Topology Qualifying Exam Workshop May 2020 Worksheet 2

Theme: Topological spaces and continuous functions: Topology, open and closed sets, basis, subsis; continuous function, homeomorphism; closure, limit points; subspace topology, product topology, and quotient/identification topology.

Also some compactness because there weren't a ton of problems on just those topics.

Part 1 - 5-10 minutes

Warm-up:

- 1. What is a topology on a set?
- 2. Describe how to make a topology from a basis, and what (if any) requirements there are on the basis.
- 3. Describe how to make a topology from a subbasis, and what (if any) requirements there are on the subbasis.
- 4. Give 4-6 different topologies on \mathbb{R} .

Part 2 - 1 hour and 40 minutes

Try these problems:

- 1. (June 2010) Let X be a topological space and let $f, g: X \to \mathbb{R}$ be continuous functions.
 - (a) Show that the set $L = \{p \in X : f(p) \le g(p)\}$ is a closed subset of X.
 - (b) Show that the function $h: X \to \mathbb{R}$ given by $h(p) = \min\{f(p), g(p)\}$ is continuous.
- 2. (June 2011) Prove that if $f : X \to Y$ is a continuous map between topological spaces and C is a compact subset of X, then f(C) is a compact subset of Y.
- 3. (June 2012) Suppose X and Y are topological spaces and $f: X \to Y$ is a continuous function.
 - (a) Prove there exists a topological space Z, a quotient map $q: X \to Z$ and a one-to-one continuous map $h: Z \to Y$ such that $f = h \circ q$.
 - (b) (This part is a continuous of part (a).) If Z_1 is a topological space, $q_1 : X \to Z_1$ is a quotient map, $h_1 : Z_1 \to Y$ is one-to-one and continuous, and $f = h_1 \circ q_1$, prove that Z and Z_1 are homeomorphic.
- 4. (May 2015) Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a continuous map. A section of f is a continuous map $\sigma : (Y, \mathcal{T}') \to (X, \mathcal{T})$ such that $f \circ \sigma = id_Y$. Show that if f has a section, then f is a quotient map.
- 5. (May 2020) Let $\mathcal{B} = \{[a, b) : a, b \in \mathbb{R}\}$; let \mathcal{R}_{ℓ} denote \mathbb{R} equipped with the topology generated by the basis \mathcal{B} (you do not need to prove \mathcal{B} is a basis). Decide (with proof) if the following sets are compact in \mathbb{R}_{ℓ} :
 - (a) $A = \{1/n : n \in \mathbb{N}\} \cup \{0\}.$
 - (b) $B = \{-1/n : n \in \mathbb{N}\} \cup \{0\}.$

Part 3 - 5-10 minutes

Wrap-up discussion with everyone:

- 1. Which of these problems did you find easy? Hard?
- 2. Which topics in the theme do you need to review more?