
UO TOPOLOGY QUALIFYING EXAM
FALL 2019

SOLUTIONS

(1) Recall that the Klein bottle K can be described as the following identification space:

α

α

β β

Show that the Klein bottle retracts onto one of the circles α, β but not the onto the
other.

Solution 1. Identify the square above with [0, 1]2 in the obvious way. The map
f : [0, 1]2 → [0, 1]/(0 ∼ 1) = α given by f(x, y) = x respects the equivalence relation,
hence descends to a continuous map f̄ : K → α. By definition, f̄ |α is the identity map,
so f̄ is a retraction.

Next, we show that there is no retraction r : K → β. If we let H1 denote the abelian-
ization of π1, van Kampen’s theorem gives H1(K) ∼= Z〈α, β〉/(2β) (where we are abusing
notation to let α and β denote the elements of π1(K) which go around α and β once).
Let i : β ↪→ K denote inclusion. If there were a retraction r : K → β, so r ◦ i = Iβ, then
we would have

r∗ ◦ i∗ = I : H1(β)→ H1(β).

But H1(β) = Z〈β〉, so i∗ : H1(β)→ H1(K) is not injective, a contradiction.
Solution 2 (sketch). The same as above, except use H1 computed by cellular ho-

mology or the Mayer-Vietoris theorem.
(2) Let M(3, 1) be the result of attaching a 2-cell to S1 by the map z 7→ z3. Describe

explicitly, with proof, all connected covering spaces of M(3, 1)× RP 2.
Solution. First, recall that the covering spaces of X × Y are exactly the products

of covering spaces of X and covering spaces of Y . (One can prove this directly, or from
the classification of covering spaces and the fact that π1(X × Y ) ∼= π1(X) × π1(Y ). A
proof is not required for full credit for this problem.) Now, the connected covering spaces
of M(3, 1) are in bijection with subgroups of π1(M(3, 1)) = Z/3Z, of which there are
two: Z/3Z and {0}. Similarly, covering spaces of RP 2 are in bijection with subgroups of
Z/2Z, of which the only two are Z/2Z and {0}. Hence, there are four connected covering
spaces of M(3, 1)× RP 2.

The two connected covering spaces of RP 2 are I : RP 2 → RP 2 and the quotient map
S2 → S2/{±1} = RP 2.

The two connected covering spaces of M(3, 1) are I : M(3, 1) → M(3, 1) and another
one, f : X →M(3, 1) defined as follows. Let

X = D2 × {0, 1, 2}/ ∼
1
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where (x, i) ∼ (x, j) for each x ∈ ∂D2. Let q : D2 →M(3, 1) be the quotient map. Then

f(x, j) = q(e2πj
√
−1/3x). (A clear picture would also suffice here, though M(3, 1) does

not embed in R3.)
Now, the four connected covering spaces of M(3, 1)×RP 2 are M(3, 1)×RP 2, M(3, 1)×

S2, X × RP 2, and X × S2, with the obvious maps.
(3) Let X be the union of the (hollow) cube ∂([−1, 1]3) and the three coordinate axes in R3

(a) Compute π1(X).
(b) Compute the homology groups of X.
Solution. We start by replacing X by a homotopy equivalent space where the compu-
tations are easier. First, X deformation retracts to the union of the hollow cube and the
parts of the coordinate axes lying inside the cube. Call the image of this deformation
retraction Y . The space Y can be given the structure of a CW complex with, say:
• 0-skeleton {(0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1)},
• 1-skeleton Y ∩ {(x, y, z) | xyz = 0}
• 8 2-cells, around the eight vertices of the cube.

(A good picture would be a fine substitute for words here.) Let Z ⊂ Y be the union of:
• 5 of the 6 faces of the cube, and
• the segment from one of those five faces to (0, 0, 0).

Then Z is a contractible subcomplex of Y , and the space Y/Z is homeomorphic to the
wedge sum of S2 and 5 circles,

S2 ∨ S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1.

Since both π1 and H∗ are homotopy invariants,

π1(X) ∼= π1(S2 ∨ S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1)

Hi(X) ∼= Hi(S
2 ∨ S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1).

So, it is immediate from van Kampen’s theorem and cellular homology that

π1(X) ∼= ∗5
i=1π1(S1) ∼= F5

H0(X) ∼= Z

H1(X) ∼=
5⊕
i=0

H1(S1) ∼= Z5

H2(X) ∼= H2(S2) ∼= Z
Hi(X) = 0 i > 2

(Students do not need to spell out further details here for full credit.)
Solution 2 (sketch). Quotient by a different contractible subcomplex, or apply van

Kampen’s theorem, and the Mayer-Vietoris sequence or cellular homology, directly to
X.
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(4) Let φ : S2 × S2 → S2 × S2 be the map φ(x, y) = (y, x). Let Tφ = (S2 × S2 ×
[0, 1])/((x, y, 1) ∼ (y, x, 0)) be the mapping torus of φ.
(a) Compute the homology groups of Tφ.

Solution 1. Let

U = Tφ \ (S2 × S2 × {0})
V = Tφ \ (S2 × S2 × {1/2}).

There is an obvious homeomorphism f : U
∼=−→ S2 × S2 × (0, 1). There is also a

homeomorphism g : V
∼=−→ S2 × S2 × (1/2, 3/2) defined by

g(p, t) =

{
(φ−1(p), t+ 1) 0 ≤ t < 1/2

(p, t) 1/2 < t ≤ 1.

For I = (0, 1), I = (1/2, 3/2), I = (0, 1/2), or I = (1/2, 1), let p : S2 × S2 × I →
S2 × S2 denote projection. Then we have isomorphisms

(p ◦ f)∗ : H∗(U)
∼=−→ H∗(S

2 × S2)

(p ◦ g)∗ : H∗(V )
∼=−→ H∗(S

2 × S2)

((pq p) ◦ f)∗ : H∗(U ∩ V )
∼=−→ H∗(S

2 × S2)⊕H∗(S2 × S2).

Apply the Mayer-Vietoris theorem to the cover Tφ = U∪V and use the identifications
above to obtain

· · · // Hi(U ∩ V ) //

((pqp)◦f)∗
��

Hi(U)⊕Hi(V )

(p◦f)∗⊕(p◦g)∗
��

// Hi(Tφ) // · · ·

Hi(S
2 × S2)⊕Hi(S

2 × S2)
Ψi

// Hi(S
2 × S2)⊕Hi(S

2 × S2).

The map Ψ is the unique map so that the diagram commutes. It follows from the
definitions that

Ψi =

(
I I

(φ−1)∗ I

)
.

(Depending on one’s sign convention for the Mayer-Vietoris sequence, there might
be minus signs in the second row.) There is a short exact sequence

0→ coker(Φi)→ Hi(Tφ)→ ker(Φi−1)→ 0.

Note that φ2 = I, so (φ−1)∗ = φ∗. Also, row-reducing,

ker(Φi) = ker(φ∗ − I)
coker(Φi) = coker(φ∗ − I).

From cellular homology (or the Künneth theorem), we have

Hi(S
2 × S2) =


Z i = 0

Z2 i = 2

Z i = 4

0 else.
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Further, by considering degrees, φ∗ is the identity map on H0, the matrix ( 0 1
1 0 ) on

H2, and the identity map on H4.
Hence, we have

H0(Tφ) ∼= coker
(
(φ∗ − I) : H0(S2 × S2)→ H0(S2 × S2)

) ∼= Z
H1(Tφ) ∼= ker

(
(φ∗ − I) : H0(S2 × S2)→ H0(S2 × S2)

) ∼= Z

H2(Tφ) ∼= coker
(
(φ∗ − I) : H2(S2 × S2)→ H2(S2 × S2)

) ∼= coker

(
−1 1
1 −1

)
∼= Z

H3(Tφ) ∼= ker
(
(φ∗ − I) : H2(S2 × S2)→ H2(S2 × S2)

) ∼= ker

(
−1 1
1 −1

)
∼= Z

H4(Tφ) ∼= coker
(
(φ∗ − I) : H4(S2 × S2)→ H4(S2 × S2)

) ∼= Z
H5(Tφ) ∼= ker

(
(φ∗ − I) : H4(S2 × S2)→ H4(S2 × S2)

) ∼= Z

Solution 2. (sketch). Hatcher gives a long exact sequence for the homology of
a mapping torus, which we did not cover in class but which some students might
know.
Solution 3. (sketch). It is a bit tedious, but this computation can be done using
cellular homology.

(5) (a) Define the compactly supported cohomology groups H i
c of a space X.

Solution. If K ⊂ L ⊂ X then X \K ⊃ X \ L. Hence, the inclusion map of pairs
(X,X \ L) ↪→ (X,X \K) induces a map of relative cohomology H i(X,X \K) →
H i(X,X \ L). Further, if K ⊂ L ⊂M then, since the diagram of inclusions

(X,X \K) (X,X \M)oo

ww
(X,X \ L)

gg

commutes, the diagram of relative cohomologies

H i(X,X \K) //

((

H i(X,X \M)

H i(X,X \ L)

66

commutes.
Hence, the groups

{H i(X,X \K)}K⊂X compact

form a directed system. The compactly supported cohomology H i
c(X) is the direct

limit of this directed system.
Solution 2 (sketch). Alternatively, one can define

Ci
c(X) = lim−→

K⊂X compact

Ci(X,X \K),

see that d induces a map d : Ci
c(X) → Ci+1

c (X) and these maps form a chain com-
plex, and define H i

c(X) to be the homology of this chain complex.
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(b) Show that H i
c is not a cohomology theory. More precisely, show that there is no

cohomology theory h∗ so that hi(X) ∼= H i
c(X) for all spaces X and integers i.

Solution. If h∗ is a cohomology theory then the homotopy axiom implies that if
X ' Y then hi(X) ∼= hi(Y ) for all i. For compactly supported cohomology, by
definition H0

c (R0) = H0(R0, ∅) ∼= Z. On the other hand, H0
c (R1) = 0: it follows

from Poincaré duality that H0
c (R1) ∼= H1(R1) = 0. (Alternatively, it is not hard to

show directly that H0
c (R1) = 0.)

Remark. Compactly-supported cohomology is functorial under proper maps (though
not all maps), and invariant under proper homotopies.

(6) Let (RP 2)2019 be the product of 2019 copies of RP 2 with itself. Suppose f : (RP 2)2019 →
(RP 2)2019 is a continuous. Show f has a fixed point.

Solution. Recall that the homology of RP 2 is

Hi(RP 2;Z) ∼=


Z i = 0

Z/2Z i = 1

0 otherwise.

(This follows easily, for example, from cellular homology, or from the long exact sequence
for a pair or the Mayer-Vietoris sequence.) Hence, by the universal coefficient theorem,

Hi(RP 2;Q) ∼=

{
Q i = 0

0 otherwise.

Now, by the Künneth theorem,

Hi((RP 2)2019;Q) ∼=

{
Q i = 0

0 otherwise.

For any map f : X → X, f∗ : H0(X)→ H0(X) is the identity map. Hence, for any map
f : (RP 2)2019 → (RP 2)2019, the Lefschetz trace τ(f) = 1. Hence, f has a fixed point.

(7) Consider the knot 52

(a) I claim I have a normal covering space of S3 \ 52 with deck transformation group
Z/537Z. Do you believe me? Justify.

(b) Now I claim I have a normal covering space of S3 \ 52 with deck transformation
group Z/2Z× Z/2Z. Do you believe me? Justify.

Solution 1. From the classification of covering spaces, a space X has a normal

covering space X̃ with deck group G if and only if π1(X) has a normal subgroup H with
π1(X)/H ∼= G. Further, if G is abelian then H must contain the commutator subgroup
of π1(X), so

H1(X) = π1(X)/[π1(X), π1(X)] � π1(X)/H ∼= G.



6 UO TOPOLOGY QUALIFYING EXAM FALL 2019 SOLUTIONS

Conversely, if H1(X) surjects onto G then ker(π1(X) → H1(X) → G) corresponds to a
normal covering space with deck group G.

By Alexander duality, H1(S3 \ 52) ∼= H1(S1) ∼= Z. Since Z surjects onto Z/537Z,
S3 \ 52 does have a normal covering space with deck group Z/537Z. Since Z does not
surject onto Z/2Z×Z/2Z, S3\52 does not have a normal covering space with deck group
Z/2Z× Z/2Z.
Solution 2 (sketch). Students in the class have seen the Wirtinger presentation for

π1(S3\K) and could substitute that for Alexander duality (though it is slightly tedious).
(8) Let G be a finitely generated abelian group. Show that no closed 3-manifold is a K(G, 2).

(Hint: reduce to the orientable case and consider the homology of a K(G, 2).)
Solution 1. Let M be a closed 3-manifold. If M is non-orientable then the orientation

double cover of M is a nontrivial 2-fold cover, so π1(M) 6= 0, so M is not a K(G, 2).
Next, if M is orientable then by Poincaré duality, H3(M) ∼= Z. So, it suffices to show

thatH3(K(G, 2)) = 0. We can build a spaceK(G, 2) as follows. Start with a Moore space
built from 2-cells and 3-cells. By cellular approximation (or van Kampen’s theorem),
π1(M(G, 2)) = 0, and by the Hurewicz theorem, π2(M(G, 2)) ∼= H2(M(G, 2)) ∼= G. Now,
attach 4-cells to M(G, 2) to kill of π3(M(G, 2)), attach 5-cells to the result to kill of π4,
and so on. Since the resulting K(G, 2) has the same 3-skeleton as M(G, 2), H3(K(G, 2))
is a quotient of H3(M(G, 2)) = 0, hence vanishes. In particular, H3(M) 6∼= H3(K(G, 2)).
Solution 2. Suppose that M is a K(G, 2). As in Solution 1, M is orientable. By

the 1-dimensional Hurewicz theorem, H1(M) = 0, so by Poincaré duality H2(M) = 0,
so by the universal coefficient theorem H2(M) = 0. So, by the Hurewicz theorem one
more time, G = π2(M) = 0. Now, if M is a K({0}, 2) then πi(M) = 0 for all i so by the
Hurewicz theorem Hi(M) = 0 for all i > 0. In particular, H3(M) = 0, which contradicts
the fact that M was closed and orientable.

(9) Recall that orientable k-dimensional vector bundles overX are in bijection with [X,Gr+
3 (R∞)],

where Gr+
3 (R∞) = V3(R∞)/ SO(3) is the Grassmanian of oriented 3-planes in R∞. Com-

pute πi(Gr+
3 (R∞)) for i ≤ 4. (Hint: recall that SO(3) ∼= RP 3.)

Solution. The space V3(R∞) is contractible, so the long exact sequence for the fibra-
tion SO(3)→ V3(R∞)→ Gr+

3 (R∞) decomposes as

0 = πn(V3(R∞)→ πn(Gr+
3 (R∞))→ πn−1(SO(3))→ πn−1(V3(R∞)) = 0.

Hence, πn(Gr+
3 (R∞)) ∼= πn−1(SO(3)).

As noted in the hint, SO(3) ∼= RP 3. Hence, π1(SO(3)) ∼= Z/2Z and for i > 1,
πi(SO(3)) ∼= πi(S

3) (since S3 is a covering space of RP 3). From the Hurewicz theo-
rem, π2(S3) = 0 and π3(S3) ∼= H3(S3) ∼= Z. Hence, the first few homotopy groups of
Gr+

3 (R∞)) are:

πi(Gr+
3 (R∞)) =



0 i = 0

0 i = 1

Z/2Z i = 2

0 i = 3

Z i = 4.

(10) Let Y be a 2-connected space and p : Y → Gr+
3 (R∞) a fibration so that p∗ : πi(Y ) →

πi(Gr+
3 (R∞)) is an isomorphism for i > 2. (That is, Y is a 2-connected cover of

Gr+
3 (R∞).) Define the (primary) obstruction in cohomology to lifting a map f : X →



UO TOPOLOGY QUALIFYING EXAM FALL 2019 SOLUTIONS 7

Gr+
3 (R∞) to a map f̃ : X → Y and give an example where the obstruction does not

vanish.
Solution. From the long exact sequence in homotopy groups, the fibration Y →

Gr+
3 (R∞) has fiber K(Z/2Z, 1). Since π1(Y ) ∼= π1(Gr+

3 (R∞)) = 0, the map Y →
Gr+

3 (R∞) is a principal fibration. (This is a special case of the statement about Moore-
Postnikov fibrations on the “possibly useful theorems” page, and is also immediate from
the construction above.) So, a map f : X → Gr+

3 (R∞) has a lift if and only if the
composite

X
f−→ Gr+

3 (R∞)
g−→ K(Z/2Z, 2)

is nullhomotopic. The homotopy class [g ◦ f ] ∈ [X,K(Z/2Z, 2)] is trivial if and only if

(g ◦ f)∗(ι) ∈ H2(X;Z/2Z)

vanishes. The element (g ◦ f)∗(ι) is the primary obstruction to lifting f .
For an example where the primary obstruction does not vanish, take X = Gr+

3 (R∞)
and let f be the identity map. Then from the construction in the previous solution
(g ◦ I)∗(ι) = g∗(ι) is a generator of H2(Gr+

3 (R∞);Z/2Z).


