UO TOPOLOGY QUALIFYING EXAM
FALL 2019
SOLUTIONS

(1) Recall that the Klein bottle K can be described as the following identification space:

«

«

Show that the Klein bottle retracts onto one of the circles «, 8 but not the onto the

other.

Solution 1. Identify the square above with [0,1]? in the obvious way. The map

f:10,1> = [0,1]/(0 ~ 1) = o given by f(x,y) = « respects the equivalence relation,
hence descends to a continuous map f: K — a. By definition, f|, is the identity map,
so f is a retraction.

Next, we show that there is no retraction r: K — . If we let H; denote the abelian-
ization of 71, van Kampen’s theorem gives Hy (K) = Z{«, 5)/(2/) (where we are abusing
notation to let a and 8 denote the elements of 7 (K) which go around « and  once).
Let 7: B — K denote inclusion. If there were a retraction r: K — 3, so r o7 = Ig, then

we would have
reot, =1: H1<5) — Hl(ﬁ)

But Hy(8) = Z{pB), so i.: Hi(f) — Hy(K) is not injective, a contradiction.

Solution 2 (sketch). The same as above, except use H; computed by cellular ho-

mology or the Mayer-Vietoris theorem.

(2) Let M(3,1) be the result of attaching a 2-cell to S* by the map z + 2% Describe

explicitly, with proof, all connected covering spaces of M (3,1) x RP2.

Solution. First, recall that the covering spaces of X x Y are exactly the products
of covering spaces of X and covering spaces of Y. (One can prove this directly, or from
the classification of covering spaces and the fact that w1 (X x V) = m(X) x m(Y). A
proof is not required for full credit for this problem.) Now, the connected covering spaces
of M(3,1) are in bijection with subgroups of 71 (M(3,1)) = Z/3Z, of which there are
two: Z /37 and {0}. Similarly, covering spaces of RP? are in bijection with subgroups of
7/ 27, of which the only two are Z /27 and {0}. Hence, there are four connected covering

spaces of M(3,1) x RP2.

The two connected covering spaces of RP? are I: RP? — RP? and the quotient map

§2 = §2/{+1} = RP2.

The two connected covering spaces of M(3,1) are I: M(3,1) — M(3,1) and another

one, f: X — M(3,1) defined as follows. Let

X =D?x{0,1,2}/ ~
1
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where (x,1) ~ (z, ) for each x € 9D?. Let q: D* — M (3,1) be the quotient map. Then
f(x,5) = q(e*™V=13z). (A clear picture would also suffice here, though M(3,1) does
not embed in R3.)

Now, the four connected covering spaces of M (3, 1) x RP? are M (3,1)xRP?, M(3,1)x
S2. X x RP?, and X x S?, with the obvious maps.
Let X be the union of the (hollow) cube 9(|—1,1]*) and the three coordinate axes in R3

B
| \

(a) Compute 7 (X).
(b) Compute the homology groups of X.
Solution. We start by replacing X by a homotopy equivalent space where the compu-
tations are easier. First, X deformation retracts to the union of the hollow cube and the
parts of the coordinate axes lying inside the cube. Call the image of this deformation
retraction Y. The space Y can be given the structure of a CW complex with, say:
e (O-skeleton {(0,0,0), (£1,0,0), (0,£1,0),(0,0,£1)},
e l-skeleton Y N {(x,y,2) | zyz = 0}
e 8 2-cells, around the eight vertices of the cube.
(A good picture would be a fine substitute for words here.) Let Z C Y be the union of:
e 5 of the 6 faces of the cube, and
e the segment from one of those five faces to (0,0,0).
Then Z is a contractible subcomplex of Y, and the space Y/Z is homeomorphic to the
wedge sum of S? and 5 circles,

S?vStv sty sty stvist
Since both 7; and H, are homotopy invariants,
m(X) =2 m(S*vStvstvsty Sty st
Hy(X) = Hy(S*vStvstvstvstvsh.
So, it is immediate from van Kampen’s theorem and cellular homology that
m(X) = ¥ m(S') = F;
Ho(X) = Z

H\(X)= P H(S") =2’

Hy(X) = Hy(S?) 2 7Z
(Students do not need to spell out further details here for full credit.)

Solution 2 (sketch). Quotient by a different contractible subcomplex, or apply van
Kampen’s theorem, and the Mayer-Vietoris sequence or cellular homology, directly to

X.
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(4) Let ¢: 5% x 5% — 5% x S% be the map ¢(z,y) = (y,z). Let Ty = (5% x S? x
0,1])/((z,y,1) ~ (y,x,0)) be the mapping torus of ¢.
(a) Compute the homology groups of 7.
Solution 1. Let

U=Ty\ (S* x S* x {0})
V= T,\ (52 x 8% x {1/2}).

There is an obvious homeomorphism f: U = 82 x 52 x (0,1). There is also a
homeomorphism g: V — S2 x 52 x (1/2,3/2) defined by

o ) t+1) 0<t<1)2
ot = {(p,t) 1/2 <t<1.

For I = (0,1), I = (1/2,3/2), I = (0,1/2), or I = (1/2,1), let p: S? x S? x [ —
S? x S? denote projection. Then we have isomorphisms

(po fe: H(U) — H,(S? x 5?)
(pog): Ho(V) — H.(S* x 5?)
(pIp)o f).: H(UNV) — H.(S? x §?) & H,(5% x S?).

Apply the Mayer-Vietoris theorem to the cover T; = UUV and use the identifications
above to obtain

H,(UNV) Hi(U) & Hy(V)
((pLp)of)« l (pof)«B(pog)« L
HZ(SZ X 32) D HZ<SZ X 82) T‘ HZ(S2 X 52) D HZ(SZ X 32)

HA(T,) —

The map V¥ is the unique map so that the diagram commutes. It follows from the

definitions that
I I
\Iji - — .
(0. 1)

(Depending on one’s sign convention for the Mayer-Vietoris sequence, there might
be minus signs in the second row.) There is a short exact sequence

0 — coker(®;) — H;(Ty) — ker(®;_1) — 0.
Note that ¢? =1, so (¢~1), = ¢,. Also, row-reducing,
ker(®;) = ker(¢, — 1)
coker(®;) = coker(¢p, —1I).
From cellular homology (or the Kiinneth theorem), we have
Z 1=0
72 i=2
HZ(S2 X 52) = Z
1 =4

0 else.
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Further, by considering degrees, ¢, is the identity map on Hy, the matrix (9{) on
H,, and the identity map on Hj,.
Hence, we have

Ho(Ty) = coker((¢. — I): Ho(S® x S%) = Ho(S? x 5%)) = Z
Hi(Ty) = ker((¢s —I): Ho(S? x S*) = Ho(S* x 5%)) 2 Z

Hy(Ty) = coker ((¢. — I): Ha(S? x S%) — Hy(S? x S?)) = coker (_11 _11> ~7
Z

Hy(Ty) = coker((¢y — I): Hy(S? x S%) — Hy(S? x 5%)) = Z
H5(Ty) = ker((¢. — I): Ha(S? x S?) = Hy(S* x S%)) 2 Z

Solution 2. (sketch). Hatcher gives a long exact sequence for the homology of
a mapping torus, which we did not cover in class but which some students might
know.

Solution 3. (sketch). It is a bit tedious, but this computation can be done using
cellular homology.

(5) (a) Define the compactly supported cohomology groups H: of a space X.

Solution. If K C L C X then X \ K D X \ L. Hence, the inclusion map of pairs
(X, X \ L) = (X, X\ K) induces a map of relative cohomology H (X, X \ K) —
HY(X, X \ L). Further, if K C L C M then, since the diagram of inclusions

(X, X\ K) (X, X\ M)

\/

(X, X\ L)

commutes, the diagram of relative cohomologies

Hi(X, X\ K) Hi(X, X\ M)

\/

Hi(X,X\ L)

commutes.
Hence, the groups
{H'(X, X\ K)}kcx compact
form a directed system. The compactly supported cohomology H!(X) is the direct

limit of this directed system.
Solution 2 (sketch). Alternatively, one can define

CiX)=  lm  CU(X.X\K),
KCX compact

see that d induces a map d: C(X) — C'"(X) and these maps form a chain com-
plex, and define H!(X) to be the homology of this chain complex.
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(b) Show that H! is not a cohomology theory. More precisely, show that there is no
cohomology theory h* so that h(X) = H'(X) for all spaces X and integers 1.
Solution. If A* is a cohomology theory then the homotopy axiom implies that if
X ~ Y then AY(X) = BY(Y) for all 7. For compactly supported cohomology, by
definition H)(R?) = H°(R",()) = Z. On the other hand, H’(R') = 0: it follows
from Poincaré duality that H?(R') = H;(R') = 0. (Alternatively, it is not hard to
show directly that HJ(R') = 0.)

Remark. Compactly-supported cohomology is functorial under proper maps (though
not all maps), and invariant under proper homotopies.
(6) Let (RP?)?19 be the product of 2019 copies of RP? with itself. Suppose f: (RP?)%1 —

(RP?)?919 is a continuous. Show f has a fixed point.

Solution. Recall that the homology of RP? is

7z 1=10
H;(RP*7Z) = Z/27Z i=1
0 otherwise.

(This follows easily, for example, from cellular homology, or from the long exact sequence
for a pair or the Mayer-Vietoris sequence.) Hence, by the universal coefficient theorem,

Q i=0

0 otherwise.

H;(RP%Q) = {
Now, by the Kiinneth theorem,
Q i=0

0 otherwise.

Hi{(RP)™;Q) = {

For any map f: X — X, f.: Ho(X) — Ho(X) is the identity map. Hence, for any map
[ (RP?)2019 — (RP?)2919 the Lefschetz trace 7(f) = 1. Hence, f has a fixed point.

(7) Consider the knot 59

(a) T claim I have a normal covering space of S3 \ 5, with deck transformation group
Z/537Z. Do you believe me? Justify.

(b) Now I claim I have a normal covering space of S? \ 5, with deck transformation
group Z/27 x Z/2Z. Do you believe me? Justify.

Solution 1. From the classification of covering spaces, a space X has a normal
covering space X with deck group G if and only if 71 (X) has a normal subgroup H with
m(X)/H = G. Further, if G is abelian then H must contain the commutator subgroup
of m(X), so

Hy(X) = m(X)/[m(X), m(X)] —» m(X)/H=G.



(10)
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Conversely, if H,(X) surjects onto G then ker(m (X) — H;(X) — G) corresponds to a
normal covering space with deck group G.

By Alexander duality, H;(S® \ 5y) = H'(S') = Z. Since Z surjects onto Z/537Z,
S3\ 5y does have a normal covering space with deck group Z/537Z. Since Z does not
surject onto Z /27 x 7./27., S*\ 55 does not have a normal covering space with deck group
Z]27 x 7.]27.

Solution 2 (sketch). Students in the class have seen the Wirtinger presentation for
m1(S?\ K) and could substitute that for Alexander duality (though it is slightly tedious).
Let G be a finitely generated abelian group. Show that no closed 3-manifold is a K (G, 2).
(Hint: reduce to the orientable case and consider the homology of a K(G,2).)

Solution 1. Let M be a closed 3-manifold. If M is non-orientable then the orientation
double cover of M is a nontrivial 2-fold cover, so w1 (M) # 0, so M is not a K(G,?2).

Next, if M is orientable then by Poincaré duality, H3(M) = Z. So, it suffices to show
that H3(K (G, 2)) = 0. We can build a space K (G, 2) as follows. Start with a Moore space
built from 2-cells and 3-cells. By cellular approximation (or van Kampen’s theorem),
m(M(G,2)) = 0, and by the Hurewicz theorem, mo (M (G, 2)) = Ho(M(G,2)) = G. Now,
attach 4-cells to M (G, 2) to kill of m3(M (G, 2)), attach 5-cells to the result to kill of 7y,
and so on. Since the resulting K (G, 2) has the same 3-skeleton as M (G, 2), H3(K (G, 2))
is a quotient of H3(M(G,2)) = 0, hence vanishes. In particular, H3(M) 2 H3(K(G,?2)).

Solution 2. Suppose that M is a K(G,2). As in Solution 1, M is orientable. By
the 1-dimensional Hurewicz theorem, H;(M) = 0, so by Poincaré duality H*(M) = 0,
so by the universal coefficient theorem Hy(M) = 0. So, by the Hurewicz theorem one
more time, G = mo(M) = 0. Now, if M is a K({0},2) then m;(M) = 0 for all i so by the
Hurewicz theorem H;(M) = 0 for all i > 0. In particular, H3(M) = 0, which contradicts
the fact that M was closed and orientable.

Recall that orientable k-dimensional vector bundles over X are in bijection with [X, Grj (R*)],

where Grj (R*) = V3(R>)/ SO(3) is the Grassmanian of oriented 3-planes in R>. Com-
pute 7;(Gry (R*)) for i < 4. (Hint: recall that SO(3) 2 RP3.)

Solution. The space V3(R*) is contractible, so the long exact sequence for the fibra-
tion SO(3) — V3(R>®) — Gry (R*) decomposes as

0 = 1 (Va(R®) = 7, (Cri (R®)) = 0_1(SO(3)) = mns (Va(R®)) = 0.

Hence, m,(Grj (R®)) = 7,_1(S0(3)).

As noted in the hint, SO(3) = RP3. Hence, 7(SO(3)) & Z/27Z and for i > 1,
mi(SO(3)) = 7;(S?) (since S® is a covering space of RP3). From the Hurewicz theo-
rem, m(S?) = 0 and m3(S%) = H3(S®) = Z. Hence, the first few homotopy groups of
Gry (R>)) are:

(0 1 =0
0 1=1
m(Gry (R®)) = Z/2Z i=2
0 1=3
z =4

Let Y be a 2-connected space and p: Y — Grj (R*®) a fibration so that p,: m;(Y) —
7;(Grg (R>)) is an isomorphism for i > 2. (That is, Y is a 2-connected cover of
Grj (R*).) Define the (primary) obstruction in cohomology to lifting a map f: X —
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Gry (R*) to a map f: X — Y and give an example where the obstruction does not
vanish.

Solution. From the long exact sequence in homotopy groups, the fibration ¥ —
Gry (R*®) has fiber K(Z/2Z,1). Since m(Y) = m(Gry (R*®)) = 0, the map ¥ —
Grj (R>) is a principal fibration. (This is a special case of the statement about Moore-
Postnikov fibrations on the “possibly useful theorems” page, and is also immediate from
the construction above.) So, a map f: X — Grj (R*) has a lift if and only if the
composite

X L arf (R®) % K(2/22,2)
is nullhomotopic. The homotopy class [g o f] € [X, K(Z/27Z,2)] is trivial if and only if
(90 )" () € H*(X;Z/2Z)

vanishes. The element (g o f)*(¢) is the primary obstruction to lifting f.

For an example where the primary obstruction does not vanish, take X = Grj (R*)
and let f be the identity map. Then from the construction in the previous solution
(goT)*(¢) = g*(¢) is a generator of H*(Gr3 (R*); Z/27Z).



