oo.

Proof. See Wikipedial! O
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(b) Let u be a finite measure on the measurable space (Q,X). Prove the following part of the above
theorem.:

If F € Lj(n), then there exists an h € Li(p) so that

F(xXa) = / hdu for all A € 3.
A

Proof. Let v(A) = F(X4). The goal is to show v is a o-finite signed measure.

(a) v(0) = F(xy) = F(0) =0
(b) Let {E;} be disjoint, let F = U2, E;. Then

v(E) — Z v(E;) = F(Xg)— F <Z xz-)
XE — zn:xi

i=1

i1=n-+1

<|Flz;

p

< | Fllz;

P
1
= [|Fllz;p (U2, 1 E:) ” 50 asn— oo

Therefore, v(E) = Y2, v(E;).

When p(A) =0, then

Xallp = IF||z;p(4)"7 = 0.

V(A) = F(Xa) < |Fll;
So v < p.
Then from the Radon-Nikodyn Theorem, there exists some h € L' (u) such that v(A) = [, hdp.
So

F(xa)=v(A) = /Ahd,u.

Problem 8. Assume that (x,,) is a weakly converging sequence in a Hilbert space H. Show that

there is a subsequence (yn) of (x,) so that
1 n
P
j=1

CONveErges m noTrm.
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Proof. WLOG z,, — 0 weakly ({x,,y) — (0,y) for all y € H) and we know ||z, is bounded,
sup,, ||z,|| < C. For n > m,

—> y—=>y =<Zyj— Vi — > Ui —— > Uj
j=1 j=1 j=1 j=1 j=1 j=1
1 1\ & 1 -
(CEDUEES SEACEE DRSS ot
Jj=1 j=m+1 j=m+1
1 1 2 m 2 1 1 m 1 n 1 2 n 2
<(ma) 2w +2<<m_n>zyj’n,z yﬂ‘>+<n) 2
j=1 j=1 j=m+1 j=m+1

Now by induction, we can choose y; such that |(y;,> ", y,)| < 277 forall m < j — 1. Pick y
randomly.

Since (x,,,y) — (0,y) for all y € H, then we can find yo such that (ys,y;) < 272

Similarly, find y3 such that (ys, 71 + y2) < 272 and (y3,v1) < 273, etc. Then

m—1

m m
Zyj <Zijzy]> Yms> Ym)+(Ym Z yj ooy, y1) Z |yJ|| +Z2 I < Z”%H +2.
j=1 i=1 =

Jj=1

Therefore,

2
m

1 1
<> Zyj SW Z|\yj||2+2 <W(mc+2)%0asm%oo.

j=1

2

Similar argument holds for (1) HZJ 1 Ui

Finally,

1 1\ & 1 &«
<<m_n)zyj’n.z yﬂ‘>
Jj=1 j=m+1

IA IN
S| S|
7N 7N
3= 3=

\ |
S| 3=

v

M [+
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&
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<
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2
So then H % Z;":l Y; — % Z;L:1 yil| — 0 as n,m — oo so it’s Cauchy and therefore converges. O

Problem 9. Show that a linear functional ¢ on a Banach space X is continuous if and only if {x €
X | ¢(22) = 3} is norm closed.

Proof. =) A={z|¢(2r) =3)} ={z |2z € ¢7'({3})}. Let y)(2) = ¢(22) so A =4~ (¢~ ({3})).
<) We want to show ker(¢) is closed. Note that {z € X | ¢(22) =3} ={z € X | ¢(z) = 3/2}.

Pick some a € X such that ¢(a) = 3/2. Then clearly

a+ker(¢) C {z € X | ¢(x) = 3/2}

and if ¢(x) = 3/2 then ¢p(z —a) =080 z =a+ (x — a) € a + ker(¢).

Thus, a+ker(¢) = {z € X | ¢(2z) = 3}. Therefore ker(¢) = {z € X | ¢(2z) = 3} — a which is closed.
Then

¢+ X/ker(¢) = R
x + ker(¢) = ¢(x)

is an isomorphism. Let 7 : X — X/ ker ¢ which is also continuous, so ¢ = ¢’ o 7 is continuous.
O

Problem 10. Let C'[0,1] be the space of functions f € C[0,1] such taht f' exists and is continuous
in [0,1]. The space C1[0,1] is given the supremum norm. Define T : C1[0,1] — C[0,1] by Tf =

f' for f € C0,1]. Show that T has a closed graph and that T is not bounded. Decide if C*[0,1]
(together with the supremum norm) is a Banach space or not. (Ezplain your answer).

Proof. Let f, = fand Tf, = f, = gin || - ||oo-
n = 7/7, d n = ’ ! d
ful2) / L0t + £,0)  f(x) / F(t)dt + £(0)

Since f, — f then f,(0) — f(0). Let G = [ g(t)dt + f(0). Then

If =Gl <N = full +11fn = Gl < If = full +/04 1fn = glleo <IIf = Full + 1[fn = glloc = 0.

So f’ = g meaning T has a closed graph.
To see T is not bounded, consider f,, = 2™ 50 || fnlloo = 1 but [|Tfn]l = 02" oo = n — oo.

Thus, by the closed graph theorem, C[0, 1] is not a Banach space. O
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12 January 2014

Problem 1. Let (X, M, p) be a non atomic masure space with u(X) > 0. Show that there is a
measurable f : X — [0,00), for which

[ H@nto) = o.

Proof. Take X = Ey D FE3 D E3 D ... such that u(Fy) > pu(FE2) > ... > 0. Define

/J(En\EnJrl)71 ifx e En\En+1
flz) = .
0 ifeeni, B,

Then [ f(z)dx =),",1=oc. O

n=1

Problem 2. Assume that p is a finite measure on R™. Prove that there is a closed set A C R™ with
the property that for each closed B C A it follows that p(A\B) # 0.

Proof. Since R™ is a locally compact Hausdorff space and p is finite, p is Radon (and regular). If
w(R™) =a (so V # R™) then we can set

a

M, = {U | U is open and p(U) < f}
n
and V := U2 {U |U € M, } so V is open. Let A = V¢ is closed.
For any B C A, A\AN B¢. Assume p(A\B) = 0 then
w(A\B) = inf{u(U) | A\B C U,U open} = 0.

Then there exists U C V such that A\B C U. Then AABNU C ANU C ANV =0, so A\B = 0.
Contradiction! O

Problem 3. For a nonnegative function f € L1([0,1]), prove that

lim / Vf(x)de =m({z| f(zx) > 0}).
0

n— oo

Proof. Let

Ey=A{z|f(z) =1}
Ey ={x [0 < f(x) <1}
By ={z | f(z) =0}
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Then

[ s@ras= [ g@inaes [ g [ g
0 E; E, Es

For the first integral on Ey, lim,, f(z)"/"dz =1 and |f(x)"/"| < |f(x)| € L*, so by DCT, fEl f(z)Y/dx =
fEl dx = m(FEy).

For the second integral on Es, lim,, f(x)'/" =1 and |f(2)"/"| <1 € L' so again by DCT, Iz, f(z)Y/dx =
[&, dz = m(Ez). Therefore,

/0 f@)"dx = m(Ey) + m(Ez) = m({z | f(z) > 0}).

O
Problem 4. Let f be Lebesgue integrable on (0,1). For 0 <z < 1 define
1
oo) = [ £ p(war
Prove that g is Lebesgue integrable on (0,1) and that
1 1
/ g(z)dx :/ f(z)dz.
0 0
Proof. Notice that
1t 1
/ / t*lf(t)dtd:c:/ |f(t)|dt < o
0o Jo 0
since f € L'(0,1) so then by Fubini, we have that
1 1 1t
/ / t~Lf(t)dtdz :/ / t=f(t)ddt.
0 Ja 0o Jo
So we have
1 1 1 1t 1
/ g(x)dx :/ / t= 1 f(t)dtdx :/ / t= 1 f(t)dzdt :/ f(t)dt.
0 0 Ja o Jo 0
[

Problem 5. Assume that v and p are two finite measures on a measurable space (X, M). Prove
that
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v<<p< lim (v—nu)t =0.
n—r oo
Proof. <) Let u(E) = 0. Then for all € > 0, there exists some N such that for all n > N,

e> (v—nu)H(E) > (v —np)(E) = v(B) - np(E) > v(E).

Letting € approach 0, we have that v(E) = 0 so that v << p. O

Problem 6. Let (p,) be a sequence of polynomials which converges uniformly on [0,1] to some
function f, and assume that f is not a polynomial. Prove the lim,,_ , deg(p,) = oo, where deg(p)
denotes the degree of a polynomial p.

Proof. Assume to the contrary and consider the space P = span{1,z,z2,...,2™} with (p,) C P.
Since {1,z,...,2™} are basis elements and P is finite dimensional, then any two norms are equiva-
lent on P and so if P =% ,7 arz®, we can consider the two norms defined by

[Plly :=suplar|  [[Pll2:= sup |P(z)]
z€[0,1]

Since [|pn, — Pn,ll2 = 0, then ||pn, — pn,|li = 0 so {an,} is Cauchy. Hense, P = >, asa’ where
¢

n,, 18 @ polynomial of degree at most m and p,, converges uniformly to p. So therefore,

ay = limg a
p = f. Contradiction!

Alternative proof. Assume not, so there exists some M such that for all N € N, there exists some
n > N such that deg(p,) < M. For N = 1, find ny such that deg(p,,) < M. For N = ny, find nq
such that deg(p,,) < M, etc.

Get a subsequence {py, } such that deg(p,,) < M.
Since p,, converges to f uniformly on [0,1] then p,, converges to f uniformly on [0, 1].

We write pp, 1= >_7, a2, then

m m
f= lim E ai;r? = E lim a;;27 = E xz’ where b; = lim a;;.
i—>00 — c i—00 . i—00
Jj=i J=1 Jj=1

To see lim;_,, a;; exists: let X = Pp | p polynomial with degree < M7} is a finite dimensional
subspace of C[0,1] hense closed so f € X so f is a polynomial. O

Problem 7. Let (f,) be sequence of non zero bounded linear functionals on a Banach space X .
Show that there is an x € X so that fn(x) # 0, for all n € N.

Proof. Let E,, = {z | fn(x)} which is closed in X. Assume the result is not true, so for every x € X,
there exists some n such that f,(z) = 0 implies « € E,, that is, X = U, E,,.
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Since X is a Banach space, then by Baire Category Theorem, there exists some n such that (§ #
o — E°.

Thus, there exists some r > 0, € X such that B(r,z) C E,,.Then for all y € X,

THLZZH +x €x+ B(r,0) = B(r,x)

so then if fn(rm + ) =0, then HTT;Hf"(y) = —fn(x) =050 fn(y) =0so f, =0.
Thus, by Baire Category, UC,, # X. Contradiction! O
Problem 8. Assume that T : {1 — {5 is bounded, linear and one-to-one. Prove that T'({1) is not

closed in {s.

Proof. If T(¢%) is closed, then T'(¢') is a hilbert space. Since T': £* — T(¢') is bijective, by the open
mapping theorem. 7T is open and T~! is bounded so 7T is an isomorphism. Then ¢! = T'(¢!). But ¢!
is not reflexive and T'(¢!) is reflexive, so contradiction.

Alternative Proof. T(¢') is closed, hence complete. So T : £* — T(¢') is bijective, so by the open
mapping theorem, T is an open map so T'(¢*) is both open and closed in ¢2. Hence, T'(¢*) = ¢? so
then ¢ = ¢2. Contradiction! O

Problem 9. For a uniformly bounded sequence (f,) in C[0,1] (i.e. sup,cysupgcioq)|fn(§)] < 00)
show that f,, converges weakly to 0 < lim,, o f(§) =0 for all £ € [0, 1].

Is the equivalence true if we do not assume that (f,) is uniformly bounded, explain?

Proof. This question is the same as 3 from August 2015.

=) C([0,1]))* = M]0,1] for all £ € [0,1], ¢ € M[0,1]. So 0 = lim,, [ f,dds = lim, f,(£) so then
lim,, f,(§) = 0 (note that this does not require uniformly boundedness!)

<) Fix p € M|0,1], we want to show that [ f,du — 0. Since |f,(z)| < M for all z and all n, then
by dominated convergence theorem, [ f,du — 0.

Finally, consider h,, given by connecting (0,0), (1/n,n), (2/n,0) and (1,0). So h, (&) — for all 21 €
[0,1]. But by taking Lebesgue measure, [ hy,(z)du(z) =1 so f, - 0 weakly. O

Problem 10. Assume that f is measurable and non negative function on [0,1]? and that 1 < r <
p < 0o. Show that

</01 (/01 / T(f”’y)dyyﬁ dw) e < / 1 ( / 1 fp(:c,y)dx) " dy)

Hint: Let s =p/r, let 1 < s’ < 0o be the conjugate of s and let

1/r

1
F:[0,1] —>Rar, m»—>/ fr(x,y)dy.
0
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Then consider for an appropriate function h € Ly[0,1] the product hF.

Proof. Let F(x fo fr(xz,y)dy. Let h € L¥[0,1] with |||l =1 and h > 0. Then by Tonelli (since
Fh >0), we have

/01 //frwy x)dydx
//frmy x)dxdy

r/p
So then fol F(x)h(z)dz < fo (fo (x,y dac) dy for all ||h]|s =1, h > 0.

Notice that F > 0 so when ||k = 1, we have

1 1
sup /0 F(x)h(z)de =  sup /0 F(z)h(z)dx

Rl =1 ll7ll sy =1,R2=0
Therefore,
1 1 1 p/r\ "/P 1 1 r/p
sup / F(z)h(z)dz = ||F||s = (/ </ fr(x,y)dy) ) < / (/ fp(q:,y)da;> dy
Il =1,n>0J0 0 0 0 0
So then,

(/01 (/OlfT(:c,y)dy)p/r dx) " = </01 (/01 fp(x,y)dx)r/p dy) UT.

13 August 2013

Problem 1. Let1 < p < oo and let f € LP(R). Fort € R, let fi(z) = f(x —t) and consider
the mapping G : R — LP(R) given by G(t) = f;. The space LP(R) is equipped with the usual norm
topology.

(a) Show that G is continuous if 1 < p < oo.
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Proof. Since C2°(R) is dense in LP(R) for 1 < p < o0, we can choose g € C°(R) such that
lg = fllp < . Then

1 few = Felly < W ftn = genllp + 92, = gellp + llge = Filly

Vs casy to see [|fy, — go, |, and |lgi — fullp are small since [lg — f]l, < e For [lgi, — gill,» then

loe, =l = [ loo — 0) = oo - t>|Pda:)1/p <(/ )/ —_

where for each fixed t,, — ¢, we can find a bounded set A C R such that U,, supp g;, Usuppg: C
A. O

(b) Find an f for which the mapping G is not continuous when p = oo (and justify your answer)

Proof. We will take f = X[o,1], so

1X[0,1)(tn) = X{0,11(D)lloc = X[t +1) = Xt e =1 Vn

although t,, — ¢, we have || - ||oc = 0. O

(c) Let 1 < p,q < oo be conjugate exponents (i.e. satisfying % + % = 1). Let f € LP(R) and
g € LY(R) and show that their convolution h = f * g is continuous. Recall

w0 = [ sgte - o).

Proof. Letting g;(x) = g(t — x), then we have (by Holder)

|h(t) = h(tn)| < /le(x)\lg(t —z) = g(tn — 2)|dz < |[flpllge — ge. Il

This goes to zero when 1 < p,q < oo from part (a).
Also notice that

me) = [ ot -ado= [ 1t~ oty =g+ 1.
So when p = 1, ¢ = co the same is true. O

Problem 2. (a) For f € Cr([0,1]), show that f > 0 if and only if |\ — fllu < X for all X > || f||u,
where || - ||l denotes the uniform (supremum) norm.

Proof. =) Assume there exists some A > || f]|,, such that ||[A — f]lcc > A. Then there exists some
x € [0,1] such that |A — f(z)] = X — f(z) > X so then f(z) < 0. Contradiction!

<) If there exists some x such that f(x) < 0, then if A > || f|loo 0 A > 0. Then [|A — f|loc >
A — f(z) > A. Contradiction! O
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(b) Suppose E C Cg([0,1]) is a closed subspace containing the constant function 1. For ¢ € E*,

we define ¢ > 0 to mean ¢(f) > 0 whenever f € FE and f > 0. Show ¢ > 0 if and only if

8]l = &(1).

Proof. =) We have

ol = sup [¢(f)] = o(1).
1f1lu=1

Also for || f]|l. = 1, we have 1 — f > 0 so ¢(1 — f) > 0 implies ¢(1) > ¢(f). Moreover, ¢p(1+ f) =

¢(1) + ¢(f) = 0 and so ¢(1) = —(f) so then ¢(1) > [¢(f)|. Therefore, ¢(1) = |||

<) ¢(1) = ||9]| = |¢(f)] for all || f]|. < 1. Assume there exists some f > 0 but ¢(f) < 0.

By rescaling we can assume || f||, < 1, so then

6112 6 (=41 ) = T 600 — 6(0) 2 6(0) = o(1) > (1) = o]
IR R S /A (P B

which contradicts! O

(c) If $ € E* and ¢ > 0, show that there is a bounded linear functional ¥ on Cgr([0,1]) so that

1 > 0 and the restriction of ¢ to E is ¢.

Proof. By Hahn-Banach, there exists some ) which is an extension of ¢ such that |[¢]| = ||¢|| =
¢(1) = 1(1). So ¥ > 0 follows from (b). -

Problem 3. (a) Let p and A be mutually singular complex measures defined on the same measur-

(b)

able space (X, M) and let v = p+ \. Show |v| = |p| + |A|.

Proof. Let X = E U F be a disjoint union such that A(F) = mu(E) = 0. Let P, U Ny = E be
the Hahn-decomposition for A. Let P; LI N3 = F' be the Hahn-decomposition for pu.

Then P; = P, LI P3, N7 = Ny U N3 will be the Hahn-decomposition for v = A 4+ pu. Then

vHA) =v(ANP) +v(ANP3) = MAN P) + p(AN Py)
v (A) =v(ANNz)+v(ANN3) = A(AN Nz) + u(AN N3)

So then

VI(A) = MANP2) + p(AN P3) + A(AN N2) + (AN N3) = [p|(A) + [A|(A)
Therefore, |v| = |p| + |A| O
Construct a nonzero, atomless Borel measure on [0,1] that is mutually singular with respect to

Lebesgue measure.

Proof. here. Maybe Cantor-Lebesgue? O
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Problem 4. Let (f,)22, be a sequence of continuous functions on [0,1] and suppose that for all
€ [0,1], fn(z) is eventually nonnegative. Show that there is an open interval I C [0,1] such that
for all n large enough, f, is nonnegative everywhere on I.

Proof. Let Un = N frt[0,00) = {x | fu(x) > 0Vn > N}. This is closed. For every z € [0,1],
fn(x) is eventually non-negative so [0,1] = UxUn.

By Baire-Category, there exists some N such that () # Uy~ = Ug. So there exists some open I C
U% C[0,1] and then for alln > N, f,, > 0 on I. O

Problem 5. Let u be a nonatomic signed measure on a measure space (X, Q), with p(X) = 1.
Show that there is a measureable subset E C X with p(E) =1/2.

Proof. First notice that for every ¢ > 0, there exists some F C X with u(E) < e. This is because we
can recursively divide our set into two non-trivial sets and chose the smaller one.

Therefore, for all n, we can find a set E,, such taht 0 < pu(E,) <2™". Let S ={E C X | p(E) < 1}
ordered by inclusion.

Zorn’s Lemma implies that there exists a maximal element E. If u(E) < 1 then we can find some

F C E°with 0 < u(F) < & — pu(E) but then u(F U E) < u(F) + ,u(E) < 3 which contradicts

maximality. O

Problem 6. Compute

* nsin(z/n)

li ——2d
nl—>H<§o 0 :c(l +;z:2) t
and justify your computation.
Proof. Let f,(x) = %1;/;;) Recall that limy_,o 224 = 1, so lim,, ”:(Tﬁ/;;) = : +1$2 and since
|sin(xz/n)| < z/n for x,n positive,
nsin(z/n) nr 1 1 1
— —— = € L]0, 00).
x(1+22) |~ |znl+a? 1+ 22 0, o)

Then by DCT,

hm/ nsin x/n —/ lim nsin(z/n) = arctan |® = T
(1 + 22 o n x(l+2?) 4

O

Problem 7. Prove or disprove: for every real-valued continuous function f on [0,1] such that f(0) =
0 and every € > 0, there is a real polynomial p having only odd powers of x, i.e. p is of the form

P(LE) =a1x + a3x3 4 a5m5 4+t a2n+1x2"+1,
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such that sup,eo 11 |f(z) — p(z)| < e

Proof. Let

A = { polynomial with even power}

so A is an algebra that separates points. Stone-Weierstrass implies that A4 is dense in C[0,1]. We
can let

B=F(z)| F(zx) = / f#®)dt 0 <z <1, fe A} ={ all polynomials with odd powers}
0

From problem 10 of August 2015, B = Co[0, 1]. O

Problem 8. Let f € L}, .(R).

(a) What (by definition) are the Hardy-Littlewood mazimal function H f and the Lebesque set Ly of
fe
Proof.

1
HEE) = 8 ) e TP

:Arf(x)
ray |[F () = f(2)|dy
D R L (O
r—0+ m(B(r,x))
O
(b) State the Hardy-Littlewood Mazimal Theorem.
Proof. |[Hf(x)llp < [|fllp- -

(c) In each case, either construct concretely an example of f with the required property, or explain
why no such example exists (you may use theorems from Folland about the Lebesgue set, if you
state them).

(i) Ly =R
(i1) the complement of Ly is uncountable

(itt) Ly C (—00,0] U [1,00).
Proof. here O

Problem 9. Let X be a separable Banach space, let {x,, | n > 1} be a countable, dense subset of the
unit ball of X and let B be the closed unit ball in the dual Banach space X* of X. For ¢, € B, let
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d(¢, ) = Z 27" (zn) — ().

n=1

Show that d is a metric on B whose topology agrees with the weak*-topology of X* restricted to B.
Proof. We first check that d is a metric on B:

o d(¢,1) >0 clear
If d(¢,v) = 0 then ¢ = on {z,} so ¢ = 1) by continuity / density

e triangle inequality follows as well

the weak*-topology is {z* € X* | |(z* — 2*)(z)| < €} for fixed 2* € X*,2 € X,e > 0.

For fixed 2* € X* consider the e-ball in the metric d which is

YeXda ) <eh={ve X |y 27"a"(z,) — Y(xa)| < ¢}

n=1

We want to show that |(x * —¢)(z)| < € for any x € Bx and some ¢ > 0. Since x,, is dense in Bx
then there exists a x,, — . Then

|(@" =) (@)] < (2" = ) (@ = 2, )| + |27 = ¥) (2, )] < €

On the other hand, if ¢ is in a weak* neighborhood of z*, we want to show Y~ 27"|z*(z,) —
P(xy)| < e. Let |(¢ — 2*)(zy)| < € for all n, then

D 27Mat () — dblan)| < Y 27" =
n=1

n=1

Alternative Proof. We first check that d is a metric on B:

e d(¢,1) > 0 clear
If d(¢,v) = 0 then ¢ = on {z,,} so ¢ = 1) by continuity / density

e triangle inequality follows as well

To see that the topologies agree:

Consider B(r, ) under the metric. We need to show it contains an open U under the weak*-topology.
Say d(¢x, 1) — 0. Then Y 07 | 27" [¢y(z,) — ¥ (2n)| — 0. So under the weak* topology, we need to
show for all z € Bx, |¢r(z) — ¢(x)| — 0.

Indeed, this follows by density of {z,}. For large k, ||¢x| = sup,, |¢x(xn)| < M and |d(xy,)| ~
|t (@n).
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Then for every € > 0, there exists some n such that ||z, — z|| < € so

|0x(2) — ()] < r(2) = Or(wn)| + D (2n) — V()| + |(2n) — P(2)]

If |¢x(z) — ¥(x)| — 0 for all z, then for all €, choose N such that Y 7 27" < ¢, so d(¢y, ) =
Zqozozl 2_n‘¢k<xn) - 1/J(33n)\ 0

Problem 10. Let T : X — Y be a linear map between Banach spaces that is surjective and satisfies
ITx|| > €llz|| for some e >0 and all © € X. Show that T is bounded.

Proof. IsT(T) = {(z,Tz) | z € X} closed in X x Y?

If x,, — = and Tz, — y, we want to show y = Tz. T is surjective, so y = Tzg. Then for all € > 0,
there exists N such that for all n > N,

€ > || Txyn — Txol| > €llzn — x0]|-

So z,, — xg, and Tx,, — Txg.

The closed graph theorem implies T' is bounded. O

14 January 2013

Problem 1. Let f be a Lebesgue integrable, real-valued function on (0,1) and for x € (0,1) define

1
oo) = [ £ p(war

Show that g is Lebesgue integrable on (0,1) and that fol g(x)dx = fol f(x)dx.

Proof. See January 2014, # 4 O
Problem 2. Let f,, € C[0,1]. Show that f, — 0 weakly if and only if the sequence (|| frn]])S, is
bounded and f, converges pointwise to 0.

Proof. See August 2015, # 3 O

Problem 3. Let (X, pu) be a measure space with 0 < p(X) < 1 and let f : X — R be measurable.
State the definition of || f||, for p € [1,00]. Show that || fl||, is a monotone increasing function of
p € [1,00) and that im,_, || fllp = || flloo-

Proof. See January 2016, # 8 O
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Problem 4. (a) Is there a signed Borel measure p on [0,1] such that

1
P(0) = / p(e)du(z)

0

for all real polynomials p of degree at most 197

Proof. We first define the linear functional I(p) = p'(0).

Write P = span{l,x,22,...,2'%}, which is a finite dimensional space. Thus, all norms are
equivalent. We take, in particular, the norms || - ||, = max;=1 .. 19 |a;| and || - ||cc. Then there
must exist some C such that if ||p||lc = 1 then ||p|l; < C so |a1] < C which implies that I is
bounded.

By Hahn-Banach, there exists some I € C[0,1]* such that I(p) = I(p) for all p € P. By Riesz,
there exists some p such that F(p) = p’(0) = fol p(x)dpu. O

(b) Is there a signed Borel measure p on [0,1] such that

1
PO = [ b))
0
for all real polynomials p?

Proof. Suppose there did exist such a measure p on [0, 1]. Then since u([0,1]) = fol ldp = 0, we

have that |x]([0,1]) < co. Therefore, the mapping T : p — fol p(z)du(x) can extend continuously
to C0, 1].

Consider f,(z) defined by nz for x € [1/n,2/n], fn(x) = 1 for z € [2/n, 1] and smooth on the
interval [1/n,2/n] but bounded above by 2 (it’s always possible to construct such an f,). Then

1
£1(0) = / Fa(@)di < W allocllul < ] < o0

But lim,, | f/,(0)| = lim,, = co. Contradiction! O

Problem 5. Let F be the set of all real-valued functions on [0,1] of the form

1
f) = ——F——
Hj:l(t - ¢j)
for natural numbers n and for real numbers c; ¢ [0,1]. Prove or disprove: for all continuous, real-
valued functions g and h on [0,1] such that g(t) < h(t) for allt € [0,1], there is a function a €
span F such that g(t) < a(t) < h(t) for all t € [0,1].

Proof. Let A = spanF. It’s easy to see this is an algebra since ¢; ¢ [0,1]. Also H—Ll separates
points, so Stone-Weierstrass theorem implies A = C[0, 1].

Let M = min¢[o,1) |h(t) — g(t)], so we can choose some a € A such that Ha - % < 4. Then

oo

-M htg - M -
== <a— =32 < % and since h — g > M, then
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h h _ h g M h+tyg M M M M
g = — _ s 2 A _ - e
h—a 5 a+2_2 a+2+2 5 (1—1—2>2 5 3>O
gty g+h M -M M M
—qg=a— >q— —— — - =
-9 7 = 5 T2 T3 7"
So then g < a < h. O

Problem 6. Let k : [0,1] x [0,1] — R be continuous and let 1 < p < oco. For f € LP[0,1], let T be
the function on [0,1] defined by

1
(Tf)(x) = /0 ke, y) f(y)dy.

Show that Tf is a continuous function on [0,1] and that the image under T of the unit ball in L?[0, 1]
has compact closure in C|0, 1].

Proof. Note that

ITf(x) — TF(y)| < intd|k(z, 2) — k(y, 2)|| f(2)|dz < |[k(z,-) — k(y,)llfll,  forg= ﬁ

Since k is continuous on [0, 1]2, then for every e > 0 there exists some § > 0 such that if |z — y| < 6,
then

1 1
||k(m,-)—k:(y,-)||g:/o |k:(x,z)—k;(y,z)\qdz</o Py = .

Therefore, T'f is continuous.

Now consider F ={T'f | || f|l, < 1} € C[0,1]. We’ll use Arzela-Ascoli:

e equicontinuous

follows from above

e pointwise bounded

1/q

ITf(x)|<IIK(x,‘)IIq||f||p<IK(ww)q<</0 quz) —M

so it’s actually uniformly bounded

Therefore, by Arzela-Ascoli, F is compact in C[0, 1]. O
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Problem 7. (a) Define the total variation of a function f :[0,1] = R and absolute continuity of f.
Proof. here O

(b) Suppose f :[0,1] — R is absolutely continuous and defines g € C|0, 1] by

7) = /0  flay)dy

Show that g is absolutely continuous.

Proof. Since f is absolutely continuous, there exists some &’ > 0 such that > ., [b; — a;| < &'
implies "7, | f(b;) — f(a;)| < e. Fix some y € [0, 1] so that

n n
D by —aiy| <> by —ai| <&
i=1 i=1

This implies then that Y7, | f(biy) — f(a;y)| < e. Therefore,

1
Z\g az|</Z|f az|</06dI:€.

So g is absolutely continuous. O

Problem 8. (a) State the definition of absolute continuity, v << u, for positive measures p and
v, and state the Radon-Nikodym Theorem, (or the Lebesgue-Radon-NIkodym Theorem, if you

prefer.)
Proof. here O

(b) Suppose that we have v1 << py and ve << us for positive measures v; and p; on measurable
spaces (X;, M;) for i =1,2. Show that we have vy X v << p1 X po2, and

d(V1 X 1/2)
d(pa X p2)

vy () dva

T,y) = T
(z,9) o P,V

Proof. Assume E € M; ® My and 1 X pus(E) = 0. Define

E,={yeXz|(z,y) € E} EY={xe X | (z,y) € E}

Then E, € Mj and EY € My forallz € X1,y € Xs. Since p1 and po are positive, then
0 = (1 x p2)(E) = [p1(EY)dua(y) then py(EY) = 0 pg-almsot everywhere and so then
v1(EY) = 0 po-almost everywhere.

Thus, ua({y € X2 | v1(EY) > 0}) = 0 so then vo({y € X5 | v1(EY) > 0}) = 0. Thus, v1(EY) =0
for vo-almost everywhere and therefore, (11 x v2)(E) = [11(EY)dva(y) = 0.

Thus, 11 X vs << p1 X u2. By Radon-Nikodym theorem,
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d(l/1 X 1/2)
Ey= | ———=(z,y)d for E € My @M
vy X va(E) /Ed(ul ” MQ)(CL’ y)d(p1 X p2) or 1 2

Since v << p1, by Proposition 3.9(a) in Folland,

(1 x 1) (F) = /I/Q(EI)dl/l(l’)

- / Vz(Ex);%(w)dm(x)

-/ ( [ j;jw)duz(y)) S @0

dvy , . diy
- /E B W) gy (@l < p2) ()

By the uniqueness of Radon-Nikodym derivative, we have

dVQ

d(1r1 X o) dvy
dpz

d(p1 x p2)

- dVl

= dT“(fK)

(z,y) (y)
O

Problem 9. (a) Let E be a nonzero Banach space and show that for every x € E, there is ¢ € E*
such that ||¢]| =1 and |¢(z)| = ||z]|.

Proof. This is the Hahn-Banach separation Theorem. O

(b) Let E and F be Banach spaces, let m: E — F be a bounded linear map and let 7* : F* — E* be
the induced map on dual spaces. Show that ||7*| = ||7||.

Proof. We have 7*(y*)(xz) = y*(w(x)) for all y* € F* and & € E. Then ||7*(y*)(z)] <
[y llll[[l]] so then [z < |l|.

On the other hand, by part (a), for each x € E such that ||z|| < 1, 7(z) € F, we can find
y* € F* such that |y*(w(x))| = ||7(z)|| and ||y*|| = 1. Then

75 = N7 (Ol = [7*(y) (@) = [y" (x (@) =[x ()| Vil <1
So |||l = [|z[|. THus, ||| = [ 0

Problem 10. Let X be a real Banach space and suppose C' is a closed subset of X such that

(i) x1 + a2 € C for all x1,24 € C,
(i) Az € C for allxz € C and A > 0,

(iii) for all x € X there exists x1, 29 € C such that x = x1 — xa.
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Prove that, for some M > 0, the unit ball of X is contained in the closure of

{.1‘1 — T2 | x; € C, Hle < M}
Deduce that every © € X can be written x = x1 — x2, with x; € C' and ||z;|| < 2M]||z]|.

Proof. Define

Cp={z1— x| x; € C,||z;|| < n}

By (iii), we know that X = UC,,. By Baire Category, there exists some M such that § # Cp; =
C%s- Thus, there exists an open ball B C Cyy, B = B(xo, 2r).

For any « € Bx, g + re € B C Cy. From (i), we know that Cpy — Cpy € Copy so then ro =
(xg +rx) — 20 € Cpp — Cos € Copg. From (i), we know = € Capy/r, 50 Bx € Copgyr. Let M = %

For any € X, 2 € Cjpp||y- So we can find 21,y € C such that ||z1||, ||ly1]] < M|z| and [z — (21 —
y1)|| < 3llz[|. Therefore,

2(x — (21 —y1))

I €ECu = z—(21—v1) € Cupa2

So we can find 29,2 € C such that ||za]], ||ya]| < 2 ||z and
2

= Z(Zz —¥i)

=1

1
< el

Inductively, we can find {z,}, {yn} C C such that ||zg]|, [lyx] < %Hx” and

k

T = Z(Zi — i)

i=1

1
< el

Then,

o0 o0 1
Dl < ZMH%HQ? <2M|z|| < o0
k=1 k=1

oo . . . o0 . . .
SO > p_ 2z converges to some z1 in C' and similarly > .~ | yx converges to some x5 in C (since C' is

T — ( " zl—zn:yl>H =0.
i=1 i=1
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So then z = >"77 (2 — y;) = 1 — To. O

15 August 2012

Problem 1. Let (X, M, u) be a measure space. Prove that the normed vector space L'(X, i) is
complete. You may use any results except the convergence of function series.
Proof. See class notes. O

Problem 2. Fiz two measure spaces (X, M, p) and (Y,N,v) with u(X),v(Y) > 0. Let f : X — C,
g : Y — C be measurable. Suppose f(x) = g(y), (1 X v)-a.e. Show that there is a constant a € C
such that f(z) = a p-a.e. and g(y) = a v-a.e.

Proof. Let E := {(z,y) € X xY | f(z) = g(y)}, so (u @ v)(E®) = 0. Then for every a € C, by
Fubini-Tonelli,

0=(uev){(z,y) e X xY [f(@)=a,9(y) #a}) =p({z € X | f(z) =a})v({y €Y | g(y) # a}).

Assume p({z € X | f(z) =a}) =0 for all a € C. Then

0<(pev)(X xY)

= uer)(E) = X ()1 (2)=g ()} (@) dv (y)
XxY

= /Y ( /X X{z|f<z>—g<y>}dﬂ<$)) dv(y)
_ /Y 0dv(y) = 0.

This is a contradiction so there must exist some a € C with u({z € X | f(xz) = a}) > 0. Then
v({y €Y [ g(y) # 0}) = 0s0 g(y) = a v-ae.

Similarly, we have (uw)({(z,) | f(z) # a,g(y) = a}) = 0. Since v({y € ¥ | gly) = a}) = ¥(¥) £0,
then u({z | f(z) # a}) =0so f(x) =a p-a.e. O

Problem 3. Let f : R? — R be a Borel measurable function. Suppose for every ball B, f is
Lebesgue integrable on B and fB f(z)dz = 0. What can you deduce about f? Justify your answer
carefully.

Proof. Since f € L} _(R?), by Lebesgue Differentiation Theorem, for a.e. xo € R,

loc

1
lim ——— dr =
im /B L J@)ir= s

r—=0 |B(r, zo)|
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This implies f(zo) = 0 so f = 0 almost everywhere. O

Problem 4. Let X be a locally compact Hausdorff space. Denote by Cy(X) the space of complez-
valued continuous functions on X which vanish at infinity, and by C.(X) the subset of compactly
supported functions. Use an approzimate version of the Stone- Weierstrass theorem to prove that
C.(X) is dense in Co(X).

Proof. For any f,g € C.(X), the complex conjugation of f is also in C.(X).

By complex-LCH-Stone-Weierstrass, we only need to show that C.(X) separates points.

For every = # y, we can find open U,V with z € U,y € V with U NV = . Since X is LCH, we can
require U to be compact.

Now {z} CU C U C X\V C X\{y}. Then by Urysohn’s Lemma for LCH, we can find a continuous
function f : X — [0,1] such taht f|;; = 1 and f(z) = 0 outside a compact subset of X\{y}. So

f(x)=1, f(y) =0, and f € C.(X).

So C.(X) separates points. Also, there does not exist any 2o € X such that f(zg) = 0 for all f €
C.(X).

Therefore, by Stone-Weierstrass, C.(X) = Co(X). O

Problem 5. Give an example of each of the following. Justify your answers

(a) A nowhere dense subset of R of positive Lebesgue measure
Proof. Take a fat Cantor set. O
(b) A closed, convex subset of a Banach space with multiple points of minimal norm.

Proof. Let X = L'[0,1],C = {f € X | f01 f(®)dt = 0}. It’s easy to see that C' is closed and
convex. The minimum norm of elements in C' is 1 because

1l = / F(8)]dt > |/ f(t)dt‘ =

But every element of {aX[o,1/2] + (2 — a)X[1/2,1] }o<a<2 in C has norm 1. O

Problem 6. Let

<
|*1+x2

1
S:{fGL“(R)Hf(m) a.e.}.
Which of the following statements are true? Prove your answers.

(a) The closure of S is compact in the norm topology
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Proof. NO. Let

1
121 (@)

fulz) =

in S. So there are no subsequences of (f,) which are Cauchy in L* since ||f,, — fim|loo > 1 for
n # m. O

(b) S is closed in the norm topology.

Proof. YES. Suppose (fn,) € S, fn — f in L*™. Then

F@)] < fal@)] + 1 al@) = F@)] < st o = Flloo <

T+ a2 Tra2 €™
Letting € — 0, we have |f(z)| < H% a.e. and f € L>®so feS. O

(¢) The closure of S is compact in the weak*® topology

Proof. YES. The unit ball in L*°(R) is weak*-compact by Alaoglu. Since ﬁ < lforall z €

R, then S is a subset of the unit ball in L*°. Therefore, 5" is weak* compact. O
Problem 7. Let T be a bounded operator on a Hilbert space H. Prove taht | T*T|| = ||T||>. State
the results you are using.
Proof. Clearly, ||[T*T|| < | T*|||T]| = ||T|>. On the other hand,

|T||?2 = sup [(Tx,Tz)| = sup |[(T*Tx,z)|.
llzll=1 llzll=1
Since for ||z]| =1,
(T T, )| < |T*Tall|«]| < |T*T|=|* < |TT|

then || T||? < ||T*T|. O
Problem 8. (a) Let g be an integrable function on [0,1]. Does there exist a bounded measurable

function f such that || f|lec # 0 and fol fgdz = ||gll1||fllec 2 Give a construction or a counterex-

ample.

Proof. YES. For any g € L', let f = sgn(g) where g(z) # 0, and 1 where g(x) = 0. Then
[[flloc = 1 and

1 1
/ fa= / lg(x)ldx = [lgllv = llgllx [ f]loo-
0 0
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(b) Let g be a bounded measurable function on [0,1]. Does there exist an integrable function f such
that || f]l1 # 0 and fol fgdx = ||gllool| fll1? Give a construction or a counterezample.

Proof. NO. Let g(z) = z on [0,1] 50 ||g]|lsc = 1, implying g € L>°[0,1]. Assume such an f € L!
exists, so

1 1
171 = 11 lglloo = / fod = / o f(z)da

and also [|f[; = [, |f|dz so then [, f(z)xdz = [, |f|dz. Therefore,

[t~ [Cesies [Cetorar< (1-2) [T s [ (sl

So then

1-1/n 1 1 1-1/n 1
[ s [ s (1= 1) [T @l [ i

Thus, 01_1/n |f(z)|dz = 0 for all n € N. Letting f(z) = X[o,1-1/n)|f(®)] | f(x)| then by

monotone convergence theorem, [ |f(z)dz = lim, [ f,(z) =0so || f|l1 = 0. O

Problem 9. Let F : R — C be a bounded continuous function, u the Lebesgue measure, and f,g €
LY (u). Let

fa) = / Flay)f@duly),  §(x) = / F(ay)g(y)du(y).

Show that f and g are bounded continuous functions which satisfy

/f@dy: /fgdu.

Proof. We have || f|ljinfty < ||Fll|lflli < coand || < ||Fllcllgli < ooso f,g € L*. By
dominated convergence theorem, we know that lim, f[_n . |f(z)dp = ||f|l1- So then for every e > 0,
there exists some N such that fR\[fn n] |f(z)|dp < e. Then

Fwn) = Flaa) < [ IFG1) = Flaan) 150 lduto)
= /[ | |F(z1y) — F(z29)|1f () du(y) +/ |F(x1y) — F(z2y)|| f(y)|du(y)

R\[—n,n]

< sup ]IF(my)—F(xzy)ll\f||1+2||Flloo€
yel—n,n
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Since F is continuous, let [z — za| < £ such that |21y — z2y| < & imples |F(21y) — F(22y)| < €. So
[f(z1) = f(z2)] = 0 as [x1 — x5 = 0.

A similar argument will show that § is continuous. Since f§ € L', by Fubini,

[ taau= [ [ 5@ F@)gdutsaue)

[t ( / f(x)F(xy)du(x)> dn(y)
[owi
= / fadp.

Problem 10. Let pu, {pn | n € N} be finite Borel measures on [0,1]. p, — p vaguely if it converges
in the weak™ topology on MI0,1] = (C[0,1])*. pn — p in moments if for each k € {0} UN,

y)dp(y)

O

/ Fdp, (z) — 2 du(x).
[0,1] [0,1]
Show that p, — p vaguely if and only if p, — u in moments.

Proof. =) trivial by the definitions

<) We want to show that for all f € C[0,1], [ fdu, — [ fdu. By Stone-Weierstrass, we can find
Pr to be a sequence of polynomials which converge uniformly to f on [0, 1]

’/f(w)du—/f(x)dun < ‘/fdu—/pmdu’ + ‘/pmdu—/pmdun + ‘/pmdun —/fdun

For the first part, | [ fdpu— [ pmdp| < || f—pmllocpt(X) = 0 as m — oco. Similarly, | [ ppdpn — [ fdpn| <
Il f = pmllcottn (X) — 0 for all n.

Next, find a polynomial g,,; with degree at most j such that ||g,,, — pmlcc —+ 0 as j — oo. Then
since i, — p¢ in moments, then | [ ¢m,dpt — [ G, dpn| — 0 for all j. Thus,

‘/pmdu—/pmdun < ‘/pndu—/qmjdu‘ + ‘/qmjdﬂ—/qmjdun + ‘/qmjdﬂn - /pmdun

< P — oy oo (1) + (X)) + ] [amin= [ an,du

— 0.
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16 January 2012

Problem 1. Let A be the subset of [0,1] consisting of numbers whose decimal expansions contain
no sevens. Show that A is Lebesgue measurable, and find its measure. Why does non-uniqueness of
decimal expansions not cause any problems?

Proof. Let A; be the subset of [0, 1] consisting of numbers whose first ¢ digits are not 7. Then A, C
A, and A=nN,A,,

Ay =1[0,0.7]U[0.8,1]
Ay =1[0,0.07) U[0.08,0.17] U ... U[0.98,1]

So A, is the union of some Borel intervals in [0, 1], so A, is Lebesgue measurable. Therefore, A is
Lebesgue measurable.

Now for 0 < i < 9, let A, be the subset of A,, such that the (n + 1)th digit is . Then we can write
A, =19 AL

Also, m(AL) = m(AL), so m(A,) = 10m(A%) and A,pq = Uizr AL so m(A,11) = 9m(AL). There-

fore, m(An41) = 55m(A,). Then

m(A) = m (M7, Ay) = limm(A,) = lim ()nl m(A1) =0

n
The only numbers with non-unique decimal representation are 0.aias...a, = 0.a1a3...a,-1999....

However Vn there are only finitely many, so non-unique = U,{0.a; ... a,} which is countable, hence
null, hence Lebesgue. O

Problem 2. Let the functions f, be defined by

~ Ja%cos(l/xz) x>0
fa(x)_{o z=0

Find all values of a > 0 such that

(a) fo is continuous

Proof. When a > 0, z%cos(1/z) < z* — 0 as z — 0so f, is continuous. If a = 0, we know
cos(1/x) isn’t continuous at 0. O

(b) fa is of bounded variation on [0,1]

Proof. First, 0 < a <1, put partitions
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Then
1 1 -
o) = {0, e ey 0
So
1 -1 1 S N L
T5Po) = | e | | @ 0 2 e 7

when 0 < a <1 as m — oco.

So when 0 < a < 1, f, is not of bounded variation when 0 < a < 1. For a > 1, let’s look at
(c). O

(¢) fa is absolutely continuous on [0, 1]

Proof. When a > 1, we see f1(0) = 0 and f! is integrable because f/(z) = ax® ! cos(1/x) +
2~ 2sin(1/x) so then f,(z) = [, fi(t)dt. Thus, f is absolutely continuous.

So in (b) we have f, is of bounded variation for a > 1. Since f, isn’t bounded variation when
0<a<1,so f, isn’t absolutely continuous either when 0 < a < 1. O

Problem 3. Let F denote the family of functions on [0,1] of the form

fz) = Z an sin(nzx)

where a,, are real and |a,| < 1/n3. State a general theorem and use that theorem to prove taht any
sequences in F has a subsequence that converges uniformly on [0, 1].

Proof. We'll use Arzela-Ascoli.

For all f € F,

()] =

o0 o0 oo
Zan sin(nx)| < Z lan| < Zn‘s < oo
n=1 n=1 n=1

so uniformly bounded. Also, for all f € F,

nr + ny
2

cos
2

(@) =@ < Janl| sin(nz)—sin(ny)| < 3 207 \sm ety
n=1 n=1

n=1
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So F is equicontinuous.

Then F is compact, hence sequentially compact. So F has a subsequence that converges in the uni-
form norm. O

Problem 4. Let H be a Hilbert space and W C H a subspace. Show that H = W @ W+ where W is
the closure of W.

Note: Do not just state this as a consequence of a standard result, prove the result.

Proof. here! O

Problem 5. Suppose A is a bounded linear operator on a Hilbert space H with the property that
lp(A)| < Csupflp(2)| | z € C, |2 = 1}

for all polynomials p with complex coefficients, and a fized constant C'. Show that to each pair x,y €
H there corresponds a complex Borel measure i on the circle S* = {z € C | |z| = 1} such that

(A"x,y) = /z"du(z) n=0,1,2,...

Proof. Consider

T,,: P(SY) = C
p = (P(A)z,y)

Then
(P(A)z, y)| < [PAIz[ll[yl] < CllPlsollz Iyl

Thus, [Ty 4 (P)| < C|lz|||lyll[|Pllec = f(P) which is obviously a seminorm. By Hahn-Banach, T ,
can be extended to C(S1).

Then apply Riesz-Representation Theorem, there exists a complex Borel measure p on S! such that

L. (P) = (P(A)r.9) = | P()an(2)

Take P(z) = 2" so (A"x,y) = [q 2"du(z). O
Problem 6. Let ¢ be the linear functional
1
o =10~ [ s
—1
(a) Compute the norm of ¢ as a functional on the Banach space C|—1, 1] with uniform norm
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Proof.
1

1
le(F)l < \f(0)|+/_1|f(t)ldt§ ||f||oo+Hflloo/ldt=3||f||oo

So ||#|| < 3. On the other hand, let f, be piecewise linear functional such that f, = —1 on
[-1,—1/n] and [1/n,1] and f,,(0) = 1. Then
! 2 4
/ falt)dt = —2(1—1/n)+ 2 = 242 & 9
1 n n

So sup|¢(fu)| > 3 50 [l¢]] = 3. O

(b) Comptue the norm of ¢ as a functional on the normed vector space LC[—1,1] which is C[—1,1]
with the L* norm.

Proof. X
1f(0) = J2, f®at] |1 —1/n|
= 1 =
lol= 2 7 Y

O

Problem 7. Let X be a normed space and A C X be a subset. Show that A is bounded (as a set) if
and only if it is weakly bounded (that is, f(A) C C is bounded for each f € X*).
Proof. =) for all x € A, for all f € X*, |f(x)] < | fllllz]] < oo so A is weakly bounded

<) on the other hand, consider A** = {a** | a € A} by a**(f) = f(a) for all f € X*. Since X* is
Banach, and we know

sup |[a™*(f)l| = sup|f(a)| <oo  VfeX*
a**cA** acA

By the uniform boundedness principle, sup,c 4 [|a|| = supge«g g+« [|[**]| < c0. O

Problem 8. Let X be a topological vector space.

(a) Define what this means.

Proof. Let X be a vector space, T a topology on X. Then (X, 7) is a topological vector space
provided

o +: X x X — X is continuous

e - :R x X — X is continuous

(b) Let A C X be compact and B C X be closed. Show that A+ B C X s closed.
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Proof. Fix z € (A+ B)°. For z € A, z — 2 € B¢ so there exists an open neighborhood V,, 3
0 in X such that (z — z + V;;) N B = (. Since addition is continuous, there exists Uy, Uz,
neighborhoods of 0 such that Uy, + Us, C V.

Uy, =U1;NUz N (=Us,) N (=Uss) so Uy = —U,. Then {x+ U, }rca is an open cover of A. Since
A is compact, there exists a finite subcover z1,...,x, € A such that
ACUY z; + Uy,

Put U = N_,U,,. Then z + U is an open neighborhood of z. If there exists + € Ay € B such
that t+y € 2+ U thenx € x; + Uy, forsome i andy € z—x+U Cz—x; + Uy, Cz—a; + Vy,
but (z — z; + V) N B = (). Contradiction!

So(z+U)N(A+ B) = 0. O
(c) Give an example indicating that the condition ‘A closed’ is insufficient for the conclusion.

Proof. X =R?, A ={(z,0) | z € R} and B = {(x,1/x) | z > 0}. Then A+ B = {(z,y) | y >
0. 0

Problem 9. Let (X, M, ) be a finite measure space. Let f, f,, € L*(X,du) for n € N be functions
such that f, — f p-a.e. and |f,| < M for alln. Let g € L?/*(X,dp). Show that

li;n/fngdu= /fgdu-

Proof. |fng| < M|g|. Since u is a finite measure, M1 € L3(u). By Holder, M|g| € L*(x). The result
follows from Dominated Convergence Theorem. O

Problem 10. Let X be a o-finite measure space, and f, : X — R a sequence of measurable func-
tions on it. Suppose f, — 0 in L? and L*.

(a) Does f, — 0 in L'?

Proof. NO.
Let X = R, u=Lebesgue measure. f, = n™ X[, 50 ||falli = 1 does not converge to 0, but
[ fulla =n"Y% = 0 and || f,]ls = n=3/* = 0. -

(b) Does f, — 0 in L5?

Proof. YES.
Since 0 < 2 <3 <4 < o0, LoNLy C Lz and |fllz < |fI2[If]li* where & = 3 + 132 implies
A=1.S0

3

I falls < falls 137 = 0

(¢) Does fp, — 0 in L°?
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Proof. NO.
X = [0,1], ju: Lebesgue measure. Let f, = nX[g,-5;. Then ||f,|[s = 1 but || full2 = n=3/2 =0
and || fulla = n~ 4 — 0. O

17 August 2011

Problem 1. Let (X, M, ) be a measure space.

(a) Give the definitions of convergence a.e. and convergence in measure for a sequence of measur-
able functions on X.

Proof. We say a sequence of measurable functions f,, converge to f almost everywhere if u({z |
lim,, fn(2) # f(2)}) = 0.
We say that f,, converges to f in measure if Ve > 0, lim,, u({z | |f(z) — fu(z)| > €}) = 0. O

(b) Show that every sequence of measurable functions on X which converges in measure to 0 has a
subsequence which converges a.e. to 0.

Proof. Suppose for every € > 0, u({x | |fn(x)| > €}) — 0. Choose a subsequence { fy, } such that
if

Ej = {z [ |fa; (@) = fa; . ()] > 277}

satisfies u(E;) < 277. Let F, = UZ2 . Ej so u(Fy) < Z;’;k 277 < 217k Let F = NiFy so
u(F) =0.
For x ¢ Fj, and for ¢ > j > k then

i—1

i1
| fn:(2) — fn; (2)] < Z |fre () = [, ()] < Z2Z <277 50 ask— .
=

=j

So fn, is pointwise Cauchy on z ¢ F', so let

0 otherwise

fa) = {limfnk(x) x¢ F

So fn, — 0 almost everywhere and f,, — f in measure since

pz | [fn(2) = f(@)] = €}) < pa | |fn(x) = fo,(2)] 2 €/2}) + p{z | | fn,(x) = f(2)] = €})

—0 —0

and
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pw{z [1f (@) = e}) < pla [ |f(@) = fo(@)] 2 €/2} + p({z | | fo(2)] = €/2})

—0 —0

so f =0 almost everywhere. Thus, {f,,} converges to 0 almost everywhere. O

Problem 2. Let X be a separable Banach space. Show that there exists an isometric linear map
from X into £°. Also, show that this is false in general if £>° is replaced by 2.

Proof. Let (z,) be a dense sequence in Bx. For each n, use Hahn-Banach Theorem to find a norm-
one functional f,, € X* with f,(z,) = 1.

Define ¢ : X — (*° via ¢(z) = (fn(ac)) Suppose z € X has norm one and let 1 > ¢ > 0. Choose n,
so that ||z,, — z|| < e. Then

€> |fn(wn, = )| = |fn.(2)]

So [|p(z)[| = sup, [fu(z)| = 1. For every n, [fn(z)| < [[fullllz] = 1 so [[¢(x)[| < 1. So [[¢(x)]| =1

whenever ||z|] = 1. Then for all non-zero z, ||¢(x)|| = ||z||sup,, |fn(z/]z|)] |z]|. So ¢ is an
isometry.
Why FALSE for /2?7 O

Problem 3. Let X be a locally compact metric space and let {xy} be a sequence in X which has no
convergent subsequence. Show that {n=*>"}'_, 8, } converges to 0 in the weak* topology on Co(X)*,
where 6, denotes the point mass at xy,.

Proof. here O

Problem 4. Let P be the set of all polynomials f on [0,1] such that f(0) = f'(0) = 0. Determine,
with proof, the values of p with 1 < p < oo such that P is dense in LP[0, 1].

Proof. All'1 < p < oo. Clearly, P is an algebra which separates points (ex. x?). Stone-Weierstrass
implies P = {f € C[0,1] | f(0) = 0}. Now for any f € LP, for all ¢ > 0, there exists some N such
that

€
I1f = Xen<remll, < 5
Define fy = fX[—n<f<n]- By Lusin’s theorem, there exists a closed set F' such that m([0,1]\F) <
1 _€P 1 ( €

J— p 1
>N = W) . and fy|F continuous.

Tietze extension theorem applied to fy and F' implies the extension g is still bounded by N. Then
P
sl = [ Vv —ol < ONPm(IN) £ G

)

So then
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€
15 =gl < 17 = Sl + i = gllp < 5 + 5 <

NOT L*[0,1] since P = {f € C[0,1] | f(0) = 0}. If f € L*°[0,1] with f(0) = a # 0, then Vg € P,
If = 9lloc = a. u

Problem 5. Let 1 < p < oo and let {x;}52, be a sequence in ¢P(N) such that limy x(n) = 0 for all
n € N. Show that if there is an M > 0 such that ||zk|| < M for all k € N then x, — 0 weakly.

Also, show that if no such M exists, then {xx} can fail to converge weakly.

Proof. Note: Similar to August 2015, #3, just in a different space now.
Fix some y € £? where % + % = 1. We want to show that ) xx(n)y(n) = 0 as k — oco. Fix € > 0.

Then we may choose a finite A C N such that > oacly(n)|? < €2, Since A is finite, choose some K
such that for all k > K we have |z (n)|P < IA\ Then for all £k > K, by using Holder, we have

y(@n)| < Y lew(n)lly(n

neN
=D lze@)llym) + > lz(n)lly(n)]
neA neAe

1/p 1/q 1/p 1/q
< (Z ka(n)|p> (Z Iy(ﬂ)q> + (Z ka(n)|p> (Z y(n)|q>
neA neA neAe neAe

(|A|| ) o+ e
= e (lylly+ 30)

By making e small enough, we see that |y(zx)| — 0 as k — oo.

To see why we require (xy) to be bounded, consider p = ¢ = 2. Take
11 1
_ k _ ok —
QCk-—(0,0,...,O,Q ,0,)—2 €k Yy = (2,22,...,%,...>

where zy, is all zeros except in the kth spot. Then we can see that limy xx(n) = 0 for all n, but that
for all k,

= Zxk(n)y(n) = 2k2ik 1

O

Problem 6. Let f € Cy(R) and for every t € R define fi € Co(R) by fi(x) = f(z +t) for all z € R.

(a) Prove that {f: |t € [0,1]} is compact in the norm topology.
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Proof. Similar to August 2013 #1
Since C°(R) is dense in Cp(R), we can choose g € C°(R) such that ||g — f|lco < €. Then

I fe, = filloo < M fen = 9tnllos + 9t — 9tlloo + 19¢ — filloo

It’s easy to see || fi, — g1, |loo and ||g: — ft||o are small since ||g — f|loo < €. For ||gs,, — g¢|loo, then

19t, — gtlloo = sup|gs, (x) — g¢(x)| = sup |g(x + t,) — g(x + )]
rER xeR

where for each fixed t,, — t, since g is compactly supported and continuous then can be suffi-
ciently small for large enough n.

Therefore, the map G : R — Cy(R) given by G(¢) = f; is continuous. Since {f; | ¢t € [0,1]} =
G(]0,1]) and continuous maps preserve compactness, then the set is compact in the norm topol-
ogy. O

(b) Prove that {f; | t € R} is relatively compact in the weak topology.

Proof. here O

Problem 7. Let f be an arbitrary real valued function on [0,1]. Show that the set of points at
which [ is continuous is a Lebesgue measurable set.
Proof. Similar to August 2016, #3.

In fact, we will prove that the set of points at which f is discontinuous is a countable union of closed
subsets.

f is continuous at p if for all n, there exists an open U containing p such that |f(xz) — f(y)| < 1/n
for all z,y € U. Fix n and let

V, = U{p s.t. there exists an appropriate U} = U{appropriate U}
P
Hence, V,, is open. Then

{points where f is continuous} = ﬂ Va

n

So {points where f is discontinuous} = J,, V¥ where V¢ is closed. O
Problem 8. Show that not every nonempty bounded closed subset of £ has a point of minimal

norm, but that every nonempty bounded closed convex subset of £2 has a point of minimal norm.

Proof. Let C be the bounded, closed, convex subset of £2. Consider the set {y € R | y = ||z||,z € C}
and since this set is bounded below, there exists an infimum of the set, say s. Then we can find a
sequence z, € C such that s < ||z, || < s+ 1.
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I claim that (x,) is a Cauchy sequence. Indeed, for any ¢ > 0, choose r to be the positive root of
2
the equation 2 + 2rs — < =0.

Since ||z, || — s then there is an N such that s < ||z,|| < s+ r for all n > N. If n,m > N, then

Tm — Tn
2

2 T + T,

2

2 2 2 2
S+r S+r
<( ) ( ) €

2
Loy, |12 xT
5 || T23 2 2 STE AT =

So () is a Cauchy sequence, which means it converges to some xz. Since C is closed, x € C and
obtains minimal norm.

Note: This choice of x is unique! If there were two points of minimal norm, say x; and x5 then
$(x1 + x2) € C by the convexity of C. So s < ||3(x1 +22)|| < &lla1]| + 3llz2|| = s. Hence,
|z1 + z2]| = 2s. By the parallelogram law,

21 + @2l|* + llz1 — z2]* = 2lla[|* + 2z

And so ||z1 — x2]|? = 4s? — 4s? = 0 so x1 = x9, proving uniqueness.

Counterexample: Consider M = {”Tﬂen |neN } M is closed since the distance between any two

of its elements is greater than v/2 (and thus the only convergent sequences from M are those that
are eventually constant). M is clearly non-empty and has no element of minimal norm. O

Problem 9. Show that there is a sequence {fn} of continuous functions on [0,1] such that

(a) |fn(t)] =1 for alln and all t € [0,1] and

(b) for all g € L*[0,1] one has fol fa®)gt)dt - 0 as n — oo

Proof. NOT POSSIBLE??

If f,, is continuous on [0, 1] and |f,(¢t)] = 1 then f,(t) = £1. Since f,, is continous, each f, is the
constant function at either 1 or —1. Write it as f,(z) = (—1)*¥» where k,, is even or odd depending
on n.

Then if we take g to be the constant function 1, we get

1 B 1_ .
/0 fu(g(t)dt = / (—1)Fdt = (~1)

which does not have to converge to 0 as n — .
right? obvious? I don’t get it... O

Problem 10. (a) Define what it means for a real valued function on [0,1] to be absolutely continu-
ous.
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(b)

Proof. The function f : [0,1] — R is absolutely continuous if for every ¢ > 0 there exists § >
0 such that whenever a finite sequence of pairwise disjoint sub-intervals (xy,yx) of [0, 1] with

Tk, Y € [0, 1] satisfy 32y (yx — zx) <0 then 30, [f(yr) — f(ax)| <e.

Equivalently, f has a derivative f’ almost everywhere and the derviative is Lebesgue integrable

and for all z € [0, 1],
+ / f/(t)dt
0

Prove that if f and g are absolutely continuous strictly positive functions on [0,1] then f/g is
absolutely continuous on [0, 1].

Proof. Step 1: If f is absolutely continuous, then so is 1/f.

Since f > 0 is continuous on a compact space, there exists some M € N such that 5; < |[f(z)] <
M for all x € [0,1].

Indeed, since g is absolutely continuous then for every € > 0, there exists a § > 0 such that
whenever a finite sequence of pairwise disjoint sub-intervals (zy,yx) of [0, 1] with x, yx € [0,1]
satisfy >, (yx — 2x) < 6 then Y, [f(yx) — f(2r)| < 57z- Then for such intervals, we have
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Step 2: If f and g are both absolutely continuous, then so is fg.
Find M € N such that |f(z)], |g(x)] < M for all z € [0,1].

Take 01 such that if Yy — 2 < 01 then Y |f(yr) — f(xr)| < €¢/2M. Similarly, take 3 such that
if > yp — xp < da then > |g(yk) — g(zk)| < €/2M. Let § = min(dq, d2). Now
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Combining the two steps, we see immediately that f/g is absolutely continuous. O
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