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1 Spring 2009

Problem 1. Let f and g be real-valued integrable functions on a measure space pX,B, µq and define

Ft “ tx P X : fpxq ą tu, Gt “ tx P X : gpxq ą tu.

Prove
ż

|f ´ g| dµ “

ż 8

´8

µ ppFtzGtq Y pGtzFtqq .

Solution. First assume that X is σ-finite. Then we have
ż 8

´8

µ ppFtzGtq Y pGtzFtqq “

ż 8

´8

ż

X

χtxPX:minpfpxq,gpxqqďtămaxpfpxq,gpxqqupxq dµpxq dt

“

ż

X

ż 8

´8

χtxPX:minpfpxq,gpxqqďtămaxpfpxq,gpxqqupxq dt dµpxq by Tonelli

“

ż

X

|fpxq ´ gpxq| dµpxq,

which is the desired result. Now drop the assumption that X is σ-finite. Let Y “ tx P X : |fpxq´gpxq| ‰ 0u
and let ν “ µ|Y . Note that Y “

Ť8

n“1tx P X : |fpxq ´ gpxq| ą 1{nu, and since f and g are both integrable,
each of those sets must have finite measure. Thus pY, νq is a σ-finite measure space. Thus by the work above
we have

ż

Y

|f ´ g| dν “

ż 8

´8

ν ppFt X Y zGt X Y q Y pGt X Y zFt X Y qq .

But note that
ş

X
|f ´ g| dµ “

ş

Y
|f ´ g| dµ `

ş

Y c
|f ´ g| dµ “

ş

Y
|f ´ g| dν by definition of Y and ν. Also

note that FtzGt, GtzFt Ď Y for every t, so pFt X Y zGt X Y q Y pGt X Y zFt X Y q “ pFtzGtq Y pGtzFtq, and
ν ppFtzGtq Y pGtzFtqq “ µ ppFtzGtq Y pGtzFtqq. Substituting all of this into the above equation gives the
desired result.

Problem 2. Let H be an infinite dimensional real Hilbert space.
(a) Prove the unit sphere S “ tx P H : ||x|| “ 1u is weakly dense in the unit ball B “ tx P H : ||x|| ď 1u.
(b) Prove there is a sequence Tn of bounded linear operators from H to H such that ||Tn|| “ 1 for all n but
limnÑ8 Tnpxq “ 0 for all x P H.

Solution. (a) Fix x P B. We may assume ||x|| ă 1 because if x P S the result is obvious. Using a
standard Zorn’s Lemma/Gram-Schmidt argument, together with the fact that H is infinite-dimensional, we

can construct an orthonormal set tx{ ||x|| , e1, e2, . . .u. Let xn “ x `
b

1´ ||x||
2
en. By the Pythagorean

theorem we have ||xn||
2
“ ||x||

2
`p1´||x||

2
q ||en||

2
“ 1, so xn P S. Now we claim that txnu converges weakly

to x. For y P H fixed, we have

xxn ´ x, yy “

b

1´ ||x||
2
xen, yy .

This goes to 0 as nÑ8 because since tenu is an orthonormal set, Bessel’s inequality gives
ř8

n“1 |xen, yy|
2
ď

||y||
2

and the terms of a convergent series must go to 0.

(b) Fix an infinite orthonormal set te1, e2, . . .u. Define Tnpxq :“ xx, eny en. It’s clear that Tn is a linear
operator H Ñ H. We have ||Tnpxq|| “ |xx, eny| ||en|| ď ||x|| by Cauchy-Schwarz, so ||Tn|| ď 1. Also it’s clear
that Tnpenq “ en, so ||Tn|| “ 1. Finally, for any x P H we have limnÑ8 ||Tnpxq|| “ limnÑ8 |xx, eny| “ 0 by
the same Bessel’s inequality argument in part (a).

Problem 3. Let X be a Banach space. Prove that if X˚ is separable then X is separable.

Solution. See Fall 2014 # 6.
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Problem 4. Let fpxq be a non-decreasing function on r0, 1s.

(a) Prove that
ş1

0
f 1pxq dx ď fp1q ´ fp0q.

(b) Let tfnu be a sequence of non-decreasing functions on r0, 1s such that the series F pxq “
ř8

n“1 fnpxq
converges for all x P r0, 1s. Prove that F 1pxq “

ř8

n“1 f
1
npxq almost everywhere.

Solution. (a) First we extend the definition of f by setting fpxq “ fp1q for x ą 1. Note that f is
differentiable almost everywhere because it is non-decreasing. So for almost every x, the representation

f 1pxq “ lim
hÑ0`

fpx` hq ´ fpxq

h

is valid. Since f is non-decreasing, the difference quotient is non-negative for every x and every h. Thus by
Fatou’s lemma we have

ż 1

0

f 1pxq dx “

ż 1

0

lim
hÑ0`

fpx` hq ´ fpxq

h
dx ď lim inf

hÑ0`

ż 1

0

fpx` hq ´ fpxq

h
dx

“ lim inf
hÑ0`

1

h

ż 1`h

1

fpxq dx´
1

h

ż h

0

fpxq dx ď fp1q ´ fp0q

where we used the fact that f is non-decreasing again in the last inequality.

(b) First note that since each fn is non-decreasing, F also is, so F is differentiable almost everywhere.

Let rN pxq “
ř8

n“N`1 fnpxq and write F pxq “
řN
n“1 fnpxq ` rN pxq. Since rN is also non-decreasing, we can

write F 1pxq “
řN
n“1 f

1
npxq ` r1N pxq for all x at which all three of those functions are differentiable, which

is still almost everywhere. Thus to show the desired result it’s enough to show that r1N pxq Ñ 0 almost
everywhere as N Ñ8. First note that for almost every x, r1N pxq´ r

1
N`1pxq “ prN ´ rN`1q

1pxq “ f 1N pxq ě 0
because fN is non-decreasing so its derivative is non-negative wherever it exists. So tr1N pxqu is monotonically
decreasing in N for almost every x. So the limit limNÑ8 r

1
N pxq exists almost everywhere and is non-negative

(as a limit of non-negative terms). Thus by the monotone convergence theorem we have

ż 1

0

lim
NÑ8

r1N pxq dx “ lim
NÑ8

ż 1

0

r1N pxq dx ď lim
NÑ8

rN p1q ´ rN p0q “ 0

where the second to last inequality uses part (a) because each rN is non-decreasing and the last equality is
by the hypothesis that the series defining F converges everywhere. Thus limNÑ8 r

1
N pxq is a non-negative

function which integrates to 0, so it must be zero almost everywhere.

Problem 5. Let I0,0 “ r0, 1s and for n ě 0, 0 ď j ď 2n ´ 1, let

In,j “ rj2´n, pj ` 1q2´ns.

For f P L1pr0, 1sq define Enf “
ř2n´1
j“0

´

2n
ş

In,j
fptq dt

¯

χIn,j . Prove that Enf Ñ f almost everywhere on

r0, 1s.

Solution. For a fixed x P r0, 1s, Enfpxq is simply the average value of f over the interval In,jpn,xq that x
lies in. It’s clear that the family of intervals tIn,jpn,xqu

8
n“1 shrinks nicely to x, so it’s a direct consequence

of the Lebesgue differentation theorem that Enfpxq Ñ fpxq for all Lebesgue points of f , which is almost
everywhere.

Problem 6. For In,j as in Problem 5, define the Haar function hn,j “ 2n{2
`

χIn`1,2j ´ χIn`1,2j`1

˘

.
(a) Draw I2,1 and graph h2,1.

(b) Prove that if f P L2pr0, 1sq and
ş1

0
fptq dt “ 0, then

ż 1

0

|fpxq|2 dx “
ÿ

ně0,0ďjď2n´1

∣∣∣∣ż 1

0

fptqhn,jptq dt

∣∣∣∣2 .
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(c) Prove that if f P L1pr0, 1sq and
ş1

0
fptq dt “ 0, then almost everywhere on r0, 1s,

fpxq “
8
ÿ

n“0

2n´1
ÿ

j“0

ˆ
ż 1

0

fptqhn,jptq dt

˙

hn,jpxq.

Solution. (a)

(b) Let M “

!

f P L2pr0, 1sq :
ş1

0
f “ 0

)

. First note that M is a closed subspace of L2: if fn P M and

fn Ñ f in L2, then by Cauchy-Schwarz we also have fn Ñ f in L1, so in particular
ş

fn Ñ
ş

f , so
ş

f
“ 0

as well. Thus we can consider M as a Hilbert space. Next note that thn,jun,j form an orthonormal set
in M : It’s clear that

ş

h2
n,j “ 1 for each n, j. Now consider

ş

hn,jhm,k. Suppose without loss of generality
that m ě n. There are only two possibilities, either hn,j and hm,k have disjoint supports, in which case
the integral is clearly zero, or the support of hm,k is contained in a set on which hn,j is constant, in which
case the integral is just a constant multiple of

ş

hm,k, which is 0. Thus they form an orthonormal set. We
want to show they form an orthonormal basis for M . If we show this, then the desired conclusion is just the
statement of Parseval’s identity and we will be done. Let f P M and suppose that

ş

fhn,j “ 0 for all n, j.

It’s enough to show this implies f “ 0. First note that we have
ş1

0
f “

ş1{2

0
f `

ş1

1{2
f “ 0. We also have

by assumption
ş

fh0,0 “
ş1{2

0
f ´

ş1

1{2
f “ 0. Combining these two yields

ş1{2

0
f “

ş1

1{2
f “ 0. Continuing,

we have 0 “
ş1{2

0
f “

ş1{4

0
f `

ş1{2

1{4
, and by assumption, 0 “

ş

fh1,0 “
ş1{4

0
f ´

ş1{2

1{4
f , and combining these

gives
ş1{4

0
f “

ş1{2

1{4
f “ 0. Continuing in this way inductively shows that

ş

In,j
f “ 0 for all n, j. Any closed

interval can be written as a countable disjoint union of the In,j , so the integral of f over any closed interval
vanishes, which implies f “ 0.

(c) Let

SNfpxq “
N
ÿ

n“0

2n´1
ÿ

j“0

ˆ
ż 1

0

fptqhn,jptq dt

˙

hn,jpxq.

In light of problem 5 above, it’s enough to show that SNfpxq “ EN`1fpxq for almost every x. We show this
holds for any x which is not an endpoint of any In,j . Fix such an x. Define jpnq to be the unique j such
that x P In,j and define jpnqc to be the unique j ‰ jpnq such that In,jpnq Y In,jpnqc “ In´1,jpn´1q. Then we
have

SNfpxq “
N
ÿ

n“0

ˆ
ż 1

0

fptqhn,jpnqptq dt

˙

hn,jpnqpxq

“

N
ÿ

n“0

2n

˜

ż

In`1,jpn`1q

f ´

ż

In`1,jpn`1qc

f

¸

“

N
ÿ

n“0

2n

˜

2

ż

In`1,jpn`1q

f ´

ż

In,jpnq

f

¸

“

N
ÿ

n“0

2n`1

ż

In`1,jpn`1q

f ´ 2n
ż

In,jpnq

f

“ 2N`1

ż

IN`1,jpN`1q

f ´

ż

I0,0

f

“ 2N`1

ż

IN`1,jpN`1q

f “ EN`1fpxq.

Problem 7. Let µ be a finite positive Borel measure on C.
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(a) Prove that F pzq “
ş

C
1

z´w dµpwq exists for almost all z P C and that
ş

K
|F pzq| dx dy ă 8 for every

compact K Ď C.
(b) Prove that for almost every horizontal line L and all compact K Ď L,

ş

K
|F px` iyq| dx ă 8.

(c) Prove that for almost all open squares S with sides parallel to the axes,

µpSq “
1

2πi

ż

BS

F pzq dz.

Solution. (a) The second half of the assertion implies the first half, so we focus on the second. It’s
enough to show that

ş

|z|ďR
|F pzq| dApzq ă 8 for each R. We estimate

ż

|z|ďR

|F pzq| dApzq ď

ż

|z|ďR

ż

wPC

1

|z ´ w|
dµpwq dApzq “

ż

wPC

ż

|z|ďR

1

|z ´ w|
dApzq dµpwq by Tonelli

“

ż

|w|ď2R

ż

|z|ďR

1

|z ´ w|
dApzq dµpwq `

ż

|w|ą2R

ż

|z|ďR

1

|z ´ w|
dApzq dµpwq

ď

ż

|w|ď2R

ż

|z´w|ď3R

1

|z ´ w|
dApzq dµpwq `

ż

|w|ą2R

ż

|z|ďR

1

R
dApzq dµpwq

ď

ż

|w|ď2R

CR dµpwq `

ż

|w|ą2R

πRdµpwq where CR is some constant depending on R

ă 8

because µ is a finite measure.

(b) As in part (a), it’s enough to prove the assertion with any compact set K replaced by any interval
of the form r´R,Rs. Fix some R and an integer m. Then by part (a) and Tonelli’s theorem, we know
şm`1

m

şR

R
|F px` iyq| dx dy ă 8. This implies that there is a set Ym,R of full measure in rm,m` 1s such that

şR

R
|F px` iyq| dx ă 8 for each y P Ym,R. By setting Ym “

Ş8

R“1 Ym,R, we see that Y still has full measure in

rm,m`1s and now for any y P Ym,
şR

R
|F px`iyq| dx ă 8 for every R. Thus we have shown that almost every

horizontal line with y-intercept in rm,m`1s satisfies the desired property. Now setting Y “
Ť8

m“´8 Ym, we

see that Y is an almost everywhere subset of R with the property that y P Y implies
şR

R
|F px` iyq| dx ă 8

for every R, which is the desired conclusion. In fact, by examining the proof of part (a) it’s clear that we
actually proved something a bit stronger, which is that y P Y implies

ş

K

ş

wPC
1

|x`iy´w| dµpwq dx ă 8 for all

compact sets K (we’ll need this version in part (c)).

(c) The same argument as in part (b) shows that the analogous result to part (b) for vertical lines also
holds. Let S be the collection of squares S in C such that all four sides of S lie on lines for which the
conclusion of part (b) holds. It’s clear that S is almost every square in C. Thus for S P S, we have

ż

BS

F pzq dz “

ż

BS

ż

C

1

z ´ w
dµpwq dz “

ż

C

ż

BS

1

z ´ w
dz dµpwq

“

ż

C
2πiχSpwq dµpwq “ 2πiµpSq,

which is the desired result. We just need to justify switching the order of integration in the first line. Note
that by definition of S,

ż

BS

ż

C

1

|z ´ w|
dµpwq dz

is simply a sum of four integrals along horizontal or vertical lines which are known to be finite by the com-
ment at the end of part (b). Thus Fubini-Tonelli applies, so the switch is justified.

Problem 8. Let f be an entire non-constant function that satisfies the functional equation

fp1´ zq “ 1´ fpzq
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for all z P C. Show that fpCq “ C.

Solution. The functional equation implies that w P Impfq if and only if 1 ´ w P Impfq. Thus suppose
that there were some w R Impfq, then 1´w R Impfq either, so f misses two points (if w ‰ 1{2). But Picard’s
little theorem says that an entire function that misses two points is constant, a contradiction. Thus f hits
everything except possibly 1{2. But putting z “ 1{2 into the functional equation gives fp1{2q “ 1´ fp1{2q,
so fp1{2q “ 1{2. Thus f is surjective.

Problem 9. Let fpzq be an analytic function on the entire complex plane C and assume fp0q ‰ 0. Let tanu
be the zeros of f , counted with multiplicity.
(a) Let R ą 0 be such that |fpzq| ą 0 on |z| “ R. Prove

1

2π

ż 2π

0

log
∣∣fpReiθq∣∣ dθ “ log |fp0q| `

ÿ

|an|ăR

log

ˆ

R

|an|

˙

.

(b) Assume |fpzq| ď Ce|z|
λ

for positive constants C and λ. Prove that

ÿ

n

ˆ

1

|an|

˙λ`ε

ă 8

for all ε ą 0.

Solution. See Spring 2017 # 9.

Problem 10. Let µ be Lebesgue measure on D. Let H be the subspace of L2pD, µq consisting of holo-
morphic functions. Show that H is complete.

Solution. See Fall 2014 #10 (not exactly the same problem, but a similar idea).

Problem 11. Suppose that f : DÑ C is holomorphic and injective in some annulus tz : r ă |z| ă 1u. Show
that f is injective in D.

Solution. Suppose there are z1, z2 P D with fpz1q “ fpz2q “ w. Then there is a circle C of radius
s P pr, 1q containing both z1 and z2 in its interior. Then the function f ´ w has at least two zeros inside C,
so the argument principle tells us that the curve fpCq has winding number at least 2 around zero. But a
curve of winding number at least 2 has to intersect itself, meaning that there are two different points on the
curve C at which f ´ w takes the same value. But since S lies in the annulus r ă |z| ă 1, this contradicts
the fact that f is injective on the annulus.

Problem 12. Let Q be the closed unit square in C and let R be the closed rectangle in C with ver-
tices t0, 2, i, 2` iu. Prove there does not exists a surjective homeomorphism f : QÑ R that is conformal on
the interior of Q and maps corners to corners.

Solution. Suppose f : Q Ñ R satisfies the given conditions. By continuity, it must preserve the order
of the vertices, so by precomposing with rotations and flips if necessary, we may assume that f fixes the
vertical line segment r0, is. By the Schwarz reflection principle, applied iteratively and reflecting over the
vertical lines, we can extend f to a map from the strip 0 ď Impzq ď 1 to itself. We can then reflect over
the two horizontal lines to extend f to a map from the strip ´1 ď Impzq ď 2 to itself. This strip is simply
connected and so is conformally equivalent to D. So f has been extended to a conformal automorphism of
a region conformally equivalent to D, and f has two fixed points, which implies f is the identity, a contra-
diction.
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2 Fall 2009

Problem 1. Find a non-empty closed set in the Hilbert space L2pr0, 1sq that does not contain an element
of smallest norm.

Solution. Let fn “ n ¨ χr0,1{n2`1{n3s. We claim tfnu
8
n“2 is such a set. First note that

ż

|fn|
2 “

ˆ

1

n2
`

1

n3

˙

¨ n2 “ 1`
1

n
,

so we see that the set has no element of smallest norm. To show it’s closed, suppose g P L2 is a limit point.
Then there is a subsequence fnk converging to g in L2. But this implies there is a further subsequence fnk`
converging almost everywhere to g. But it’s clear that fn Ñ 0 almost everywhere, so g “ 0. But 0 is clearly
not a limit point of tfnu because ||fn||L2 ą 1 for each n. Thus tfnu has no limit points so it’s closed.

Problem 2. Let v be a trigonometric polynomial in two variables, i.e.

vpx, yq “
ÿ

n,mPZ
an,me

2πipnx`myq

with only finitely many nonzero an,m. If u “ v ´∆v where ∆ “ B2
x ` B

2
y is the Laplacian, prove that

||v||L8pr0,1s2q ď C ||u||L2pr0,1s2q

for some constant C independent of v.

Solution. A straightforward computation shows that

upx, yq “
ÿ

n,m

an,mp1` 4π2pn2 `m2qqe2πipnx`myq.

Thus, using orthonormality and the fact that only finitely many coefficients are nonzero, we have

ż 1

0

ż 1

0

|upx, yq|2 dx dy “

ż 1

0

ż 1

0

ÿ

n,m,k,`

an,mak,`p1` 4π2pn2 `m2qqp1` 4π2pk2 ` `2qqe2πipnx`myqe´2πipkx``yq dx dy

“
ÿ

n,m,k,`

an,mak,`p1` 4π2pn2 `m2qqp1` 4π2pk2 ` `2qq

ż 1

0

e2πipn´kqx dx

ż 1

0

e2πipm´`qy dy

“
ÿ

n,m

|an,m|2 p1` 4π2pn2 `m2qq2.

Now we simply estimate v using the triangle inequality and Cauchy-Schwarz:

|vpx, yq|2 ď

˜

ÿ

n,m

|an,m|

¸2

“

˜

ÿ

n,m

|an,m|p1` 4π2pn2 `m2qq ¨
1

p1` 4π2pn2 `m2qq

¸2

ď

˜

ÿ

n,m

|an,m|
2p1` 4π2pn2 `m2qq2

¸˜

ÿ

n,m

1

p1` 4π2pn2 `m2qq2

¸

“ C ¨ ||u||
2
L2pr0,1s2q

because
ř

n,m
1

p1`4π2pn2`m2qq2
converges. Thus we have established ||v||

2
L8pr0,1s2q ď C ||u||

2
L2pr0,1s2q which

implies the desired result.

Problem 3. Let f : r0, 1s Ñ R be continuous with

min
xPr0,1s

fpxq “ 0.

7



Assume that for all 0 ď a ă b ď 1 we have

ż b

a

pfpxq ´ min
yPra,bs

fpyqq dx ď
1

2
pb´ aq.

(a) Prove that for all λ ě 0,

|tx : fpxq ą λ` 1u| ď 1

2
|tx : fpxq ą λu| .

(b) Prove that for all 1 ď c ă 2,
ż 1

0

cfpxq dx ď
100

2´ c
.

Solution. (a) Fix λ ě 0. Since f is continuous, tx : fpxq ą λu is open, and thus it can be written as
a countable union of disjoint open intervals paj , bjq (the set is only open relative to r0, 1s, so it’s possible
that one of the intervals is closed on the left at 0 and another is closed on the right at 1, but that doesn’t
change any of the following work, so we ignore it). Also by continuity, we must have minyPraj ,bjs fpyq “ λ
for each j. Thus using the hypothesis on f , for each j we have

1

2
pbj ´ ajq ě

ż bj

aj

pfpxq ´ λq dx “

ż bj

aj

fpxq dx´ λpbj ´ ajq.

Summing both sides from j “ 1 to 8 gives

ˆ

1

2
` λ

˙

|tx : fpxq ą λu| ě
ż

tfąλu

fpxq dx.

We also have
ż

tfąλu

fpxq dx “

ż

tfąλ`1u

fpxq dx`

ż

tλăfďλ`1u

fpxq dx

ě pλ` 1q |tx : fpxq ą λ` 1u|` λ |tx : fpxq ą λ` 1uztx : fpxq ą λu|
“ pλ` 1q |tx : fpxq ą λ` 1u|` λp|tx : fpxq ą λu|´ |tx : fpxq ą λ` 1u|q
“ |tx : fpxq ą λ` 1u|` λ |tx : fpxq ą λu| .

Combining this with the above inequality and rearranging gives the desired result.

(b) Fix 1 ď c ă 2. We can write

ż 1

0

cfpxq dx “ c0¨|tf “ 0u|`
8
ÿ

j“0

ż

tjăfďj`1u

cfpxq dx ď 1`
8
ÿ

j“0

cj`1 |tj ă f ď j ` 1u| ď 1`
8
ÿ

j“0

cj`1 |tf ą ju| .

We know that |tx : fpxq ą 0u| ď 1, so by inductively applying the conclusion of part (a) we see that
|tx : fpxq ą ju| ď 2´j . Thus we have

ż 1

0

cfpxq dx ď 1`
8
ÿ

j“0

cj`12´j “ 1` c
8
ÿ

j“0

pc{2qj “ 1`
c

1´ c{2
“

2` c

2´ c
ď

100

2´ c

where the geometric series converges because c ă 2.

Problem 4. Prove the following variant of the Lebesgue differentiation theorem: Let µ be a finite Borel
measure on R, singular with respect to Lebesgue measure. Then for Lebesgue almost every x P R,

lim
εÑ0

µprx´ ε, x` εq

2ε
“ 0.
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Solution. See Fall 2016 #2.

Problem 5. Construct a Borel subset E of the real line R such that for all intervals ra, bs we have

0 ă mpE X ra, bsq ă b´ a

where m denotes Lebesgue measure.

Solution.

Problem 6. The Poisson kernel for 0 ď ρ ă 1 is the 2π-periodic function on R defined by

Pρpθq “ Re

ˆ

1` ρeiθ

1´ ρeiθ

˙

.

For functions h continuous on and harmonic inside the closed disc of radius R about the origin one has

hpreiηq “
1

2π

ż 2π

0

Pr{Rpη ´ θqhpRe
iθq dθ.

Assume that h is harmonic and positive on D. Prove that there exists a positive Borel measure µ on r0, 2πs
such that for all reiη P D one has

hpreiνq “

ż 2π

0

Prpη ´ θq dµpθq.

Solution. For each 0 ă R ă 1, define the measure µR by dµRpθq “ hpReiθq dθ. By scaling we may
assume hp0q “ 1. Since h is positive and continuous, each µR is a positive Borel measure on r0, 2πs. By
the Riesz representation theorem, we may view each µR as a bounded linear functional on the Banach space
Cpr0, 2πsq. Note that by the special case of the given formula with r “ 0 (i.e. the mean value property), we
have

||µR|| “ µRpr0, 2πsq “
1

2π

ż 2π

0

hpReiθq dθ “ hp0q.

Thus each µR is in the unit ball of the dual space Cpr0, 2πsq˚. By Banach-Alaoglu and the fact that Cpr0, 2πsq
is separable, this implies that we have a subsequence of Rs converging to 1 and some measure µ in the unit
ball of Cpr0, 2πsq with µR Ñ µ in the weak-˚ topology. A standard approximation argument shows that µ
must also be a positive measure since each µR is. We claim that µ is the desired measure. Fix reiη P D.
Note that each Pρ is continuous on r0, 2πs and Pr{R Ñ Pr uniformly on r0, 2πs as R Ñ 1. For each R ă 1
the given formula tells us

hpreiηq “

ż 2π

0

Pr{Rpη ´ θq dµRpθq.

Taking the limit as R Ñ 1 on both sides gives the desired result, where we have assumed the following
lemma: if fn are continuous and fn Ñ f uniformly on r0, 2πs and µn Ñ µ in weak-˚, then

ş

fn dµn Ñ
ş

f dµ.
The proof of this just follows by writing∣∣∣∣ż fn dµn ´ ż

f dµ

∣∣∣∣ ď ∣∣∣∣ż fn dµn ´ ż

fn dµ

∣∣∣∣` ∣∣∣∣ż fn dµ´ ż

f dµ

∣∣∣∣
and noting that the first term goes to 0 by weak-˚ convergence and the second term goes to zero by uniform
convergence.

Problem 7. (a) Define unitary operator on a complex Hilbert space.
(b) Let S be a unitary operator on a complex Hilbert space. Prove that for every complex number |λ| ă 1

9



the operator S ´ λI is invertible.
(c) For a fixed vector v in the Hilbert space and all |λ| ă 1, define

hpλq “
@

pS ` λIqpS ´ λIq´1v, v
D

.

Show Rephq is a positive harmonic function (you may not use the spectral theorem).

Solution. (a) S : H Ñ H is unitary if xSx, Syy “ xx, yy for all x, y P H.

(b) Suppose pS ´ λIqx “ 0 but x ‰ 0. Then we have

0 “ xpS ´ λIqx, pS ´ λIqxy “ xSx´ λx, Sx´ λxy “ ||Sx||
2
` |λ|2 ||x||

2
´ 2 Repλ xx, Sxyq

“ p1` |λ|2q ||x||
2
´ 2 Repλ xx, Sxyq.

Thus we have

p1` |λ|2q ||x||
2
“ 2 Repλ xx, Sxyq ď 2|λ|| xx, Sxy | ď 2|λ| ||x|| ||Sx|| “ 2|λ| ||x||

2
.

Since we are assuming x ‰ 0 this implies p1 ` |λ|2q ď 2|λ|, which is impossible for |λ| ă 1. Thus S ´ λI is
injective and therefore invertible.

(c)

Problem 8. Let Ω be an open convex region in the complex plane. Assume f is a holomorphic func-
tion on Ω and the Repf 1pzqq ą 0 for all z P Ω.
(a) Prove that f is one-to-one.
(b) Show by example that the word “convex” cannot be replaced by “connected and simply connected”.

Solution. (a) Let a ‰ b P Ω. Let γ be a straight line from a to b, parameterized by γptq “ p1 ´ tqb ` ta.
By convexity, γ lies in Ω. So we can write

ş

γ
f 1pzq dz “ fpbq ´ fpaq. Write f “ u` iv, then f 1 “ ux ` ivx.

Examining the integral above, we have

fpbq ´ fpaq “

ż

γ

f 1pzq dz “

ż 1

0

puxpγptqq ` ivxpγptqqqpb´ aq dt “ pb´ aq

ż 1

0

puxpγptqq ` ivxpγptqqq dt.

Note that the integral on the right side has nonzero real part because ux is always positive. Thus the whole
right side is just some nonzero complex number since b´ a is a nonzero constant, so fpbq ‰ fpaq.

Problem 9. Let f be a non-constant meromorphic function on C that obeys

fpzq “ fpz `
?

2q “ fpz ` i
?

2q.

Assume f has at most one pole in the closed unit disc D.
(a) Prove that f has exactly one pole in D.
(b) Prove that this is not a simple pole.

Solution. (a) We just need to show f has at least one pole in D. Let Λ “ r0,
?

2s ˆ r0, i
?

2s be a
fundamental domain for f and let M be the discrete lattice generated by

?
2 and i

?
2. Simple geometry

shows that every point of Λ is at most 1 away from one of the vertices. Thus every point of Λ is equivalent
mod M to some point of D. Since f is non-constant and doubly periodic, it must have a pole somewhere
(otherwise it would be holomorphic and bounded and therefore constant), so it must have a pole in Λ, and
thus must have a pole in D.

(b) The work in part (a) shows that every point of C is equivalent mod M to some point of D, so the
fact that f has exactly one pole in D implies that f has exactly one distinct pole mod M . The desired result
now follows from the general fact that a doubly periodic function can’t have only a single simple pole (mod

10



M), a proof of which is reproduced here (see e.g. Ahlfors Complex Analysis). Since the zeros and poles of
f are discrete, we can find a fundamental domain Λ of M such that f has no zeros or poles on BΛ. Thus
by double periodicity, it is clear that

ş

BΛ
fpzq dz “ 0 because the integrals over opposite sides of Λ going in

opposite directions cancel each other out. So by the residue theorem, the sums of residues of all the poles
inside Λ is 0, implying there can’t only be one simple pole.

11



3 Spring 2010

Problem 1. (a) Let 1 ď p ă 8. Show that if a sequence of real-valued functions tfnu converges in LppRq,
then it contains a subsequence that converges almost everywhere.
(b) Give an example of a sequence of functions converging to 0 in L2pRq that does not converge almost
everywhere.

Solution.

Problem 2. Let p1, . . . , pn be distinct points in C and let U be the domain Cztp1, . . . , pnu. Let A be
the vector space of real harmonic functions on U and let B Ď A be the subspace of real parts of complex
analytic functions on U . Find the dimension of the quotient space A{B and give a basis.

Solution. See Spring 2017 #10.

Problem 3. For f : R Ñ R in L1pRq, let Mf be the (centered) Hardy-Littlewood maximal function.
Prove there is a constant A such that for any λ ą 0,

mtx P R : Mfpxq ą λu ď
A

λ
||f ||L1

where m is Lebesgue measure. If you use a covering lemma, you should prove it.

Solution. See Fall 2011 #5.

Problem 4. Let fpzq be a continuous function on D such that f is analytic on D and fp0q ‰ 0.
(a) Prove that if 0 ă r ă 1 and if inf |z|“r |fpzq| ą 0, then

1

2π

ż 2π

0

log
∣∣fpreiθq∣∣ dθ ě log |fp0q| .

(b) Prove that mtθ P r0, 2πs : fpeiθq “ 0u “ 0 where m is Lebesgue measure.

Solution. See Fall 2016 #8.

Problem 5. (a) For f P L2pRq and a sequence txnu Ď R which converges to zero, define fnpxq :“ fpx`xnq.
Show that tfnu converges to f in L2.
(b) Let W Ď R be a Lebesgue measurable set of positive Lebesgue measure. Show that the set of differences
W ´W “ tx´ y : x, y PW u contains an open neighborhood of the origin.

Solution. (a) See Fall 2011 #3.

(b) Let fpxq “ χW pxq and fypxq “ χW px` yq. We calculate

||f ´ fy||
2
L2 “

ż

pχW pxq ´ χW px` yqq
2 dx

“

ż

χW pxq
2 ` χW px` yq

2 ´ 2χW pxqχW px` yq dx

“ 2mpW q ´ 2

ż

χW pxqχW px` yq dx.

By part (a), this quantity goes to 0 as y Ñ 0. Thus for all y sufficiently small,
ż

χW pxqχW px` yq dx ą
1

2
mpW q ą 0.

In particular, there is at least one x such that χW pxqχW px`yq “ 1, i.e. x PW and x`y PW , so y PW´W .
Thus W ´W contains all sufficiently small y, as desired.
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Problem 6. Let µ be a finite, positive, regular Borel measure supported on a compact subset of C and
define the Newtonian potential

Uµpzq “

ż

C

∣∣∣∣ 1

z ´ w

∣∣∣∣ dµpwq.
(a) Prove that Uµ exists at Lebesgue almost all z P C and that

ĳ

K

Uµpzq dx dy ă 8

for every compact K Ď C.
(b) Prove that for almost every horizontal or vertical line L Ď C, µpLq “ 0 and

ş

K
Uµpzq ds ă 8 for every

compact subset K Ď L, where ds denotes Lebesgue linear measure on L.
(c) Define the Cauchy potential of µ to be

ż

C

1

z ´ w
dµpwq.

Let R be a rectangle in C whose four sides are contained in lines L having the conclusions of (b). Prove that

1

2πi

ż

BR

Sµpzq dz “ µpRq.

Solution. See Spring 2009 #7.

Problem 7. Let H be a Hilbert space and let E be a closed convex subset of H. Prove that there
exists a unique element x P E such that

||x|| “

ż

yPE

||y|| .

Solution. See Fall 2012 #3

Problem 8. Let F pzq be a non-constant meromorphic function on the complex plane C such that F pz`1q “
F pzq “ F pz ` iq for all z. Let Q be a square with vertices z, z ` 1, z ` i, and z ` 1 ` i such that F has
no zeros and no poles on BQ. Prove that inside Q the function F has the same number of zeros as poles
(counting multiplicities).

Solution.

Problem 9. Let
A “ tx P `2 :

ÿ

ně1

n|xn|
2 ď 1u.

(a) Show that A is compact in the `2 topology.
(b) Show that the mapping from A to R defined by

x ÞÑ

ż 2π

0

∣∣∣∣∣ÿ
ně1

xne
inθ

∣∣∣∣∣ dθ2π

achieves its maximum on A.

Solution.
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Problem 10. Let Ω Ď C be a connected open set, let z0 P Ω, and let U be the set of positive har-
monic functions U on Ω such that Upz0q “ 1. Prove that for every compact set K Ď Ω there is a finite
constant M such that

sup
UPU

sup
zPK

Upzq ď M.

Solution.

Problem 11. Let φ : RÑ R be a continuous function with compact support.
(a) Prove there is a constant A such that

||f ˚ φ||Lq ď A ||f ||Lp for all 1 ď p ď q ď 8 and all f P Lp.

If you use Young’s convolution inequality you should prove it.
(b) Show by example that such a general inequality cannot hold for p ą q.

Solution. (a) Define α to be the number ě 1 so that 1{α “ 1{q ´ 1{p ` 1 (if q “ 8 and p “ 1 then
α “ 8). Then 1{q ` 1 “ 1{p` 1{α, so by Young’s convolution inequality we have

||f ˚ φ||Lq ď ||f ||Lp ||φ||Lα ď sup
xPR

|φpxq| ¨ ||f ||Lp

as desired. Now we prove Young’s convolution inequality: the statement is that if 1{p` 1{q “ 1{r ` 1, and
f P Lp and g P Lq, then ||f ˚ g||Lr ď ||f ||Lp ||g||Lq . Proof: note that the condition on p, q, r implies that
1{p, 1{q ě 1{r. We have

1 “
1

p
`

1

q
´

1

r
“

ˆ

1

p
´

1

r

˙

`

ˆ

1

q
´

1

r

˙

`
1

r
“

r ´ p

pr
`
r ´ q

qr
`

1

r
.

By Hölder using the three conjugate exponents above, we have

|pf ˚ gqpxq| ď
ż

|fpx´ yqgpyq| dy

ď

ż

|fpx´ yq|pr´pq{r|gpyq|pr´qq{r|fpx´ yqp{rgpyqq{r| dy

ď

ˆ
ż

|fpx´ yq|p dy

˙pr´pq{pr ˆż

|gpyq|q dy

˙pr´qq{pr ˆż

|fpx´ yqpgpyqq| dy

˙1{r

“ ||f ||
pr´pq{r
Lp ||g||

pr´qq{r
Lq

ˆ
ż

|fpx´ yqpgpyqq| dy

˙1{r

.

Thus

||f ˚ g||
r
Lr “

ż

|pf ˚ gqpxq|r dx ď ||f ||
r´p
Lp ||g||

r´q
Lq

ż ż

|fpx´ yqpgpyqq| dy dx

“ ||f ||
r´p
Lp ||g||

r´q
Lq

ż ż

|fpx´ yqpgpyqq| dx dy by Tonelli

“ ||f ||
r
Lp ||g||

r
Lq .

(b) Fix p ą q. Let φ be equal to 1 on r0, 1s, have support contained in r´1, 2s, and have 0 ď φ ď 1
everywhere. Fix 1{α P pq, pq and let fpyq “ 1{yα for y P r10,8q and 0 otherwise. Note that f P Lp but
f R Lq. We have, for all x ą 100,

pf ˚ φqpxq “

ż

fpx´ yqφpyq dy ě

ż 1

0

fpx´ yq dy “

ż x

x´1

fpyq dy “

ż x

x´1

1

yα
dy ě

1

xα
.

Thus f ˚ φ R Lq, so the inequality fails.
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Problem 12. Let F be a function from D to D such that whenever z1, z2, z3 are distinct points of D
there exists an analytic function fz1,z2,z3 from D into D such that F pzjq “ fz1,z2,z3pzjq. Prove that F is
analytic at every point of D.

Solution.

Problem 13. Let X and Y be Banach spaces. A bounded linear transformation A : X Ñ Y is com-
pact if for every bounded sequence txnu Ď X, the sequence tAxnu has a convergent subsequence in Y .
Suppose X is reflexive pX˚˚ “ Xq and X˚ is separable. Show that A : X Ñ Y is compact if and only
if for every bounded sequence txnu Ď X, there exists a subsequence txnju and a vector φ P X such that
xnj “ φ` rnj and Arnj Ñ 0 in Y .

Solution.
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4 Fall 2010

Problem 1. Consider just Lebesgue measurable functiions f : r0, 1s Ñ R together with Lebesgue measure.
(a) State Fatou’s lemma,
(b) State and prove the Dominated Convergence Theorem.
(c) Give an example where fnpxq Ñ 0 a.e. but

ş

fnpxq dxÑ 1.

Solution. (a) If fn are non-negative, then
ş

lim infnÑ8 fn ď lim infnÑ8
ş

fn.

(b) If fn Ñ f almost everywhere and |fn| ď g for some integrable function g and all fn, then
ş

|f ´ fn| Ñ 0.
Proof: Since |fn| ď g and fn Ñ f almost everywhere, we also have |f | ď g almost everywhere, so the
functions 2g ´ |f ´ fn| are non-negative. Thus we can apply Fatou’s lemma to get

ż

lim inf
nÑ8

2g ´ |f ´ fn| ď lim inf
nÑ8

ż

p2g ´ |f ´ fn|q.

The left side simplifies to
ş

2g and the right side simplifies to
ş

2g´ lim supnÑ8
ş

|f ´ fn|. Thus by canceling
and rearranging we get lim sup

ş

|f ´ fn| ď 0, and since it’s a limsup of non-negative quantities this implies
the limit exists and equals 0.

(c) Let fn “ n ¨ χr0,1{ns. fn Ñ 0 almost everywhere but
ş

fn “ 1 for all n.

Problem 2. Prove the following form of Jensen’s inequality: if f : r0, 1s Ñ R is continuous, then

ż 1

0

efpxq dx ě exp

ˆ
ż 1

0

fpxq dx

˙

.

Moreover, if equality occurs then f is a constant function.

Solution. Let u “
ş1

0
fpxq dx. Let L be the tangent line to the graph of y “ ex at x “ u. Say L has

the equation y “ ax` b. Since exp is convex, we know that au` b “ eu and at` b ă et for all t ‰ u. So we
have

au` b “ a

ż 1

0

fpxq dx` b “

ż 1

0

pafpxq ` bq dx ď

ż 1

0

efpxq dx

by definition of the line y “ ax` b. Furthermore, if equality holds in the last step, we must have fpxq “ u
for all x. This is because f is continuous, so if fpxq ‰ u somewhere, then f ‰ u on some open interval, and
for all x in that interval we would have afpxq ` b ă efpxq, leading to a strict inequality above.

Problem 3. Consider the following sequence of functions:

fn : r0, 1s Ñ R by fnpxq “ exppsinp2πnxqq.

(a) Prove that fn converges weakly in L1pr0, 1sq.
(b) Prove that fn converges weak-˚ in L8pr0, 1sq, viewed as the dual of L1pr0, 1sq.

Solution. (a) This requires showing the existence of some f P L1 with
ş

fng Ñ
ş

fg for all g P L8.
Since L8pr0, 1sq Ď L1pr0, 1sq, this conclusion is implied by part (b) below.

(b) We need to find some f P L8 such that
ş

fng Ñ
ş

fg for all g P L1. First note that each fn is
1{n-periodic, so we have

ż 1

0

fnpxq dx “

ż 1

0

exppsinp2πnxqq dx “ n

ż 1{n

0

exppsinp2πnxqq “

ż 1

0

exppsinp2πuqq du “

ż 1

0

f1puq du.

Thus the quantity
ş1

0
fnpxq dx is independent of n. By viewing this as the dual pairing with the constant

function 1, we see that if the weak limit f exists it must be equal to the constant C :“
ş1

0
exppsinp2πuqq du.
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So we need to show that
ş1

0
fng Ñ C

ş1

0
g for any g P L1. We do this with a standard density argument.

Suppose we knew the desired conclusion for all φ in some family F dense in L1. Then for any g P L1, let φk
be a sequence in F converging to g, then we have∣∣∣∣ż fng ´ C ż

g

∣∣∣∣ ď ∣∣∣∣ż fng ´ ż

fnφk

∣∣∣∣` ∣∣∣∣ż fnφk ´ ż

Cφk

∣∣∣∣ ď e ¨ ||g ´ φk||L1 `

∣∣∣∣ż fnφk ´ ż

Cφk

∣∣∣∣
because each fn is bounded uniformly by e. For a fixed k, take n Ñ 8 and the second term on the right
goes to zero by assumption on the φk. Then take k Ñ8 and the first term also goes to zero by construction,
so the desired result follows. Now we just need to prove the desired result for a dense family F . We take
F to be the set of linear combinations of characteristic functions of closed intervals. Since the desired
property is linear, it’s enough to verify for the characteristic function g “ χra,bs. We need to show that
şb

a
exppsinp2πnxqq dxÑ Cpb´ aq as nÑ 8. Let an be the least number of the form q{n ą a and bn be the

greatest number of the form q{n ă b. Then we write, using the periodicity,

ż b

a

exppsinp2πnxqq dx “

˜

ż an

a

`

ż b

bn

`ptpb´ aqnu´ 2q

ż an`1{n

an

¸

exppsinp2πnxqq dx

“ epan ´ aq ` epb´ bnq ` ptpb´ aqnu´ 2q

ż 1{n

0

exppsinp2πnxqq dx

“ epan ´ aq ` epb´ bnq `
tpb´ aqnu´ 2

n
C

which tends to pb´ aqC as nÑ8, so we’re done.

Problem 4. Let T be a linear transformation on CcpRq (continuous functions with compact support)
that has the following two properties:

||Tf ||L8 ď ||f ||L8 and mtx P R : |Tfpxq| ą λu ď
||f ||L1

λ

where m denotes Lebesgue measure. Prove that

ż

|Tfpxq|2 dx ď C

ż

|fpxq|2 dx

for all f P CcpRq and some fixed number C.

Solution. We mimic the proof of the Hardy-Littlewood maximal theorem, with a few annoying things
changed because T is only defined for Cc functions. First we will establish the result when f is a real-valued,
non-negative function, and extend it at the end. We use the identity

ż

|Tf |2 “ 2

ż 8

0

λ ¨mtx : |Tfpxq| ą λu dλ.

For each fixed λ, we have the decomposition f “ g`h where h :“ minpf, λ{2q and g :“ f ´h “ 0 if f ă λ{2
and f ´ λ{2 if f ą λ{2. Note that both g and h are continuous and non-negative with compact support.
Then we have Tf “ Tg ` Th, so |Tf | ď |Tg| ` |Th|, which implies that

tx : |Tfpxq| ą λu Ď tx : |Tgpxq| ą λ{2u Y tx : |Thpxq| ą λ{2u.

But we have ||Th||L8 ď ||h||L8 ď λ{2 by construction, so the second set has measure zero and we just have
(up to measure zero sets)

tx : |Tfpxq| ą λu Ď tx : |Tgpxq| ą λ{2u.
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Thus we have
ż

|Tf |2 ď 2

ż 8

0

λ ¨mtx : |Tgpxq| ą λ{2u dλ

À

ż 8

0

λ
2 ||g||L1

λ
dλ by the weak-type hypothesis

À

ż 8

0

ż

R
|gpxq| dx dλ “

ż 8

0

ż

tx:fpxqąλ{2u

pfpxq ´ λ{2q dx dλ ď

ż 8

0

ż

tx:fpxqąλ{2u

fpxq dx dλ

“

ż

R
|fpxq|

ż 2|fpxq|

0

dλ dx by Tonelli

À

ż

R
|fpxq|2 dx.

This establishes the result for positive real-valued f . For general real-valued f , write f “ f`´ f´. Then we
have

ż

|Tf |2 “

ż

|Tf` ´ Tf´|
2 “

ż

|Tf`|
2 ` |Tf´|

2 ` |Tf`||Tf´|

ď

ż

|Tf`|
2 `

ż

|Tf´|
2 À ||f`||

2
L2 ` ||f´||

2
L2 “ ||f ||

2
L2

where the last equality is valid by the Pythagorean theorem because since f`pxqf´pxq “ 0 for all x, f`
and f´ are orthogonal. This establishes the result for general real-valued f . For complex-valued f , write
f “ Repfq ` i Impfq, then we have

ż

|Tf |2 “

ż

|T Repfq ` iT Impfq|2 “

ż

|T Repfq|2 ` |T Impfq|2 À

ż

|Repfq|2 ` | Impfq|2 “

ż

|f |2,

so we’re done.

Problem 5. Let R{Z denote the torus (whose elements we write as cosets) and fix an irrational α ą 0.
(a) Show that

lim
NÑ8

1

N

N´1
ÿ

n“0

fpnα` Zq “
ż 1

0

fpx` Zq dx

for all continuous functions f : R{ZÑ R.
(b) Show that the conclusion is also true when f is the characteristic function of a closed interval.

Solution. (a) Define AN pfq “
1
N

řN´1
n“0 fpnα ` Zq and Ipfq “

ş1

0
fpx ` Zq dx. First we show the con-

clusion when f is a trig polynomial. By linearity, it’s enough to assume fpxq “ e2πikx for some k P Z. If
k “ 0 then both sides are clearly equal to 1 so assume k ‰ 0. Then we have

AN pfq “
1

N

N´1
ÿ

n“0

pe2πikαqn “
1

N

1´ e2πikαN

1´ e2πikα
Ñ 0 as N Ñ8

Ipfq “

ż 1

0

e2πikx dx “ 0.

So the result is verified for trig polynomials. Now for general f P CpR{Zq, fix ε ą 0 and let P be a trig
polynomial with ||f ´ P ||L8 ă ε. Then we have

|AN pfq ´ Ipfq| ď |AN pfq ´AN pP q| ` |AN pP q ´ IpP q| ` |IpP q ´ Ipfq|

ď 2ε` |AN pP q ´ IpP q|.

First take N Ñ 8, then we see that |limNÑ8AN pfq ´ Ipfq| ă 2ε, and since this holds for arbitrary ε, the
desired result follows.
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(b) Let f “ χra,bs. Let gk and hk be sequences of continuous functions satisfying 0 ď gk ď f ď hk ď 1 for
all k, and gk and hk both converge almost everywhere to f as k Ñ 8 (it’s clear that such sequences exist
by just taking the graph of f and smoothing it out a bit). Then for each N and k we have

AN pgkq ď AN pfq ď AN phkq, Ipgkq ď Ipfq ď Iphkq.

For k fixed, take N Ñ8. Since gk and hk are continuous, this implies that

Ipgkq ď lim inf
NÑ8

AN pfq ď lim sup
NÑ8

AN pfq ď Iphkq.

Since everything is dominated by 1 and we have pointwise convergence almost everywhere, by the dominated
convergence theorem we can take k Ñ8 and get

Ipfq ď lim inf
NÑ8

AN pfq ď lim sup
NÑ8

AN pfq ď Ipfq,

which implies the desired result.

Problem 6. Consider the complex Hilbert space

H :“

#

f : DÑ C : fpzq “
8
ÿ

k“0

pfpkqzk with ||f ||
2

:“
8
ÿ

k“0

p1` k2q| pfpkq|2 ă 8

+

.

(a) Prove that the linear function L : f ÞÑ fp1q is bounded.
(b) Find the element g P H representing L.
(c) Show that f ÞÑ ReLpfq achieves its maximal value on the set

B :“ tf P H : ||f || ď 1 and fp0q “ 0u,

that this maximum occurs at a unique point, and determine this maximal value.

Solution. (a) We have

|fp1q| ď
8
ÿ

k“0

| pfpkq| “
8
ÿ

k“0

| pfpkq|
a

1` k2
1

?
1` k2

ď

˜

8
ÿ

k“0

| pfpkq|2p1` k2q

¸1{2 ˜
8
ÿ

k“0

1

1` k2

¸1{2

“ C ||f ||

where C2 “
ř8

k“0
1

1`k2 ă 8.

(b) We are implicitly assuming the inner product in H is given by

xf, gy “
8
ÿ

k“0

pfpkqpgpkqp1` k2q.

If g represents L then we must have

xf, gy “
8
ÿ

k“0

pfpkqpgpkqp1` k2q “ fp1q “
8
ÿ

k“0

pfpkq.

It’s clear that if pgpkq “ 1
1`k2 then this would be satisfied. So we can just define

gpzq “
8
ÿ

k“0

1

1` k2
zk.

The series converges uniformly on D so this definition actually makes sense (and in fact is holomorphic, but
that’s not necessary).
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(c) First we note that the maximum value of RepLpfqq on B must happen when ||f || “ 1, otherwise
we could normalize f and increase the value of RepLpfqq. The condition that fp0q “ 0 corresponds to

having pfp0q “ 0. So the problem is reduced to maximizing
ř8

k“1 Rep pfpkqq subject to the condition that
ř8

k“1p1 ` k2q| pfpkq|2 “ 1. Note that the constraint only depends on | pfpkq|. Thus we can always increase

Repfp1qq while keeping the norm constant if we assume that each pfpkq is real and positive. So without loss

of generality we can assume each pfpkq ě 0. Using the same Cauchy-Schwarz argument from part (a), we
have

8
ÿ

k“1

pfpkq ď

˜

8
ÿ

k“1

| pfpkq|2p1` k2q

¸1{2 ˜
8
ÿ

k“1

1

1` k2

¸1{2

“

˜

8
ÿ

k“1

1

1` k2

¸1{2

and equality holds if and only if pfpkq
?

1` k2 “ α?
1`k2

for some α P R. This shows that that maximum on

B is achieved at a unique point, i.e.

fpzq “
8
ÿ

k“1

α

1` k2
zk.

Also, this α is determined by the condition that f has norm 1:

1 “

8
ÿ

k“1

p1` k2q| pfpkq|2 “

8
ÿ

k“1

α2

1` k2
,

so α “
´

ř8

k“1
1

1`k2

¯´1{2

. Thus the maximum value achieved is

8
ÿ

k“1

α

1` k2
“

˜

8
ÿ

k“1

1

1` k2

¸1{2

.

Problem 7. Suppopse that f : C Ñ C is continuous and holomorphic on CzR. Prove that f is en-
tire.

Solution. By Morera’s theorem it’s enough to show that the integral around any rectangle with sides
parallel to the axes is zero. Let R be any rectangle. If R doesn’t intersect the real axis, the integral is
obviously zero by hypothesis. If R does intersect the real axis, break up R into two pieces, one in the upper
half plane and one in the lower, and by continuity the integral over R is equal to limit of the integrals as the
two pieces approach the real axis, so you still get zero (this is a really standard argument).

Problem 8. Let ApDq be the C-vector space of all holomorphic functions on D and suppose that L :
ApDq Ñ C is a multiplicative linear functional. If L is not identically zero, show that there is a z0 P D so
that Lpfq “ fpz0q for all f P ApDq.

Solution. Note that if this were true, then we would have to have Lpzq “ z0. So define z0 :“ Lpzq
and we want to show that Lpfq “ fpz0q for any f P ApDq. Since we are assuming that L is not identically
zero, let f be such that Lpfq ‰ 0. Then because L is multiplicative we can write Lpfq “ Lpf ¨1q “ LpfqLp1q,
so Lp1q “ 1. This, combined with the linear and multiplicative hypotheses again, imply that LpP q “ P pz0q

for any polynomial P . Now let f be any element of ApDq. We can write fpzq´fpz0q “ pz´ z0qgpzq for some
other g P ApDq. Therefore we have

Lpfq ´ fpz0q “ Lppz ´ z0qgpzqq “ pLpzq ´ z0qLpgq “ 0,

which establishes the desired result. The only thing left to check is that we actually have z0 P D. If not,
then 1{pz ´ z0q would be in ApDq, and so we would have

Lp1{pz ´ z0qq “ 1{Lpz ´ z0q “ 1{pz0 ´ z0q,
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a contradiction.

Problem 9. Let

fpzq “
8
ÿ

n“0

anz
n

be a holomorphic function in D. Show that if

8
ÿ

n“2

n|an| ď |a1|

with a1 ‰ 0 then f is injective.

Solution. We have f 1pzq “
ř8

n“1 nanz
n´1. Thus for any fixed z P D we have

|f 1pzq| “

∣∣∣∣∣ 8ÿ
n“1

nanz
n´1

∣∣∣∣∣ ě |a1| ´

8
ÿ

n“2

n|an||z|
n ą |a1| ´

8
ÿ

n“2

a|an| ě 0,

so f 1 is nonvanishing in D.

Problem 10. Prove that the punctured disc tz : 0 ă |z| ă 1u and the annulus tz : 1 ă |z| ă 2u are
not conformally equivalent.

Solution. Let P be the punctured disc and A be the annulus. Suppose f : P Ñ A is conformal. Then,
since A is bounded, the singularity of f at 0 must be removable. So we extend f to a holomorphic function
f : D Ñ A. If we knew that f were still conformal, this would be a contradiction because D is simply
connected but A is not. We already know f is holomorphic and surjective, so to show f is conformal we just
need to show that f is still injective when we extend it to be defined at 0. Suppose fp0q “ fpzq with z P P
(this is the only possibility because f is injective on P ). Let U and V be disjoint open balls around 0 and z
respectively. By the open mapping theorem, fpUq and fpV q are open. They interset at fp0q “ fpzq, so their
intersection is open and non-empty, and therefore in particular there is some other point w P fpUq X fpV q.
So we have z1 P U , z2 P V with fpz1q “ fpz2q. But z1 ‰ 0 because w ‰ fp0q, so this contradicts the fact
that f is injective on P .

Problem 11. Let Ω Ď C be a non-empty open connected set. If f : Ω Ñ C is harmonic and f2 is
also harmonic, show that either f or f is holomorphic on Ω.

Solution. Recall the Wirtinger derivates Bz “ p1{2qpBx ´ iByq and Bz “ p1{2qpBx ` iByq. A straightfor-
ward computation verifies the identity ∆ “ 4BzBz. By hypothesis, f2 is harmonic, so ∆f2 “ 0. Putting this
into the above identity and using the chain and product rules and the hypothesis that f is also harmonic,
this reduces to pBzfqpBzfq “ 0. Suppose f is not holomorphic. Then there is a point in Ω at which Bzf ‰ 0.
By continuity, Bzf is nonzero on an open ball, so Bzf “ 0 on an open ball. Since f is harmonic, Bz also
is (because Bx and By both are). But then we have a harmonic function on all of Ω which vanishes on an
open ball. In particular it has a local maximum on that open ball, so the maximum principle implies Bzf is
constant and therefore identically zero, so f is holomorphic.

Problem 12. Let F be the family of functions f holomorphic on D with
ĳ

x2`y2ă1

|fpx` iyq|2 dx dy ă 1.

Prove that for each compact subset K Ď D there is a constant A so that |fpzq| ă A for all z P K and all f P F .

Solution. See e.g. the first half of Fall 2014 #10.
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5 Spring 2011

Problem 1.

(a) Define what it means to say that fn Ñ f weakly in L2pr0, 1sq.

(b) Suppose fn P L
2pr0, 1sq converge weakly to f P L2pr0, 1sq and define ‘primitive’ functions

Fnpxq :“

ż x

0

fnptq dt and F pxq :“

ż x

0

fptq dt.

Show that Fn, F P Cpr0, 1sq and that Fn Ñ F uniformly on r0, 1s.

Solution.

(a) For every g P L2pr0, 1sq, limnÑ8

ş1

0
fnpxqgpxq dx “

ş1

0
fpxqgpxq dx.

(b) First, we know that weakly convergent sequences are bounded, so we can say ||fn||L2 ď M for all n.
To show that Fn and F are continuous, note that

|Fnpx` hq ´ Fnpxq| ď
ż x`h

x

|fnptq| dt ď

˜

ż x`h

x

|fnptq|
2 dt

¸1{2 ˜
ż x`h

x

1 dt

¸1{2

ď M |h|1{2.

Note that the above estimate for |Fnpx` hq ´ Fnpxq| is independent of both n and x, so we have actu-
ally shown that tFnu is an equicontinuous family of functions. A similar estimate shows |F px` hq ´ F pxq| ď
||f ||L2 |h|1{2, so F is also continuous. Now we show Fn Ñ F uniformly. First note that

|Fnpxq| ď

ż x

0

|fnptq| dt ď

ˆ
ż x

0

|fnptq|
2 dt

˙1{2

x1{2 ď M,

so Fn is also a uniformly bounded family. To show that Fn Ñ F uniformly, it’s enough to show
that any subsequence of Fn has a further subsequence converging uniformly to F . Let Fnk be any
subsequence. We have shown it is a uniformly bounded and equicontinuous family, so by Arzela-Ascoli
it has a further subsequence converging uniformly to some function g. But note that for each x,

lim
nÑ8

Fnpxq “ lim
nÑ8

ż x

0

fnptq dt “ lim
nÑ8

ż 1

0

fnptqχr0,xsptq dt “

ż 1

0

fptqχr0,xsptq dt “

ż x

0

fptq dt “ F pxq

by weak convergence because χr0,xs P L
2pr0, 1sq. Thus, since Fn converges pointwise to F , and Fnk has

a subsequence converging uniformly to some g, we must in fact have g “ F . Thus every subsequence
Fnk has a further subsequence converging uniformly to F , so Fn Ñ F uniformly.

Problem 2. Let f P L3pRq and φpxq “ sinpπxq ¨ χr´1,1spxq. Show that

fnpxq :“ n

ż

fpx´ yqφpnyq dy Ñ 0

Lebesgue almost everywhere.

Solution. Let φnpxq “ nφpnxq. Let gpxq “ ´φpxqχr´1,0s be the negative part of φ and let hpxq “ φpxqχr0,1s
be the positive part. Also define gn and hn similarly to φn. Note that φn “ hn ´ gn so to show that
f ˚ φn Ñ 0 a.e. it’s enough to show that f ˚ gn, f ˚ hn Ñ pπ{2qf a.e. We show it for hn and the argument
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for gn is exactly the same. First note that
ş

hnpxq dx “
ş1{n

0
sinpnπxq dx “ 2{π. We have

∣∣∣pf ˚ hnqpxq ´ π

2
fpxq

∣∣∣ “ ∣∣∣∣∣
ż 1{n

0

fpx´ yqn sinpnπyq dy ´

ż 1{n

0

fpxqn sinpnπyq dy

∣∣∣∣∣
ď n

ż 1{n

0

|fpx´ yq ´ fpxq| |sinpnπyq| dy

ď n

ż 1{n

0

|fpx´ yq ´ fpxq| dy,

which goes to 0 almost everywhere by the Lebesgue differentiation theorem (f P L1
loc because f P L3).

Problem 3. Let µ be a Borel probability measure on R and define fptq “
ş

eitx dµpxq. Suppose that

lim
tÑ0

fp0q ´ fptq

t2
“ 0.

Show that µ is supported at 0.

Solution. Rewrite the limit condition as

lim
tÑ0

ż

1´ eitx

t2
dµpxq “ 0.

Just looking at the real part of the above gives

lim
tÑ0

ż

1´ cosptxq

t2
dµpxq “ 0.

Since the integrand is positive for all t, x, by Fatou’s lemma we have

0 “ lim
tÑ0

ż

1´ cosptxq

t2
dµpxq ě

ż

lim
tÑ0

1´ cosptxq

t2
dµpxq “

ż

1

2
x2 dµpxq,

and since the last term on the right is also non-negative, we have
ş

x2 dµpxq “ 0. This immediately
implies that µ is supported at 0 because if µ gave nonzero measure to Rzt0u, it would have to give
positive measure to some set of the form p´8,´δs X rδ,8q for some δ ą 0, and then we would have
ş

x2 dµpxq ą δ2µpp´8,´δs X rδ,8qq ą 0, a contradiction.

Problem 4. Let fn : r0, 1s Ñ r0,8q be Borel functions with

sup
n

ż 1

0

fnpxq logp2` fnpxqq dx ď M ă 8.

Suppose fn Ñ f Lebesgue almost everywhere. Show that f P L1 and fn Ñ f in L1.

Solution. By Fatou’s lemma (since everything is positive) we have

M ě lim inf
nÑ8

ż 1

0

fnpxq logp2` fnpxqq dx ě

ż 1

0

fpxq logp2` fpxqq dx ě logp2q

ż 1

0

fpxq dx,

so f P L1. Now to show fn Ñ f in L1, we first want to establish the following claim: for all ε ą 0 there is
δ ą 0 such that for any n and any E Ď r0, 1s, mpEq ă δ implies

ş

E
fpxq dx ă ε. Suppose this were not true,

then there would be a sequence of sets Ek and functions fnk with mpEkq ă 1{k and
ş

Ek
fnk ě ε. Then by

Jensen’s inequality, since t ÞÑ t logp2` tq is convex, we would have
ˆ

1

mpEkq

ż

Ek

fnk

˙

log

ˆ

2`
1

mpEkq

ż

Ek

fnk

˙

ď
1

mpEkq

ż

Ek

fnk logp2` fnkq ď
1

mpEkq
M.
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Cancelling terms on both sides and using the fact that t ÞÑ t logp2` tq is also increasing, we get

M ě ε logp2` kεq,

which is a contradiction for k large enough. Thus the claim is established. Now to finish the problem, fix
ε ą 0. By the previous claim we can pick δ ą 0 so that mpEq ă δ implies

ş

E
fn ă ε for all n and

ş

E
f ă ε.

By Egorov’s theorem, we can find a set E Ď r0, 1s with fn Ñ f uniformly on Ec and mpEq ă δ. Then

ż

|fn ´ f | ď

ż

Ec
|fn ´ f | `

ż

E

|fn| `

ż

E

|f | ď

ż

Ec
|fn ´ f | ` 2ε.

First take nÑ8, then take εÑ 0, and we get the desired result.

Problem 5. (a) Show that `8pZq contains continuum many functions xα : ZÑ R obeying ||xα||`8 “ 1 and
||xα ´ xβ ||`8 ě 1 whenever α ‰ β.
(b) Deduce (assuming the axiom of choice) that the Banach space dual of `8pZq cannot contain a countable
dense subset.
(c) Deduce that `1pZq is not reflexive.

Solution. (a) For each subset α Ď Z, let xαpjq “ 1 if j P α and 0 otherwise. Then each ||xα||`8 “ 1
and for any two distinct subsets α ‰ β, there is a point at which xα and xβ disagree, so ||xα ´ xβ ||`8 ě 1.
It’s standard that there are continuum many subsets of Z.

(b) Part (a) shows that the dual of `8 is not separable. So it just follows from the general fact that if
X is a Banach space and X˚ is separable, then X is also separable (see Fall 2014 #6).

(c) Recall that the dual of `1 is `8. If `1 is separable, then p`1q˚˚ “ p`8q˚ “ `1, which is separable,
so by part (b) `8 is also separable, a contradiction.

Problem 6. Suppose µ and ν are finite positive (regular) Borel measures on Rn. Prove the existence
and uniqueness of the Lebesgue decomposition: there are a unique pair of positive Borel measures µa and
µs such that

µ “ µa ` µs, µa ! ν, µs K ν.

Solution. First we show uniqueness. Suppose that µ “ µa ` µs “ µ1a ` µ1s are two decompositions. It’s
enough to show that µs “ µ1s. Write Rn “ XYY “ X 1YY 1 where νpY q “ νpY 1q “ 0 and µspXq “ µ1spX

1q0.
By the absolute continuity of µa and µ1a, we see that µspAq “ µ1spAq for any A satisfying νpAq “ 0. For a
general set E, write

E “ pE XX XX 1q Y pE X Y XX 1q Y pE XX X Y 1q Y pE X Y X Y 1q “: pE XX XX 1q Y rE.

Note that since νp rEq “ 0 and E XX XX 1 is contained in both X and X 1 we have

µspEq “ µspE XX XX
1q ` µsp rEq “ µ1spE XX XX

1q ` µ1sp
rEq “ µ1spEq.

Thus the decomposition is unique. Now we show existence. Let λ “ µ ` ν and note that since all of the
measures involved are positive, ν is clearly absolutely continuous with respect to λ. Let f “ dν

dλ be the Radon-
Nikodym derivative, and note that f ě 0 because the measures are positive. Define X “ tx : fpxq ‰ 0u and
Y “ tx : fpxq “ 0u. We define µspEq :“ µpE X Y q and µapEq :“ µpE X Xq. It’s clear that µs ` µa “ µ.
We need to show that µs is singular to ν and µa is absolutely continuous with respect to ν. For the singular
part, note that X,Y are disjoint, Rn “ X Y Y , µspXq “ 0 by definition, and

νpY q “

ż

Y

f dλ “ 0
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by definition of X. This shows µs K ν. For absolute continuity, suppose νpEq “ 0. Then we have

0 “ νpEq “

ż

E

f dλ “

ż

E

f dµ`

ż

E

f dν “

ż

E

f dµ “

ż

EXX

f dµ “

ż

EXX

f dµa

because µs vanishes on X. But since f is strictly positive on E XX, the fact that
ş

EXX
f dµa “ 0 implies

that µapE XXq “ 0, which is the same as saying µapEq “ 0 by definition. Thus µa ! ν.

Problem 7. Prove Goursat’s theorem: if f : C Ñ C is complex differentiable, then for every triangle
T Ď C

¿

BT

fpzq dz “ 0.

Solution.

Problem 10. Evaluate
sup

 

Re f 1pi{2q : f : HÑ D is holomorphic
(

.

Solution. We can freely post-compose f with a rotation, so it’s equivalent to find |f 1pi{2q| instead of
the real part. Let f be any holmorphic function HÑ D. Let ψ : DÑ D be an automorphism sending fpi{2q

to 0. Concretely, ψpzq “ z´fpi{2q

1´fpi{2qz
. An easy calculation shows that

ψ1pfpi{2qq “
1

1´ |fpi{2q|2
.

Let φ : D Ñ H be a conformal map sending 0 to i{2. Concretely we can take φpzq “ 1
2 ¨

´ipz`1q
z´1 . Another

easy calculation shows that φ1p0q “ i. Now ψ ˝ f ˝ φ is a holomorphic function D to D sending 0 to 0, so by
the Schwartz lemma we have

1 ě
∣∣pψ ˝ f ˝ φq1p0q∣∣ “ ∣∣ψ1pfpφp0qqqf 1pφp0qqφ1p0q∣∣ “ 1

1´ |fpi{2q|2
|f 1pi{2q| ě |f 1pi{2q|.

Thus the supremum in question is at most 1. Finally note that taking fpzq “ φ´1pzq “ 2z´i
2z`i , a calculation

shows that f 1pi{2q “ ´i. So 1 is achieved and therefore is the desired supremum.
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6 Fall 2011

Problem 1. Prove Egorov’s theorem, that is:
Consider a sequence of measurable functions fn : r0, 1s Ñ R that converges Lebesgue almost everywhere to
a measurable function f : r0, 1s Ñ R. Then for any ε ą 0 there exists a measurable set E Ď r0, 1s with
measure λpEq ă ε such that fn converges uniformly on r0, 1szE.

Solution. Let Z be the measure zero set of x for which fnpxq ­Ñ fpxq and set I “ r0, 1szZ. Define

Enpkq :“ tx P I : |fjpxq ´ fpxq| ă 1{k for all j ě nu.

Fix ε ą 0. First we show a lemma: For each k there is an Nk such that λpENkpkqq ą 1´ ε2´k. To see this,
fix a k and note that by definition of pointwise convergence, we have

Ť8

n“1Enpkq “ I. So by continuity of
measure from below we can pick Nk large enough so that λpENkpkqq ą λpIq ´ ε2´k “ 1´ ε2´k. This proves
the lemma.

Now we upgrade to the full result. Define E :“
Ť8

k“1ENkpkq
c. We have

λpEq ď
8
ÿ

k“1

λpENkpkq
cq ă

8
ÿ

k“1

ε2´k “ ε.

We claim that fn Ñ f uniformly on Ec. Fix α ą 0. Pick k big enough so that 1{k ă α. Then for any
x P Ec, we have x P ENkpkq, so n ě Nk implies that |fnpxq ´ fpxq| ă 1{k ă α for all x P Ec. Thus fn Ñ f
uniformly on Ec.

Problem 2.

(a) Let dσ denote surface measure on the unit sphere S2 Ă R3. Note
ş

dσpxq “ 4π. For ξ P R3, compute
ż

S2

eix¨ξ dσpxq,

where ¨ denotes the usual inner product on R3.

(b) Using this, or otherwise, show that the mapping

f ÞÑ

ż

S2

ż

S2

fpx` yq dσpxq dσpyq

extends uniquely from the space of all C8 functions on R3 with compact support to a bounded linear
functional on L2pR3q.

Solution.

(a) It is clear that the integral in question depends only on |ξ| (a simple proof could be given if necessary,
using an orthogonal transformation and the change of variables formula). Therefore, given the mag-
nitude c “ |ξ| of ξ, we are free to choose ξ so that the integral is as easy as possible to evaluate. We
choose ξ “ p0, 0, cq. Then

ż

S2

eix¨ξ dσpxq “

ż

S2

cospcx3q dσpxq ` i

ż

S2

sinpcx3q dσpxq “

ż

S2

cospcx3q dσpxq,

since sin is odd and S2 is symmetric about the origin. Using spherical coordinates, the last integral
equals

ż

S2

cospcx3q dσpxq “

ż 2π

0

ż π

0

cospc cosφq ¨ sinφdφ dθ

“ ´
2π

c
sinpc cosφq

ˇ

ˇ

ˇ

π

0

“
4π sin c

c
.

“
4π sin |ξ|

|ξ|
.

26



(b) For f P C8c pR3q, define

Lpfq “

ż

S2

ż

S2

fpx` yq dσpxq dσpyq.

Since C8c pR3q is dense in L2pR3q, to show that L extends uniquely to a bounded linear functional on
L2pR3q it will be enough to prove a bound of the form |Lpfq| ď C||f ||2 for all f P C8c pR3q (where
C is independent of f). Since f is smooth with compact support, it lies in the Schwartz space, and
therefore Fourier inversion applies and gives

fpxq “

ż

R3

e2πiξ¨xf̂pξq dξ “

ż 8

0

r2

ż

S2

e2πirx¨ξ f̂prξq dσpξq dr

for all x P R3. (Note that since f̂ is in the Schwartz space as well, ||f̂ ||L8prS2q decays faster than
any power of r, so the integral on the right is convergent.) Therefore, by Fubini’s theorem and the
calculation in (a),

Lpfq “

ż

S2

ż

S2

fpx` yq dσpxq dσpyq

“

ż

S2

ż

S2

ż 8

0

r2

ż

S2

e2πirpx`yq¨ξ f̂prξq dσpξq dr dσpxq dσpyq

“

ż 8

0

r2

ż

S2

f̂prξq

ż

S2

e2πirx¨ξ dσpxq

ż

S2

e2πiry¨ξ dσpyq dσpξq dr

“

ż 8

0

r2

ż

S2

f̂prξq

ˆ

sin 2πr

r

˙2

dσpξq dr

“

ż

R3

f̂pξq

ˆ

sin 2π|ξ|

|ξ|

˙2

dξ.

Now, by the Plancherel theorem, f̂ P L2pR3q and ||f̂ ||2 “ ||f ||2. Moreover, hpξq “
´

sin 2π|ξ|
|ξ|

¯2

is

in L2pR3q as well, since hpξq2 is bounded near zero and decays like |ξ|´4 near infinity. Therefore,
Cauchy-Schwarz implies

|Lpfq| ď ||f̂ ||2 ||h||2 “ C||f ||2,

as required.

Problem 3. Let 1 ă p, q ă 8 with 1{p ` 1{q “ 1. Let f P LppR3q and g P LqpR3q. Show (a) that f ˚ g is
continuous on R3 and (b) that pf ˚ gqpxq Ñ 0 as |x| Ñ 8.

Solution. (a) Fix x P R3. We estimate

|pf ˚ gqpxq ´ pf ˚ gqpx` hq| “
∣∣∣∣ż

R3

pfpx´ yqgpyq ´ fpx` h´ yqgpyqq dy

∣∣∣∣
ď

ż

|gpyq||fpx` h´ yq ´ fpx´ yq| dy

ď ||g||Lq

ˆ
ż

|fpx` h´ yq ´ fpx´ yq|p dy

˙1{p

“ ||g||Lq

ˆ
ż

|fpy ` hq ´ fpyq|p dy

˙1{p

.

So it suffices to show that
`ş

|fpy ` hq ´ fpyq|p dy
˘1{p

Ñ 0 as |h| Ñ 0. This is just the Lp continuity of the
translation operator, a proof of which is reproduced below.
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For f P Lp define τhfpyq “ fpy ` hq. We want to show that ||τhf ´ f ||Lp Ñ 0 as |h| Ñ 0. First sup-
pose that φ P CcpR3q. Let S “ tx P R3 : distpx, supppφqq ď 1u and let M “ λ3pSq ă 8. By uniform
continuity of φ, let |h| ă 1 be small enough so that |τhφpxq ´ φpxq| ă ε for all x P R3. Then

||τhφ´ φ||
p
Lp ď εpM,

so the result is true for CcpR3q functions. For general f P LppR3q, a standard density argument works: fix
ε ą 0 and pick φ P CcpR3q with ||f ´ φ||Lp ă ε. Then

||τhf ´ f ||Lp ď ||τhf ´ τhφ||Lp ` ||τhφ´ φ||Lp ` ||φ´ f ||Lp ă 2ε` ||τhφ´ φ||Lp .

Take |h| Ñ 0 and then εÑ 0 and the result follows.

(b) Note that if f, g have compact support then f ˚ g also does. Pick sequences fn, gk with fn Ñ f in
Lp, gk Ñ g in Lq, ||fn||Lp ď ||f ||Lp , ||gk||Lp ď ||g||Lp , and each fn, gk has compact support (e.g. just cut off
f and g at bigger and bigger balls). Fix ε ą 0 and pick n, k big enough so that ||fn ´ f ||Lp , ||gk ´ g||Lp ă ε.
Then for any x P R3 we have

|pf ˚ gqpxq| ď |pfn ˚ gkqpxq|` |ppf ´ fnq ˚ gkqpxq|` |pf ˚ pg ´ gkqqpxq|
ď |pfn ˚ gkqpxq|` ||pf ´ fnq ˚ gk||L8 ` ||f ˚ pg ´ gkq||L8
ď |pfn ˚ gkqpxq|` ε ||g||Lq ` ε ||f ||Lp .

Take |x| Ñ 8 and conclude lim|x|Ñ8pf ˚gqpxq ď εp||f ||Lp`||g||Lq q, then take εÑ 0 to get the desired result.

Problem 4. Let f P C8pr0,8q ˆ r0, 1sq such that
ż 8

0

ż 1

0

|Btfpt, xq|
2p1` t2q dx dt ă 8.

Prove that there exists a function g P L2pr0, 1sq such that fpt, ¨q converges to gp¨q in L2pr0, 1sq as tÑ8.

Solution. (There may be ways to make this proof more efficient, but it seems correct as far as I can
tell.) For each t, fp¨, tq is in L2pr0, 1sq, so by Parseval’s theorem there exist complex numbers anptq such that

fpx, tq “
ÿ

nPZ
anptqe

2πinx

in L2pr0, 1sq, where
ř

n |anptq|
2 “ ||fp¨, tq||2 ă 8. By Parseval again it is enough to prove the existence of a

sequence tbnunPZ P l
2pZq such that

ÿ

nPZ
|anptq ´ bn|

2 Ñ 0

as t Ñ 8; the function gpxq „
ř

n bne
2πinx will then be the desired limit in L2pr0, 1sq. By completeness of

l2pZq, this is the same as showing that tanptqu is Cauchy in l2pZq as tÑ8. In other words, given ε ą 0, we
want to be able to find T ą 0 so that s, t ą T implies

ÿ

nPZ
|anptq ´ anpsq|

2 ă ε.

Assume for the moment that the coefficients anptq are continuously differentiable with respect to t and that

Btfpx, tq “
ÿ

nPZ
a1nptqe

2πinx

in L2pr0, 1sq for each t. Then by assumption, we have

ż 8

0

ż 1

0

|Btfpt, xq|
2p1` t2q dx dt “

ż 8

0

˜

ÿ

nPZ
|a1nptq|

2

¸

p1` t2q dt

“
ÿ

nPZ

ż 8

0

|a1nptq|
2p1` t2q dt ă 8 (1)
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(using the monotone convergence theorem to interchange the sum and integral). Since each anptq is C1, we
have

anpsq ´ anptq “

ż s

t

a1npτq dτ.

Consequently, by Cauchy-Schwarz

ÿ

nPZ
|anpsq ´ anptq|

2 “
ÿ

nPZ

∣∣∣∣ż s
t

a1npτq dτ

∣∣∣∣2
ď

ÿ

nPZ

ż 8

t

τ2|a1npτq|
2 dτ

ż 8

t

dτ

τ2
(assuming s ą t)

À
ÿ

nPZ

ż 8

t

|a1npτq|
2p1` τ2q dτ.

But by (1) above, this sum goes to 0 as t Ñ 8. Hence, tanptqun is Cauchy in l2pZq as t Ñ 8, and so
fp¨, tq Ñ gp¨q in L2pr0, 1sq as tÑ8.

Now we just have to justify the continuous differentiability of the coefficients anptq and the fact that Btfpx, tq
equals

ř

n a
1
nptqe

2πinx in L2pr0, 1sq. For any t, let h ą 0; then by smoothness of f on r0,8q ˆ r0, 1s,

fpx, t` hq ´ fpx, tq

h
“

ÿ

nPZ

anpt` hq ´ anptq

h
e2πinx Ñ Btfpx, tq

as hÑ 0, uniformly on r0, 1s, and hence also in L2pr0, 1sq. But Btfpx, tq is also in L2pr0, 1sq, and hence has
an L2-Fourier series

Btfpx, tq “
ÿ

nPZ
αnptqe

2πinx.

Thus, by Parseval’s theorem,
ÿ

nPZ

∣∣∣∣anpt` hq ´ anptqh
´ αnptq

∣∣∣∣2 Ñ 0

as h Ñ 0, which implies anpt`hq´anptq
h Ñ αnptq for each n. Thus, anptq is differentiable with derivative

a1nptq “ αptq, and

Btfpx, tq “
ÿ

nPZ
a1nptqe

2πinx

in L2pr0, 1sq, as desired. The same argument applied to
ř

n a
1
nptqe

2πinx shows that the a1nptq are themselves
differentiable, and hence continuous; so the anptq are continuously differentiable, as required.

Problem 5. For f P L1pRq, recall the Hardy-Littlewood maximal function

Mfpxq :“ sup
hą0

1

2h

ż x`h

x´h

|fpyq| dy.

Prove there is a constant A such that for any α ą 0,

λtx P R : Mfpxq ą αu ď
A

α
||f ||L1 .

If you use a covering lemma, you should prove it.

Solution. Fix α ą 0 and let E “ tx P R : Mfpxq ą αu. For each x P E, by definition of Mf there
is a radius rx such that

ż x`rx

x´rx

|f | ą 2αrx.
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Note the above implies we must have rx ă ||f ||L1 {p2αq for each x P E. Set Ix “ px ´ rx, x ` rxq. Since
the radii are uniformly bounded, we may apply the Vitali covering lemma to tIxuxPE to obtain a countable
disjoint subcollection Ij “ pxj ´ rj , xj ` rjq with E Ď

Ť8

j“1 5Ij . Thus we have

λpEq ď
8
ÿ

j“1

λp5Ijq “ 5
8
ÿ

j“1

2rj ď
5

λ

8
ÿ

j“1

ż xj`rj

xj´rj

|f | ď
5

λ
||f ||L1

because the intervals Ij are pairwise disjoint. All that remains is to prove the Vitali covering lemma.

Let tIαu be a collection of open balls with uniformly bounded radius. Let R “ supα radpIαq. Let F1

be the collection of all balls Iα with radii in pR{2, Rs. Let B1 be a maximal pairwise disjoint subcollection
of F1 (a standard Zorn’s lemma argument shows that this exists). Now let F2 be the subcollection of all
balls Iα which are disjoint from every element of B1 and have radii in pR{4, R{2s, and let B2 be a maximal
pairwise disjoint subcollection of F2 (same deal with Zorn’s lemma). Inductively, we may construct Fn
to be the collection of all balls Iα which do not intersect any ball in B1 Y . . . Y Bn´1 and have radii in
pR{2n, R{2n´1s, and let Bn be a maximal disjoint subcollection of Fn. Let B “

Ť8

n“1 Bn. It’s clear that
B is a pairwise disjoint (and therefore countable) subcollection of the Iα. Consider some Iα R B. We have
radpIαq P pR{2n, R{2n´1s for some n. By the maximality of Bn, it must be the case that Iα intersects some
Iβ P B1 Y . . .Bn. So radpIβq ą R{2n ě p1{2q radpIαq. Thus B has the property that any Iα R B intersects
some Iβ P B with radpIβq ą R{2n ě p1{2q radpIαq. Thus a simple triangle inequality shows that Iα Ď 5Iβ ,
so

Ť

α Iα Ď
Ť

IPB 5I.

Problem 6. Let pX, dq be a compact metric space. Let µn be a sequence of positive Borel measures
on X that converge in the weak-˚ topology to a finite positive Borel measure µ, that is

ż

X

f d µn Ñ

ż

X

f dµ for all f P CpXq.

Show that
µpKq ě lim sup

nÑ8
µnpKq for all compact sets K Ď X.

Solution. Fix K compact. First we show that the characteristic function χK is upper semicontinuous.
We need to show

χKpx0q ě lim sup
xÑx0

χKpxq

for any x0 P X. If x0 P K, then the inequality obviously holds because χKpx0q is equal to the maximum
value χK can take. If x0 R K, then since Kc is open there is a neighborhood around x0 on which χK “ 0,
so χKpx0q “ 0 “ limxÑx0

χKpxq. Thus χK is upper semicontinuous.

Now we prove the inequality
ż

f dµ ě lim sup
nÑ8

f dµn

for all upper semicontinuous f : X Ñ R. This finishes the problem by taking f “ χK . It’s equivalent to
show

ż

f dµ ď lim inf
nÑ8

f dµn

whenever f is lower semicontinuous (by just taking the negative). Fix such an f . Since X is compact, f
achieves a minimum on X (this is a property of lower semicontinuous functions). By an equivalent definition
of lower semicontinuous, we have a sequence φk of continuous functions with φk ď φk`1 and φk Ñ f
pointwise. By replacing φk by maxpφk,minpfqq if necessary, we may assume that all of the φk are uniformly
bounded from below. We have

ż

X

φk dµn ď

ż

X

f dµn
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for any k, n. Taking the liminf as nÑ8, since φk is continuous we get
ż

X

φk dµ ď lim inf
nÑ8

ż

X

f dµn

for every k. Finally, since the right side is independent of k, apply the Monotone Convergence theorem to
get the desired conclusion.

Problem 7. Compute
ş8

0
cospxq
p1`x2q2

dx.

Solution. Let fpzq “ eiz

p1`z2q2 . Integrate f around a semicircle of radius R in the upper half plane. It’s

easy to show the contribution from the curved part of the contour vanishes as RÑ8. The real part of the
integral over the straight part is twice the desired integral because the original function is even. f has a
double pole at z “ i. Take the residue

Respf, iq “ lim
zÑi

d

dz

“

pz ´ iq2fpzq
‰

“
´i

2e
.

Set the two things equal to each other using the residue theorem and solve. The answer is π{2e.

Problem 8. Determine the number of solutions to

z ´ 2´ e´z “ 0

with z in the right half-plane H “ tz P C : Re z ą 0u.

Solution. Any such z satisfies z “ 2 ` e´z, and therefore |z| “ |2 ` e´z| ď 2 ` |e´z| ă 3, since Re z ą 0.
Hence, we can restrict z to the half-disc U “ H X t|z| ă 3u. Consider the functions fpzq “ z ´ 2 and
gpzq “ ´e´z on BU . It is easy to see that |g| ă |f | on BU , since |g| “ e´x ă 1 everywhere in H, whereas
|z ´ 2| ą 1 for all x P BU except at z “ 3, at which point |gpzq| “ e´3 ă 1. Therefore, by Rouche’s theorem,
f and f ` g “ z ´ 2´ e´z have the same number of zeros in U ; since f clearly has one zero in U , it follows
that

z ´ 2´ e´z “ 0

has exactly one solution in H.

Problem 9. Suppose that f is a holomorphic function in the punctured open unit disc D˚ :“ Dzt0u
such that

ż

D˚
|fpzq|2 dApzq ă 8

where integration is with respect to two dimensional Lebesgue measure. Show that f has a holomorphic
extension to the unit disc D.

Solution. Let gpzq “ zfpzq. It’s clear that g is also holomorphic on D˚. By the mean value property,
for z P D˚ fixed we have

|gpzq| “
1

πp1{2|z|q2

∣∣∣∣∣
ż

Bpz,1{2|z|q

wfpwq dApwq

∣∣∣∣∣ À |z|´2

˜

ż

Bpz,1{2|z|q

|w|2 dApwq

¸1{2 ˜
ż

Bpz,1{2|z|q

|fpwq|2 dApwq

¸1{2

À |z|´2

˜

ż

Bp0,3{2|z|q

|w|2 dApwq

¸1{2

À |z|´2

˜

ż 3{2|z|

0

ż 2π

0

r2r dθ dr

¸1{2

À |z|´2

˜

ż 3{2|z|

0

r3 dr

¸1{2

À |z|´2

ˆ

p
3

2
|z|q4

˙1{2

À 1.

Thus g is bounded and holomorphic in the punctured disc D˚, which means that the singularity at 0 must
be removable. So zfpzq has a removable singularity at 0, which implies that the singularity of f at 0 is
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either removable or a simple pole. But if f has a simple pole at zero, then there is a constant C ą 0 and a
neighborhood of 0 on which |fpzq| ě C|z|´1, which contradicts the fact that

ş

D˚ |fpzq|
2 dApzq ă 8. So f

has a removable singularity at 0 and therefore can be extended to a holomorphic function on D.

Problem 10. Let Ω Ĺ C be a simply connected domain and f : Ω Ñ Ω be a holomorphic mapping.
Suppose there are points z1 ‰ z2 with fpz1q “ z1 and fpz2q “ z2. Show that f is the identity on Ω.

Solution. We need to assume f is conformal, otherwise it isn’t true (as a counterexample take Ω “ Bp0, 2q
and fpzq “ z2, then 0 and 1 are both fixed points). By the Riemann mapping theorem, let T : Ω Ñ D be a
conformal map. Then φ “ TfT´1 : D Ñ D is a conformal map with φpα1q “ α1, φpα2q “ α2 and α1 ‰ α2

(take αj “ T pzjq). Let ψ be an automorphism of D that sends α1 to 0. Then we have ψpφpψ´1p0qqq “ 0,
so the Schwartz lemma applies to ψφψ´1. But note also that ψpφpψ´1pψpα2qqqq “ ψpα2q. So equality holds
in the Schwartz lemma (actual equality, not just equality in absolute value), so ψφψ´1 is the identity, which
implies φ is the identity, which implies f is the identity.

Problem 11. Let f : C Ñ C be a holomorphic function with fpzq ‰ 0 for all z P C. Define U “

tz P C : |fpzq| ă 1u. Show that all connected components of U are unbounded.

Solution. Since f is nonvanishing, 1{f is also entire. First note that U is clearly an open set because
it’s the preimage of p0, 1q under the continuous function |fpzq|. Suppose that Ω were a bounded connected
component of U . Note that Ω is also open: let z P Ω and let B be an open ball centered at z contained
in U . If B were not contained in Ω, then there would be w P B where w belongs to a different connected
component of U . But z and w can be joined by a path lying in U , so they must be in the same connected
component. Thus Ω is a bounded connected open set, i.e. a region on which the maximum principle can be
applied. First note that by continuity and by the fact that BΩ is disjoint from Ω, we must have |f | “ 1 on
BΩ. Thus |1{f | “ 1 on BΩ also. So by the maximum principle, we have |1{f | ď 1 throughout Ω, implying
|f | ě 1 throughout Ω. But |f | ă 1 in Ω by definition, which is a contradiction.

Problem 12. A holomorphic function f : C Ñ C is said to be of exponential type if there are constants
c1, c2 ą 0 such that

|fpzq| ď c1e
c2|z| for all z P C.

Show that f is of exponential type if and only if f 1 is of exponential type.

Solution. First suppose f is of exponential type. For any z, the Cauchy estimates give

|f 1pzq| ď
1

R
sup

|w´z|“R

|fpwq| ď
1

R
c1e

c2p|z|`Rq

for any R ą 0. Pick R “ 1, we get

|f 1pzq| ď c1e
c2p|z|`1q “ c1e

c2ec2|z|,

so f is of exponential type.

Now suppose f 1 is of exponential type. For any z we can write

fpzq “ fp0q `

ż

γ

fpwq dw

where γ is a straight line from 0 to z. So we have

|fpzq| ď |fp0q| ` |z| sup
wPγ

|f 1pwq| ď |fp0q| ` |z|c1e
c2|z| ď p|fp0q| ` c1qe

pc2`1q|z|,

so f is of exponential type.
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7 Spring 2012

Problem 1. fn P L
3pr0, 1sq. True or false:

(a) If fn Ñ f almost everywhere then a subsequence converges to f in L3.

(b) If fn Ñ f in L3 then a subsequence converges almost everywhere.

(c) If fn Ñ f in measure then the sequence converges to f in L3.

(d) If fn Ñ f in L3 then the sequence converges to f in measure.

Solution.

(a) False. Let fn “ n ¨ χr0,1{ns. Then fn Ñ 0 almost everywhere but
ş1

0
|fn|

3 “
ş1{n

0
n3 “ n2, so fn doesn’t

converge to 0 in L3.

(b) True. By part (d) we know that fn Ñ f in measure. So for each k, we have

lim
nÑ8

tx : |fnpxq ´ fpxq| ą 1{ku “ 0.

For each k, pick nk large enough so that λtx : |fnpxq ´ fpxq| ą 1{ku ă 2´k. Let Ek “ tx : |fnpxq ´
fpxq| ą 1{ku. We claim that fnk Ñ f almost everywhere. Note that since

ř8

k“1 λpEkq ă 8, the
Borel-Cantelli lemma implies that the set of x that lie in infinitely many Ek has measure zero. Fix
ε ą 0 and let x be one of the almost everywhere points lying in only finitely many Ek. Then, as long
as k is big enough so that 1{k ă ε and x R Ek, we have |fnkpxq ´ fpxq| ď 1{k ă ε. This shows that
fnkpxq Ñ fpxq for a.e. x.

(c) False. The same counterexample from part (a) works again.

(d) True. Fix α ą 0. Then we have

ż

|fn ´ f |
3 ě

ż

tx:|fnpxq´fpxq|ąαu

|fn ´ f |
3 ě α3 ¨ λtx : |fnpxq ´ fpxq| ą αu.

The left side goes to 0 as nÑ8, so the right side does as well.

Problem 2. Let X and Y be topological spaces and XˆY the Cartesian product endowed with the product
topology. BpXq denotes the Borel sets in X and similarly, BpY q and BpX ˆ Y q.

(a) Suppose f : X Ñ Y is continuous. Prove that E P BpY q implies f´1pEq P BpXq.

(b) Suppose A P BpXq and E P BpY q. Show that Aˆ E P BpX ˆ Y q.

Solution.

(a) Let F “ tE Ď Y : f´1pEq P BpXqu. We want to show that BpY q Ď F . It’s enough to show that F is a
σ-algebra containing all open sets of Y . It’s clear that F contains all open sets in Y by the definition
of continuous functions. Thus H and Y are in F because they are open. Suppose A P F . Then we
have f´1pAcq “ f´1pAqc P BpXq, so F is closed under complementation. Finally, suppose An P F .
Then we have f´1 p

Ť

Anq “
Ť

f´1pAnq P BpXq, so F is closed under countable unions. Thus F is a
σ-algebra, so we’re done.

(b) Fix an open set U Ď X. We first show that U ˆ E P BpX ˆ Y q for any E P BpY q. Let FU “ tE Ď

Y : U ˆ E P BpX ˆ Y qu. To verify that claim, we just need to show FU is a σ-algebra containing all
open sets of Y . It’s clear that FU contains all open sets because the product of open sets is open. So
FU contains H and Y . If E P FU , then U ˆ Ec “ pU ˆ Y qzpU ˆ Eq P BpX ˆ Y q, so FU is closed
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under complementation. If En P FU , then U ˆ
Ť

En “
Ť

pU ˆEnq P BpX ˆ Y q, so FU is closed under
countable unions, so it’s a σ-algebra. This shows that U ˆE P BpX ˆY q for any open U Ď X and any
Borel E Ď Y .

Now fix a Borel set E Ď Y and let FE “ tA Ď X : A ˆ E P BpX ˆ Y qu. We want to show FE
contains all Borel sets in X, so it’s enough to show FE is a σ-algebra containing all open sets of
X. We know it contains all open sets of X by the above work. The exact same argument as above
shows that it’s a σ-algebra. Thus we conclude that AˆE P BpXˆY q for any A P BpXq, E P BpY q.

Alternate solution. (b) Let πX (resp. πY ) be the projection maps X ˆ Y Ñ X (resp. Y ). They are
both continuous. Then by part (a),

Aˆ E “ π´1
X pAq X π

´1
Y pEq P BpX ˆ Y q.

Problem 3. Given f : r0, 1s Ñ R belonging to L1 and n P N, define

fnpxq “ n

ż pk`1q{n

k{n

fpyq dy for x P rk{n, pk ` 1q{nq and 0 ď k ď n´ 1.

Prove fn Ñ f in L1.

Solution. First suppose f is the characteristic function of an interval f “ χra,bs. Then note that for n
large enough, fn is constant and equal to f on each subinterval except for possibly the two subintervals
containing a and b. On these two subintervals, we still have 0 ď fn ď 1. Thus we have

ż 1

0

|fn ´ f | ď 2 ¨
1

n
¨max |fn ´ f | ď

2

n
,

which shows that fn Ñ f in L1. Next note that the map f ÞÑ fn is linear, so we also know that fn Ñ f in
L1 for any f which is a linear combination of characteristic functions of intervals. This class of functions is
dense in L1. So for a general f P L1, let gk be a sequence of functions of the above form with gk Ñ f in L1.
Then for any n large enough we have

||fn ´ f ||L1 ď ||f ´ gk||L1 ` ||gk ´ pgkqn||L1 ` ||pgkqn ´ fn||L1 .

We estimate

||pgkqn ´ fn||L1 “

n´1
ÿ

k“0

ż pk`1q{n

k{n

|gkpxq ´ fpxq| dx “

n´1
ÿ

k“0

ż pk`1q{n

k{n

n

∣∣∣∣∣
ż pk`1q{n

k{n

pgkpyq ´ fpyqq dy

∣∣∣∣∣ dx
ď

n´1
ÿ

k“0

n

ż pk`1q{n

k{n

|fpyq ´ gkpyq|

ż pk`1q{n

k{n

dx dy by Tonelli

“

n´1
ÿ

k“0

ż pk`1q{n

k{n

|fpyq ´ gkpyq| dy “ ||f ´ gk||L1 .

Thus we have
||fn ´ f ||L1 ď 2 ||f ´ gk||L1 ` ||gk ´ pgkqn||L1 .

This holds for any n, so taking nÑ8 we get

lim sup
nÑ8

||fn ´ f ||L1 ď 2 ||f ´ gk||L1

since we already verified the desired property for each gk. Now the above holds for any k, so we can take
k Ñ8 and conclude limnÑ8 ||fn ´ f ||L1 “ 0.

Problem 4. Let S “ tf P L1pR3q :
ş

fpxq dx “ 0u.

34



(a) Show that S is closed in the L1 topology.

(b) Show that S X L2pR3q is a dense subset of L2pR3q.

Solution.

(a) Let fn P S and f P L1 with fn Ñ f in L1. Then for each n we have∣∣∣∣ż f ∣∣∣∣ “ ∣∣∣∣ż f ´ ż

fn

∣∣∣∣ ď ż

|f ´ fn| Ñ 0,

so
ş

f “ 0.

(b) We know that the set of L2 functions with compact support is dense in L2, so it suffices to show that
for any f P L2 with compact support and any ε ą 0, there is some g P S X L2 with ||g ´ f ||L2 ă ε.
Fix f P L2 with compact support and ε ą 0. Say supppfq Ď Bp0,Mq and let I “

ş

fpxq dx. We know
that I ă 8 because L2 functions with compact support are also L1 (by Cauchy-Schwarz). We may
assume I ą 0 because if I “ 0 then we’re done, and if I ă 0 then we can do the same argument with
a negative sign on everything. The idea is to let g “ f on the support of f , and then let g be equal to
a small negative value outside the support of f so that

ş

gpxq dx “ 0.

Let C ą M be a solution to 4π{3pC3 ´M3q “ I2{ε. Let gpxq “ fpxq for |x| ď M , gpxq “ ´ε{I for
M ă |x| ď C, and gpxq “ 0 otherwise. It’s clear that g P L2. We have

ż

gpxq dx “

ż

|x|ďM

fpxq dx`

ż

Mă|x|ďC

´ε{I “ I´ε{I ¨λ3pM ă |x| ď Cq “ I´ε{I ¨
4

3
πpC3´M3q “ 0,

so g P S X L2. Also we have

||g ´ f ||L2 “

ż

Mă|x|ďC

ε2{I2 “ ε2{I2 ¨ λ3pM ă |x| ď Cq “ ε.

Problem 5. State and prove the Riesz representation theorem for linear functionals on a Hilbert space.

Solution. Statement: let H be a Hilbert space and let f be a bounded linear functional on H. Then
there exists z P H such that fpxq “ xx, zy for all x P H.

Proof: Let f P H˚. Since f is a continuous map into a 1-dimensional space, we know that kerpfq is
a closed, co-dimension 1 subspace of H. Fix a nonzero u P kerpfqK. Then we have the decomposition

H “ kerpfq ‘ spanpuq. Let α “ fpuq{ ||u||
2
. Then we claim that fpxq “ xx, αuy for all x P H. Since every

x P H decomposes uniquely as the sum of something in kerpfq and something in spanpuq, we just need to
show that x ÞÑ fpxq and x ÞÑ xx, αuy agree on kerpfq and spanpuq. For y P kerpfq, we clearly have fpyq “ 0
and xy, αuy “ 0 because u was chosen to be in kerpfqK. For z P spanpuq, we have z “ cu for some c, so

we have fpzq “ fpcuq “ cfpuq and xz, αuy “ cα ||u||
2
“ cfpuq by choice of α. Thus fpxq “ xx, αuy for all

x P H.

Problem 6. Suppose f P L2pRq and that the Fourier transform obeys pfpξq ą 0 for almost every ξ.
Show that the set of finite linear combinations of translates of f is dense in the Hilbert space L2pRq.

Solution. Let M “ spantx ÞÑ fpx` aquaPR where the closure is with respect to the L2 norm. Suppose for
contradiction that M ‰ L2. Then there is some nonzero g PMK. In particular we have

ş

R fpx`aqgpxq dx “ 0
for all a P R. By Plancherel, this implies that

ż

R
Fpx ÞÑ fpx` aqpξqqFpgqpξq dξ “

ż

R
e´2πiaξFpfqpξqFpgqpξq dξ “ FpFpfqFpgqqpaq “ 0
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for all a P R, where F denotes the Fourier-Plancherel transform L2 Ñ L2. This formula is valid because
since f, g P L2, FpfqFpgq P L1, and thus the Fourier-Plancherel transform agrees with the standard L1

Fourier transform. But since F is a bijection this implies that FpfqpξqFpgqpξq “ 0 for almost every ξ. And
since Fpfqpξq ą 0 almost everywhere, this implies Fpgq “ 0 almost everywhere, so g “ 0 almost everywhere,
which is a contradiction.

Problem 7. Let tunpzqu be a sequence of real-valued harmonic functions on D that obey

u1pzq ě u2pzq ě ¨ ¨ ¨ ě 0 for allz P D.

Prove that z ÞÑ infn unpzq is a harmonic function on D.

Solution. Let upzq “ infn unpzq “ limnÑ8 unpzq (the limit exists and equals the inf because the se-
quence is monotonically decreasing and bounded for each z). First we show that un Ñ u uniformly on
compact subsets of D. Fix a compact subset Bp0, rq Ď D. For any n ą m, um ´ un is a positive harmonic
function on D, so we can apply Harnack’s inequality on the disc Bp0, p1` rq{2q to get, for any |z| ď r,

|umpzq ´ unpzq| ď
p1` rq{2` |z|

p1` rq{2´ |z|
|ump0q ´ unp0q| ď

p1` rq{2` r

p1` rq{2´ r
|ump0q ´ unp0q| Ñ 0

as n,mÑ8 uniformly in |z| ď r because tunp0qu is a convergent sequence.
Since each un is continuous, the local uniform convergence implies that u is continuous. Also, for any

Bpz0, rq Ď D, we have

1

2π

ż 2π

0

upz0`re
iθq dθ “

1

2π

ż 2π

0

lim
nÑ8

unpz0`re
iθq dθ “ lim

nÑ8

1

2π

ż 2π

0

unpz0`re
iθq dθ “ lim

nÑ8
unp0q “ up0q

where switching the limit and the integral is justified by uniform convergence on the compact set BBpz0, rq.
Thus u is continuous and satisfies the mean value property on every disc, so it’s harmonic.

Problem 8. Let Ω “ tx ` iy : x ą 0, y ą 0, xy ă 1u. Give an example of an unbounded harmonic
function on Ω that extends continuously to BΩ and vanishes there.

Solution. We want to conformally map Ω to a region where it will be easier to find such a function.
Motivated by the fact that px ` iyq2 “ px2 ´ y2q ` ip2xyq, we see that the map z ÞÑ πz2 is a conformal
map from Ω to the strip S :“ tz : 0 ă Impzq ă 2πu. Now note that z ÞÑ Impezq is an unbounded har-
monic function in S which vanishes on the boundary of S: we have Impexppx` 0iqq “ Impexppxqq “ 0 and
Impexppx ` 2πiqq “ Impexppxqq “ 0, and Impexppx ` iπ{2qq “ Impi exppxqq “ exppxq, which is unbounded
in S. Therefore the function upzq “ Impexppπz2qq is a function that works.

Problem 9. Prove Jordan’s lemma: If fpzq : CÑ C is meromorphic, R ą 0, and k ą 0, then∣∣∣∣ż
Γ

fpzqeikz dz

∣∣∣∣ ď 100

k
sup
zPΓ

|fpzq|

where Γ is the quarter circle z “ Reiθ with 0 ď θ ď π{2.

Solution. We have∣∣∣∣ż
Γ

fpzqeikz dz

∣∣∣∣ “
∣∣∣∣∣
ż π{2

0

fpReiθqeikRe
iθ

iReiθ dθ

∣∣∣∣∣ ď R ¨ sup
zPΓ

|fpzq| ¨

ż π{2

0

∣∣∣eikRpcos θ`i sin θq
∣∣∣ dθ

“ R ¨ sup
zPΓ

|fpzq| ¨

ż π{2

0

e´kR sin θ dθ.

So we just need to show that
şπ{2

0
e´kR sin θ dθ ď 100

kR . We break the integral in two:

ż π{2

0

e´kR sin θ dθ “

ż π{4

0

e´kR sin θ dθ `

ż π{2

π{4

e´kR sin θ dθ “: A`B.

36



Now we estimate

A “

ż π{4

0

e´kR sin θ dθ “

ż

?
2{2

0

e´u
du

kR cos θ
ď

1

kR
?

2{2

ż

?
2{2

0

e´u du ď

?
2

kR

B “

ż π{2

π{4

e´kR sin θ dθ ď

ż π{2

π{4

e´kR
?

2{2 dθ “
π

4
e´kR

?
2{2 ď

π
?

2

4
¨

1

kR
because e´x ď 1{x for x ą 0.

Thus we conclude
ż π{2

0

e´kR sin θ dθ ď

ˆ

?
2`

π
?

2

4

˙

1

kR
ď

100

kR
.

Alternate solution. Same up to the bound∣∣∣∣ż
Γ

fpzq dz

∣∣∣∣ ď R ¨ sup
zPΓ

|fpzq| ¨

ż π{2

0

e´kR sinpθq dθ.

Now note that on r0, π{2s, sinpθq ě p2{πqθ, so we have∣∣∣∣ż
Γ

fpzq dz

∣∣∣∣ ď R¨sup
zPΓ

|fpzq|¨

ż π{2

0

e´kRp2{πqθ dθ “
π{2

k
sup
zPΓ

|fpzq|¨

ż π{2

0

e´θ dθ ď
π{2

k
sup
zPΓ

|fpzq|¨

ż 8

0

e´θ dθ ď
π{2

k
sup
zPΓ

|fpzq|,

and I think this is the optimal constant.

Problem 10. Let us define the Gamma function via

Γpzq “

ż 8

0

tz´1e´t dt

when the integral is absolutely convergent. Show that this function extends to a meromorphic function in
the whole complex plane.

Solution. Note that for Repzq ą 0, we have

ż 8

0

∣∣tz´1
∣∣ e´t dt “ ż 8

0

tRepzq´1e´t dt ă 8.

So the integral is absolutely convergent for all Repzq ą 0. First we show that it defines an analytic function
for Repzq ą 1. We have

Γpz ` hq ´ Γpzq

h
“

ż 8

0

e´ttz´1

ˆ

th ´ 1

h

˙

.

We estimate ∣∣∣∣e´ttz´1

ˆ

th ´ 1

h

˙
∣∣∣∣ “ e´ttRepzq´1

∣∣∣∣eh log t ´ 1

h

∣∣∣∣ ď e´ttRepzq´1
8
ÿ

n“1

|h|n´1| log t|n

n!

ď e´ttRepzq´1
8
ÿ

n“1

| log t|n

n!
for |h| ď 1

ď e´ttRepzq´1e| log t|.

If Repzq ą 1, then e´ttRepzq´1e| log t| is integrable on r0,8q, so by the Dominated Convergence theorem we
see that the above difference quotient converges as hÑ 0, so Γ is analytic. So far we have that Γ is analytic
in Repzq ą 1. By integrating by parts we get, for any Repzq ą 0,

Γpz ` 1q “

ż 8

0

tze´t dt “ z

ż 8

0

tz´1e´t dt “ zΓpzq.
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So we can extend the definition of Γ by setting Γpzq :“ 1
zΓpz ` 1q “ 1

zpz`1qΓpz ` 2q for all ´1 ă Repzq ď 0

except for z “ 0. This definition makes Γ analytic in ´1 ă Repzq ď 0 except at 0 because for any nonzero
point in that strip, we can take a neighborhood around that point on which z ÞÑ 1

zpz`1q and z ÞÑ Γpz`2q are

both analytic. There is no problem even when taking neighborhoods around points with Repzq “ 0 because
in 0 ă Repzq ď 1, the two definitions of Γ agree because of the functional equation.

We can extend this definition to all of C. In general, for non-negative integers n, define Γ on the strip
´n´ 1 ă Repzq ď ´n (except not at z “ ´n) by

Γpzq “
1

zpz ` 1q ¨ ¨ ¨ pz ` n` 1q
Γpz ` n` 2q.

By the same reasoning, this definition makes Γ analytic everywhere except for at all of the non-positive
integers. To show that Γ is meromorphic, we just need to show that it has poles at each non-positive integer.
Fix a non-positive integer ´n. In any neighborhood of z “ ´n, the representation

Γpzq “
1

zpz ` 1q ¨ ¨ ¨ pz ` n` 1q
Γpz ` n` 2q.

is valid regardless of whether Repzq ď ´n or Repzq ą ´n, because of the functional equation which is valid
in the right half plane. Since Γp2q ‰ 0, it’s clear that Γpzq Ñ 8 as z Ñ ´n, and thus Γ has a pole at ´n.

Problem 11. Let P pzq be a polynomial. Show that there is an integer n and a second polynomial Qpzq so
that

P pzqQpzq “ zn|P pzq|2 whenever |z| “ 1.

Solution. Write P pzq “ pz ´ a1q ¨ ¨ ¨ pz ´ amq. Define Qpzq “ p1 ´ a1zq ¨ ¨ ¨ p1 ´ amzq. It’s clear Q is a
polynomial. On |z| “ 1, we have

|P pzq|2 “ P pzqP pzq “ pz ´ a1q ¨ ¨ ¨ pz ´ amqpz ´ a1q ¨ ¨ ¨ pz ´ amq

“ pz ´ a1q ¨ ¨ ¨ pz ´ amqp1{z ´ a1q ¨ ¨ ¨ p1{z ´ amq

“ pz ´ a1q ¨ ¨ ¨ pz ´ amqp1{zq
mp1´ a1zq ¨ ¨ ¨ p1´ amzq “

1

zm
P pzqQpzq.

So P pzqQpzq “ zm|P pzq|2 on |z| “ 1.

Problem 12. Show that the only entire function fpzq obeying both

|f 1pzq| ď e|z| and f

˜

n
a

1` |n|

¸

“ 0 for all n P Z

is the zero function.

Solution. Suppose f is not identically zero. Then since its zeros are discrete, it has countable many. Enu-
merate them taku. By hypothesis f vanishes at every n{

a

1` |n| for n P Z, so we know that
ř

k |ak|
´2 “ 8.

This implies that the genus of f is at least 2 (proof below). By Hadamard’s theorem, this also implies the
order of f is at least 2. But by hypothesis, we have fp0q “ 0, and so for any z we can write

|fpzq| “

∣∣∣∣ż
γz

f 1pwq dx

∣∣∣∣ ď |z| sup
wPγz

|f 1pwq| ď |z|e|z| ď e2|z|

where γz is a straight line from 0 to z. But this shows that the order of f is ď 1, a contradiction.

Here is a proof that
ř

k |ak|
´2 “ 8 implies the genus of f is at least 2. It follows from the more gen-

eral claim: If genuspfq ď h and taku are the zeros of f , then
ř

k |ak|
´ph`1q ă 8. If the genus is ď h, then

we know that the product

8
ź

k“1

ˆ

1´
z

ak

˙

exp

˜

z

ak
`

1

2

ˆ

z

ak

˙2

` . . .`
1

h

ˆ

z

ak

˙h
¸
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converges uniformly on compact sets. In particular, fix some z which is not a zero of f , then we know the
series

8
ÿ

k“1

log

ˆ

1´
z

ak

˙

`
z

ak
`

1

2

ˆ

z

ak

˙2

` . . .`
1

h

ˆ

z

ak

˙h

convergs absolutely. For all |ak| ą 3|z|, we have the estimate∣∣∣∣∣log

ˆ

1´
z

ak

˙

`
z

ak
`

1

2

ˆ

z

ak

˙2

` . . .`
1

h

ˆ

z

ak

˙h
∣∣∣∣∣ “

∣∣∣∣∣ 8
ÿ

j“h`1

1

j

ˆ

z

ak

˙j
∣∣∣∣∣

“
1

h` 1

∣∣∣∣ zak
∣∣∣∣h`1

∣∣∣∣∣ 8
ÿ

j“h`1

h` 1

j

ˆ

z

ak

˙j´ph`1q
∣∣∣∣∣

ě
1

h` 1

∣∣∣∣ zak
∣∣∣∣h`1

˜

1´
8
ÿ

j“h`2

h` 1

j

∣∣∣∣ zak
∣∣∣∣j´ph`1q

¸

ě
1

h` 1

∣∣∣∣ zak
∣∣∣∣h`1

˜

1´
8
ÿ

j“h`2

p1{3qj´ph`1q

¸

ě
|z|h`1

2ph` 1q
|ak|

´ph`1q.

Thus

ÿ

|ak|ą3|z|

|ak|
´ph`1q ď

2ph` 1q

|z|h`1

ÿ

|ak|ą3|z|

∣∣∣∣∣log

ˆ

1´
z

ak

˙

`
z

ak
`

1

2

ˆ

z

ak

˙2

` . . .`
1

h

ˆ

z

ak

˙h
∣∣∣∣∣ ă 8.

This establishes the desired claim because there are only finitely many ak with |ak| ď 3|z|.

Alternate solution. By the same argument as in the other solution we have |fpzq| ď e2|z|. We want
to use Jensen’s formula. First multiply f by a power of z so that fp0q ‰ 0. This preserves an inequality of
the form |fpzq| ď ec|z|. For any R (assuming f has no zeros on |z| “ R), Jensen’s formula gives (enumerating
the zeros of f as an)

log |fp0q| “
1

2π

ż 2π

0

log |fpReiθq| dθ `
ÿ

|an|ăR

log
∣∣∣an
R

∣∣∣
À log ecR `

ÿ

|n|{
?

1`|n|ăR

log

∣∣∣∣∣ n

R
a

1` |n|

∣∣∣∣∣
À R`

ÿ

nďR2

log

∣∣∣∣?nR
∣∣∣∣

À R´
ÿ

nďR2

logR`
ÿ

nďR2

log
?
n

À R´R2 logR`
1

2

ż R2

0

log x dx

À R´R2 logR`R2 logR´
1

2
R2

which goes to ´8 as RÑ8, a contradiction.
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8 Fall 2012

Problem 1. Let 1 ă p ă 8 and let fn : R3 Ñ R be a sequence of functions such that lim sup ||fn||Lp ă 8.
Show that if fn converges almost everywhere, then fn converges weakly in Lp.

Solution. Let λ denote Lebesgue measure on R3. Say that fn Ñ f pointwise almost everywhere and
also that ||fn||Lp ďM for all n. To show that fn Ñ f weakly in Lp, we need to show that φpfnq Ñ φpfq for
every bounded linear functional φ P pLpq˚. By Lp-Lq duality, we know that every φ P pLpq˚ is of the form
φpfq “

ş

fg dλ for some g P Lq. So let g be any Lq function; it suffices to show that

ż

fng Ñ

ż

fg.

Since fn Ñ f almost everywhere, we also know that fng Ñ fg almost everywhere. By the Vitali Convergence
Theorem, to show

ş

fng dλ Ñ
ş

fg dλ it suffices to show that the sequence tfngu is uniformly integrable
and tight.

For uniform integrability, let ε ą 0. Since |g|q is integrable, let δ ą 0 be such that whenever λpAq ă δ,
we have

ş

A
|g|q dλ ă ε. Then for any n and any λpAq ă δ, we have by Hölder’s inequality

ż

A

|fng| dλ ď

ˆ
ż

A

|fn|
p dλ

˙1{pˆż

A

|g|q dλ

˙1{q

ă Mε1{q,

which shows that tfngu is a uniformly integrable family.

For tightness, let ε ą 0 and let E be a subset of R3 such that
ş

Ec
|g|q dλ ă ε. Then for any n, we have by

the same argument

ż

Ec
|fng| dλ ď

ˆ
ż

Ec
|fn|

p dλ

˙1{pˆż

Ec
|g|q dλ

˙1{q

ă Mε1{q,

so tfngu is a tight family, so we are done.

Problem 2. Suppose dµ is a Borel probability measure on the unit circle in the complex plane such
that

lim
nÑ8

ż

|z|“1

zn dµpzq “ 0.

For f P L1pdµq show that

lim
nÑ8

ż

|z|“1

znfpzq dµpzq “ 0.

Solution. By linearity, it is clear that the desired result holds for any trigonometric polynomial on the
unit circle, i.e. any function of the form P pzq “

řN
n“´N anz

n. Since µ is a Borel measure and the unit circle
is compact, we know that the set of continuous functions on S1 is dense in L1pµq with respect to the norm
||¨||L1pµq. We also know by the Stone-Weierstrass theorem that the set of trigonometric polynomials on S1

is dense in the set of continuous functions on S1 with respect to the norm ||¨||L8pµq.

So let f P L1pµq and fix ε ą 0. Let g be a continuous function on S1 such that ||f ´ g||L1pµq ă ε and let P

be a trigonometric polynomial such that ||g ´ P ||L8pµq. Since the result holds for trigonometric polynomials,
we can pick n large enough so that ∣∣∣∣∣

ż

|z|“1

znP pzq dµpzq

∣∣∣∣∣ ă ε.
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Then for such n, we have∣∣∣∣∣
ż

|z|“1

znfpzq dµpzq

∣∣∣∣∣ ď
ż

|z|“1

|znpfpzq ´ gpzqq| dµpzq `
ż

|z|“1

|znpgpzq ´ P pzqq| dµpzq `

∣∣∣∣∣
ż

|z|“1

znP pzq dµpzq

∣∣∣∣∣
ď

ż

|z|“1

|fpzq ´ gpzq| dµpzq `
ż

|z|“1

|gpzq ´ P pzq| dµpzq ` ε

ď ||f ´ g||L1pµq ` ||g ´ P ||L8pµq µpS
1q ` ε ă 3ε,

which shows that
ş

|z|“1
znfpzq dµpzq Ñ 0 as nÑ8.

Problem 3. Let H be a Hilbert space and let E be a closed convex subset of H. Prove that there
exists a unique element x P E such that

||x|| “ inf
yPE

||y|| .

Solution. First note that if 0 P E, then the statement is obviously true by taking x “ 0, so assume 0 R E.
Let infyPE ||y|| “ δ ą 0. First we prove that such an x must be unique. Suppose that ||x|| “ ||x1|| “ δ. Then
since E is convex, we have p1{2qx` p1{2qx1 P E and

δ “
1

2
||x|| `

1

2

ˇ

ˇ

ˇ

ˇx1
ˇ

ˇ

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
x1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
x`

1

2
x1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ.

But we know that equality in the triangle inequality occurs if and only if x and x1 are scalar multiples of
each other. Thus the above inequality yields the contradiction δ ą δ unless x and x1 are scalar multiples of
each other. So we can write x “ cx1 where |c| “ 1. Then since E is convex, p1{2qpx` x1q “ c`1

2 x1 P E also,
so

ˇ

ˇ

ˇ

ˇ

c`1
2 x1

ˇ

ˇ

ˇ

ˇ “ |pc` 1q{2| δ ě δ, which implies c “ 1, so x “ x1.

Now we show existence. Let tynu be a sequence in E such that ||yn|| Ñ δ as n Ñ 8. Then for any n
and m, by the parallelogram law we can write

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
yn `

1

2
ym

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
yn ´

1

2
ym

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
yn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
ym

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Since E is convex, p1{2qyn ` p1{2qym P E, so we have

1

4
||yn ´ ym||

2
“

1

2
||yn||

2
`

1

2
||ym||

2
´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
yn `

1

2
ym

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
1

2
||yn||

2
`

1

2
||ym||

2
´ δ2.

As n,m Ñ 8, the right side of the above inequality tends to 0 by definition of the yn, so we conclude that
||yn ´ ym||

2
Ñ 0 as n,mÑ8, so tynu is a Cauchy sequence. Since H is complete, there is some x P H such

that yn Ñ x as nÑ 8, and since E is closed, we must have x P E. Finally, since the norm is a continuous
function on H, we must have ||x|| “ limnÑ8 ||yn|| “ δ.

Problem 4. Fix f P CpTq where T “ R{2πZ. Let sn denote the nth partial sum of the Fourier series
of f . Prove that

lim
nÑ8

||sn||L8pTq

logpnq
“ 0.

Solution. Recall that we have snpfqpxq “ pf ˚Dnqpxq, where Dn is the Dirichlet kernel

Dnptq “
n
ÿ

k“´n

eikt “
sinppn` 1{2qtq

sinpt{2q
.
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Therefore we immediately see that ||snpfq||L8 ď ||f ||L8 ||Dn||L1 . We estimate

||Dn||L1 À

ż π

´π

∣∣∣∣ sinppn` 1{2qtq

sinpt{2q

∣∣∣∣ dt À ż π

0

∣∣∣∣ sinppn` 1{2qtq

t

∣∣∣∣ dt
where the second inequality is valid because Dn is even and sinpt{2q ě t{100 on r0, πs. Continuing,

||Dn||L1 À

ż pn`1{2qπ

0

| sinpuq|

u
du À

n
ÿ

k“0

ż pk`1qπ

kπ

| sinpuq|

u
du

À

n
ÿ

k“0

ż pk`1qπ

kπ

| sinpuq|

pk ` 1qπ
du À

n
ÿ

k“0

1

k ` 1
À logpnq.

So we have established ||snpfq||L8 À ||f ||L8 logpnq for all f P CpTq. Note that if P is a polynomial, then
snpP q Ñ P uniformly on T (this is proven by integrating by parts twice on the definition of the Fourier

coefficients to get | pP pkq| À k´2, and then applying the Weierstrass M -test combined with the general fact
that snpP q Ñ P in L2). In particular, ||snpP q||L8 is bounded, so we clearly have ||snpP q||L8 { logpnq Ñ 0.
Fix ε ą 0 and any f P CpTq. We can find a polynomial P with ||f ´ P ||L8 ă ε. Then we have

lim sup
nÑ8

||snpfq||L8

logpnq
ď lim sup

nÑ8

||snpf ´ P q||L8

logpnq
`
||snpP q||L8

logpnq
À ||f ´ P ||L8 ă ε.

Take εÑ 0 and we’re done.

Problem 5. Let fn : R3 Ñ R be a sequence of functions such that supn ||fn||L2 ă 8. Show that if
fn converges almost everywhere to a function f : R3 Ñ R, then

ż

R3

∣∣|fn|2 ´ |fn ´ f |2 ´ |f |2∣∣ dx Ñ 0.

Solution. Let M be such that ||fn||L2 ď M for all n. Since fn Ñ f almost everywhere, we also have
|fn|

2 Ñ |f |2 almost everywhere, so by Fatou’s lemma,
ż

|f |2 “

ż

lim inf
nÑ8

|fn|
2 ď lim inf

nÑ8

ż

|fn|
2 ď M2,

which shows that f P L2 and ||f ||L2 ďM . Notice that we have the identity

||fn|
2 ´ |fn ´ f |

2 ´ |f |2| “ ||fn ´ f ` f |
2 ´ |fn ´ f |

2 ´ |f |2| “ 2|fn ´ f ||f |.

Fix ε ą 0. Since |f |2 is integrable, there is a δ ą 0 such that λpEq ă δ implies
ş

E
|f |2 ă ε. We can also pick

an R which is big enough so that
ş

|x|ąR
|f |2 ă ε. Then on the set |x| ď R, we can apply Egorov’s theorem to

get a set E Ď t|x| ď Ru such that fn Ñ f uniformly on t|x| ď RuzE and λpEq ă δ. So we have the estimate
ż

|fn ´ f ||f | “

ż

t|x|ďRuzE

|fn ´ f ||f | `

ż

E

|fn ´ f ||f | `

ż

t|x|ąRu

|fn ´ f ||f | “: A`B ` C.

Since fn Ñ f uniformly on t|x| ď RuzE, let n be big enough so that
ş

t|x|ďRuzE
|fn ´ f |2 ă ε. Now we

estimate each of A, B, C separately using Cauchy-Schwarz. We have

A ď

˜

ż

t|x|ďRuzE

|fn ´ f |
2

¸1{2 ˜
ż

t|x|ďRuzE

|f |2

¸1{2

ď M
?
ε

B ď

ˆ
ż

E

|fn ´ f |
2

˙1{2 ˆż

E

|f |2
˙1{2

ď
?

2M2
?
ε

C ď

˜

ż

t|x|ąRu

|fn ´ f |
2

¸1{2 ˜
ż

t|x|ąRu

|f |2

¸1{2

ď
?

2M2
?
ε.
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This shows that
ş

|fn ´ f ||f | Ñ 0 as nÑ8, which is enough to conclude the desired result.

Problem 6. Let f P L1pRq and let Mf denote its maximal function, that is,

pMfqpxq “ sup
0ără8

1

2r

ż r

´r

|fpx´ yq| dy.

By the Hardy-Littlewood maximal function theorem,

|tx P R : pMfqpxq ą λu| ď 3λ´1 ||f ||L1 for all λ ą 0.

Using this show that

lim sup
rÑ0

1

2r

ż r

´r

|fpyq ´ fpxq| dy “ 0 for almost every x P R.

Solution. This is actually false as stated. As a counterexample, take f “ χr´1,1s. For any x R r´1, 1s, we
have fpxq “ 0 but

lim sup
rÑ0

1

2r

ż r

´r

|fpyq ´ fpxq| dy “ lim sup
rÑ0

1

2r

ż r

´r

|fpyq| dy “ 1.

Presumably, what the question meant to say is to prove that

lim sup
rÑ0

1

2r

ż x`r

x´r

|fpyq ´ fpxq| dy “ 0 for almost every x P R,

which is the Lebesgue differentiation theorem. Here is a proof of this:

Define

pTrfqpxq :“
1

2r

ż x`r

x´r

|fpyq ´ fpxq| dy

pTfqpxq :“ lim sup
rÑ0`

pTrfqpxq.

We want to prove that Tf “ 0 almost everywhere. Fix some ε ą 0. Since the set of continuous functions
with compact support is dense in L1pRq, let g be a continuous function with compact support such that
||f ´ g||L1 ă ε. Define h “ f ´ g so that f “ g ` h. Note that for any r ą 0 we have

Trf “ Trpg ` hq ď Trg ` Trh.

By the definition of continuity, it is clear that the desired result holds for continuous functions, so we have
that Tg is identically zero, and thus we obtain Tf ď Th.

To show that Tf “ 0 almost everywhere, it suffices to show that mtx P R : pTfqpxq ą δu “ 0 for any
fixed δ ą 0, where m is Lebesgue measure on R. So fix δ ą 0 and define F :“ tx P R : pTfqpxq ą δu and
E :“ tx P R : pThqpxq ą δu. Since Tf ď Th, F Ď E, so we analyze the measure of E. Note that for any x
and any r ą 0, we have

pTrhqpxq “
1

2r

ż x`r

x´r

|hpyq ´ hpxq| dy ď
1

2r

ż x`r

x´r

|hpyq| dy `
1

2r

ż x`r

x´r

|hpxq| dy ď pMhqpxq ` |hpxq|.

Therefore we have
E Ď tx P R : pMhqpxq ą δ{2u Y tx P R : |hpxq| ą δ{2u,
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so by the Hardy-Littlewood theorem, Chebyshev’s inequality, and the definition of h,

mpEq ď
6

δ
||h||L1 `

2

δ
||h||L1 ă

8

δ
ε.

Thus we have mpF q ă p8{δqε. Since the set F does not depend on ε, this holds for any ε ą 0 and thus we
conclude mpF q “ 0, which is enough to conclude that Tf “ 0 almost everywhere.

Problem 7. Let f be a function holomorphic in C and suppose that fp0q “ 0, fp1q “ 1, and fpDq Ď D.
Show that (a) f 1p1q P R and (b) f 1p1q ě 1.

Solution. (a) Suppose that f 1p1q R R. Then there exists v P C with Repvq ă 0 such that Repf 1p1qvq ą 0.
The limit definition of the derivative, together with the fact that fp1q “ 1 implies that

f 1p1qv “ lim
tÑ0`

fp1` tvq ´ 1

t
.

For sufficiently small t, we have 1 ` tv P D. Since fpDq Ď D, But then Re fp1`tvq´1
t ă 0 small t. After

passing to the limit, we have Repf 1p1qvq ď 0 which is a contradiction.
(b) Fix t P p0, 1q. By the Schwarz lemma, |fp1´ tq| ď 1´ t. Therefore

|fp1´ tq ´ 1|

t
ě

1´ |fp1´ tq|

t
ě 1.

Taking the limit as tÑ 0`, we see that |f 1p1q| ě 1.

Problem 8. Let f : C Ñ C be a nonconstant holomorphic function such that every zero of f has even
multiplicity. Show that f has a holomorphic square root, i.e. there exists a holomorphic function g : CÑ C
such that fpzq “ gpzq2 for all z P C.

Solution. If the set of zeros of f had a limit point, then f would have to be identically zero. But f
is nonconstant by hypothesis, so the zeros of f are isolated. Since all of the multiplicities are even and the
zeros are isolated, by Weierstrass’s theorem there exists an entire function h such that h has the same zeros
as f , but with each one half the multiplicity. Then h2 is an entire function with exactly the same zeros as f
with all the same multiplicities. Therefore the function f{h2 is analytic at all points which are not zeros of
f , and it has removable singularities at the zeros of f . So it can be extended to a function which is analytic
everywhere, so we can assume without loss of generality that f{h2 is a nonvanishing entire function. Since
it is nonvanishing, it has a well-defined analytic logarithm, i.e. there is some entire function g such that
f{h2 “ exppgq. Then f “ h2 exppgq “ ph exppg{2qq2, and h exppg{2q is an entire function, so this is the
desired result.

Problem 9. Suppose f is a holomorphic function in the unit disk D and txnu is a sequence of real numbers
satisfying 0 ă xn`1 ă xn ă 1 for all n P N and limnÑ8 xn “ 0. Show that if fpx2n`1q “ fpx2nq for all n,
then f is a constant function.

Solution. By translating by a constant, we may assume that fp0q “ 0. Define gpzq “ fpzqfpzq. Since
fpzq is also holomorphic, we see that g is also holomorphic and gpzq P R whenever z P R. So we can consider
the restriction of g to the positive real axis as a differential function on R. Then since gpx2n`1q “ gpx2nq for
all n, by the mean value theorem there is a number yn P px2n`1, x2nq such that g1pynq “ 0. Since xn Ñ 0,
also yn Ñ 0. Thus g1 is zero on a set with a limit point, so g1 is identically zero. Therefore g is a constant,
and since fp0q “ 0, we also have gp0q “ 0, so g is identically zero. Therefore we have fpzqfpzq “ 0 for all
z P D, which implies that f is identically zero because either fpzq or fpzq is zero on a set with a limit point.

Problem 10. Let tfnu be a sequence of holomorphic functions on D satisfying |fnpzq| ď 1 for all z and all
n Let A Ď D be the set of all z P D for which the limit limnÑ8 fnpzq exists. Show that if A has an accu-
mulation point in D, then there exists a holomorphic function f on D such that fn Ñ f locally uniformly on D.
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Solution. Since the sequence fn is uniformly bounded, by Montel’s theorem we know it is a normal
family, so there is a subsequence fnk which converges locally uniformly on D to some function f . Since local
uniform limits of holomorphic functions are holomorphic, we know that f is holomorphic. Now, to show that
the whole sequence fn converges locally uniformly to f , it suffices to prove that every subsequence has a
further subsequence which converges locally uniformly to f . Since the whole sequence is uniformly bounded,
clearly any subsequence is also uniformly bounded, so by applying Montel’s theorem to the subsequence, we
obtain a further subsequence which converges locally uniformly to some holomorphic function g on D. But
note that for every z P A, since the limit of the whole sequence limnÑ8 fnpzq exists, any subsequences which
converge pointwise at z must have the same limit. This implies in particular, since local uniform convergence
implies pointwise convergence, that fpzq “ gpzq for all z P A. Since A has a limit point in D and f and g are
both holomorphic, this implies that f “ g on D. Thus we conclude that any subsequence of fn has a further
subsequence converging locally uniformly to f , which implies that fn converges locally uniformly to f .

Problem 11. Find all holomorphic functions f : CÑ C satisfying fpz ` 1q “ fpzq and fpz ` iq “ e2πfpzq
for all z P C.

Solution. Note that expp´2πizq is one such function. Let f : C Ñ C be any entire function satisfy-
ing fpz ` 1q “ fpzq and fpz ` iq “ e2πfpzq for all z P C. Define gpzq “ fpzq expp2πizq. Then g is also an
entire function and it satisfies

gpz ` 1q “ fpz ` 1q expp2πipz ` 1qq “ fpzq expp2πizq expp2πiq “ gpzq

gpz ` iq “ fpz ` iq expp2πipz ` iqq “ e2πfpzq expp2πizq expp´2πq “ gpzq.

Thus g is a doubly periodic entire function, so it must be bounded and hence must be constant by Liouville’s
theorem. Thus we conclude that fpzq “ C expp´2πizq for some C P C, and these are all of the functions f
which satisfy the desired property.

Problem 12a. Let M P R, Ω Ď C be a bounded open set, and u : Ω Ñ R be a harmonic function.
Show that if

lim sup
zÑz0

upzq ď M

for all z0 P BΩ, then upzq ďM for all z P Ω.

Solution. Fix ε ą 0. By the limsup condition, for each z0 P BΩ, there is a radius rpz0q such that
|z ´ z0| ă rpz0q implies that upzq ďM ` ε. Then the set

ď

z0PBΩ

Bpz0, rpz0qq

is an open cover of BΩ, which is a compact set because Ω is bounded. Therefore BΩ is covered by only finitely
many of these balls. Call them B1, . . . , BN . Now the set

A “ ΩzpB1 Y . . .YBN q

is an open set on which u is harmonic, extends continuously to the boundary, and satisfies upwq ďM ` ε for
all w P BA. Thus by the maximum principle, we conclude that upzq ďM ` ε for all z P A. By construction
of A, we also know that upzq ď M ` ε for all z P ΩzA, so we have upzq ď M ` ε for all z P Ω. Since this
argument holds for any ε ą 0 we conclude that upzq ďM for all z P Ω.

Problem 12b. Show that if u is bounded from above and the above condition holds for all but finitely
many z0 P BΩ, then it still follows that upzq ďM for all z P Ω.

Solution. Since Ω is bounded, let d “ diampΩq “ supz,wPΩ |z ´ w| ă 8. Let p1, . . . , pN be the points
in BΩ for which the limsup condition above does not hold. Define the function

vpzq :“ ´ log

∣∣∣∣z ´ p1

d

∣∣∣∣´ . . .´ log

∣∣∣∣z ´ pNd

∣∣∣∣ .
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Note that v is a nonnegative harmonic function in Ω because the function

z ÞÑ

ˆ

z ´ p1

d

˙

¨ ¨ ¨

ˆ

z ´ pN
d

˙

is a nonvanishing analytic function in Ω.

Fix ε ą 0 and define fpzq “ upzq ´ εvpzq. For any z0 P BΩztp1, . . . , pNu, the limsup condition holds,
and so as in the previous problem we have a radius rpz0q such that |z ´ z0| ă rpz0q implies upzq ď M ` ε,
and since v ě 0 we also have fpzq ď M ` ε for all such z. However, for any pj , since u is bounded above
and vpzq Ñ 8 as z Ñ pj , there is also a radius rpjq such that |z ´ pj | ă rpjq implies fpzq ď M ` ε. Now
we proceed as in the previous problem. Since BΩ is compact, it can be covered by finitely many of the balls
Bpz0, rpz0qq and Bppj , rpjqq. So we obtain a smaller set A Ď Ω on which f is harmonic, extends continuously
to the boundary, and satisfies fpwq ď M ` ε on the boundary of A. So by the maximum principle and by
construction of A we have fpzq ď M ` ε for all z P Ω, i.e. upzq ď M ` ε ` εvpzq for all z P Ω. And this
argument holds for any ε ą 0, so we conclude that upzq ďM for all z P Ω.
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Problem 1. Suppose f : RÑ R is bounded, Lebesgue measurable, and

lim
hÑ0

ż 1

0

|fpx` hq ´ fpxq|

h
dx “ 0.

Show that f is a.e. constant on r0, 1s.

Solution. Let F pxq “
şx

0
fptq dt. By the Lebesgue differentiation theorem, there is a set E of measure

zero such that

lim
hÑ0

F px` hq ´ F pxq

h
“ fpxq

for all x R E. Then for any a, b R E, pick h small enough so that without loss of generality we have
a, a` h ă b, b` h, then we have

|fpaq ´ fpbq| “ lim
hÑ0

∣∣∣∣F pa` hq ´ F paqh
´
F pb` hq ´ F pbq

h

∣∣∣∣ “ lim
hÑ0

1

h

∣∣∣∣∣
ż b

a

fptq dt´

ż b`h

a`h

fptq dt

∣∣∣∣∣
ď lim

hÑ0

1

h

ż b`h

a`h

|fpt` hq ´ fptq| dt ď lim
hÑ0

1

h

ż 1

0

|fpt` hq ´ fptq| dt “ 0,

so f is constant a.e.

Problem 2. Consider the Hilbert space `2pZq. Show that the Borel σ-algebra N on `2pZq associated
to the norm topology agrees with the Borel σ-algebra W on `2pZq associated to the weak topology.

Solution. Note: I’m pretty sure this argument still works if `2pZq is replaced by any separable Hilbert
space.

It’s known that the weak topology is coarser than the norm topology, so we automatically have W Ď N .
We just need to show that any norm-open set in `2pZq is in W. Since `2pZq with the norm topology is
separable, any norm-open set is a countable union of open balls, so it suffices to show that every norm-open
ball is in W. Fix Bpx, rq “ ty P `2pZq : ||y ´ x||

2
`2 ă r2u. We can view this as a preimage f´1pr0, r2qq where

f : `2pZq Ñ R is given by

fpyq :“ ||y ´ x||
2
“ ||y||

2
` ||x||

2
´ 2 Re xy, xy “

8
ÿ

n“1

|xy, eny|2 ` ||x||2 ´ 2 Re xy, xy

where tenu is an orthonormal basis for `2pZq and we have used Parseval’s theorem. We claim that this
function is W-measurable. This is because by definition of the weak topology, the function y ÞÑ xy, zy is
weak-continuous for any z P `2pZq and therefore W-measurable. So the first term in f is a countable sum of
non-negative measurable functions, which is measurable (combination of the facts that g measurable implies
|g|2 measurable, sum of measurable functions is measurable, and pointwise limit of measurable functions
is measurable). The second term in f is a constant, which is measurable, and the third term in f is the
real part of a measurable function, again measurable. So f is a W-measurable function, and therefore
Bpx, rq “ f´1pr0, r2qq PW.

Problem 3. Given f : R2 Ñ R continuous, we define

rArf spx, yq :“
1

2π

ż π

´π

fpx` r cospθq, y ` r sinpθqqdθ

and
rMf spx, yq :“ sup

0ără1
rArf spx, yq.
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By a theorem of Borgain, there is an absolute constant C so that

||Mf ||L3pR2q ď C ||f ||L3pR2q

for all f P CcpR2q. Use this to show the following: If K Ă R2 is compact, then rArχKspx, yq Ñ 1 as r Ñ 0
at almost every point px, yq in K (with respect to Lebesgue measure).

Solution. We would like to mimic the proof of the Lebesgue differentiation theorem. This doesn’t work
directly since we are only given Borgain’s result for continuous functions, so we start by expanding this result
slightly. In what follows C will always denote an absolute constant which may change from line to line.

Claim. Let S be a bounded open subset of R2 with λpSq ă 8. Then for t ą 0 we have

λptpx, yq P R2 : rMχSspx, yq ą tuq ď C
λpSq3

t3
.

Proof. First note that the restriction of χS to a circle is Borel measurable with respect to the uniform
measure on the circle, since the restriction of an open set to a subset of R2 is open in the subspace topology.
So rMχSs is defined.

Note that χS is the characteristic function of an open set and is therefore lower semi-continuous. Thust
we may find an increasing sequence of functions fk P CcpR2q converging monotonically to χS . By replacing
fk with maxpfk, 0q, we may assume that each fk is non-negative. From the weak-type L3 estimate which
follows from Borgain’s result, we have

λptpx, yq : rMfkspx, yq ą tuq ď Ct´3 ||fk||
3
3 ď Ct´3 ||χS ||

3
3 “ Ct´3λpSq.

If rMχSspx, yq ą t, then there exists r P p0, 1q such that rArχSspx, yq ą t, and by monotone convergence,
we have rArfkspx, yq ą t for sufficiently large k. Since Mfk is an increasing sequence of functions, we can
write

tpx, yq : rMχSspx, yq ą tu “
8
ď

k“1

tpx, yq : rMfkspx, yq ą tu.

Then applying continuity from below along with the earlier weak-type estimate gives

λptpx, yq : rMχSspx, yq ą tuq ď Ct´3 ||f ||
3
3 ,

which proves the claim.

To prove the main result, we define

Sn “ tpx, yq P K : lim sup
rÑ0

|ArχKpx, yq ´ 1| ą 1

n
u.

Next we fix ε ą 0 and approximate K by a bounded open set U Ě K where λpUzKq ă ε. Note that the
stated theorem is true if we replaced K with U . For fixed r P p0, 1q and px, yq P K we have

|ArχKpx, yq ´ 1| ď |ArχKpx, yq ´ArχU px, yq|` |ArχU px, yq ´ 1s|
“ rArχUzKspx, yq ` |ArχU px, yq ´ 1s|
ď rMχUzKspx, yq ` |ArχU px, yq ´ 1s| .

As r Ñ 0 the last term tends to 0, so if px, yq lies in Sn then rMχUzKspx, yq ą 1{n. Note that UzK is open,
so the claim applies and gives

λ˚pSnq ď Cp1{nq´3λpUzKq3 ď Cn3ε3.

But ε was arbitrary, so λ˚pSnq “ λpSnq “ 0. Finally we have λp
Ť8

n“1 Snq “ 0, so

lim sup
rÑ0

|ArχKpx, yq ´ 1| “ 0
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for a.e. px, yq in K, and the main result follows.

Problem 4. Let K be a non-empty compact subset of R3. For any Borel probability measure µ on
K, define the Newtonian energy Ipµq P p0,`8s by

Ipµq :“

ż

K

ż

K

1

|x´ y|
dµpxq dµpyq

and let RK be the infimum of Ipµq over all Borel probability measures µ on K. Show that there exists a
Borel probability measure µ such that Ipµq “ RK .

Solution. Let M be the set of all Borel probability measures on K. By the Riesz representation theo-
rem, M is a subset of the unit ball in the dual space CpKq˚. Let µn be a sequence in M with Ipµnq Ñ RK .
By the Banach-Alaoglu theorem, the unit ball in CpKq˚ is weak-˚ compact, and since CpKq is separable, it
is also sequentially compact. So by passing to a subsequence if necessary, we have a measure µ in the unit
ball of CpKq˚ with µn Ñ µ in weak-˚. By applying weak-˚ convergence to the constant function 1, we see
that µ is also a probability measure on K.

Now we claim that Ipµq “ RK . We first need to show that µn b µn Ñ µb µ in weak-˚, i.e. that

ĳ

fpx, yq dµnpxq dµnpyq Ñ

ĳ

fpx, yq dµpxq dµpyq

for all f P CpK ˆKq. This is clear for all functions of the form px, yq ÞÑ gpxqhpyq with g, h P CpKq by the
weak-˚ convergence of µn to µ. Let F be the span of all functions of the above form. Then it’s easy to
check that F is dense in CpK ˆKq by the Stone-Weierstrass theorem. Thus the desired result holds for all
of CpK ˆKq. This establishes that µn b µn Ñ µb µ in weak-˚.

We want to conclude that
Ipµq “ lim

nÑ8
Ipµnq “ RK .

We would be done by the weak-˚ convergence of µn b µn to µb µ, except px, yq ÞÑ 1
|x´y| isn’t continuous on

K ˆK. However, it is lower semicontinuous, so by the portmanteau theorem, we have

lim inf
nÑ8

Ipµnq ě Ipµq.

But lim infnÑ8 Ipµnq “ RK and RK is the inf of all values of Ipµq, so also RK ď Ipµq and thus Ipµq “ RK ,
so I achieves its minimum.

Problem 5. Define a Hilbert space

H :“

"

u : DÑ R : u is harmonic and

ż

D
|upx, yq|2 dx dy ă 8

*

with inner product xf, gy “
ş

D fg dx dy.

(a) Show that f ÞÑ fxp0, 0q is a bounded linear functional on H.

(b) Compute the norm of this linear functional.

Solution (bad). We show that the norm is 2{
?
π. Since u is harmonic, ux also is. So we apply the mean

value property on a disc of radius r P p0, 1q to get

|uxp0q| “
1

πr2

∣∣∣∣∣
ż

Bp0,rq

ux dA

∣∣∣∣∣ “ 1

πr2

∣∣∣∣∣
ż

BBp0,rq

u dy

∣∣∣∣∣
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by Green’s theorem. So

|uxp0q| “
1

πr2

∣∣∣∣ż 2π

0

upr cos θ, r sin θqr cospθq dθ

∣∣∣∣
|uxp0q|2 ď

1

π2r2

ˆ
ż 2π

0

upr cos θ, r sin θq2 dθ

˙ˆ
ż 2π

0

cos2 θ

˙

by Cauchy-Schwarz

πr2 |uxp0q|2 ď

ż 2π

0

upr cos θ, r sin θq2 dθ.

Multiplying both sides by r and integrating over r P r0, 1s we get

π

4
|uxp0q|2 ď

ż

D
u2 dA,

so |uxp0q| ď 2?
π
||u||H . Finally, it’s easy to check that upx, yq “ x achieves this bound, so 2{

?
π is the

operator norm.

Alternate solution (way better). Since D is simply connected, u is the real part of an analytic function
f “ u ` iv on D. Write fpzq “

ř8

n“0 anz
n. We know this power series converges uniformly on compact

subsets of D. We have

upreiθq “
8
ÿ

n“0

Repanr
neinθq “

8
ÿ

n“0

rnpRepanq cospnθq ´ Impanq sinpnθqq.

We also know that ux “ Repf 1q, so we have uxp0q “ Repa1q. We have

ż

D
u2 dA “

ż 1

0

ż 2π

0

˜

8
ÿ

n“0

rnpRepanq cospnθq ´ Impanq sinpnθqq

¸2

r dθ dr

“

ż 1

0

r

ż 2π

0

8
ÿ

n,k“0

rnrkpRepanq cospnθq ´ Impanq sinpnθqqpRepakq cospkθq ´ Impakq sinpkθqq dθ dr.

Using the orthonormality properties of sin and cos and the fact that the power series converges uniformly
on compact sets, this is equal to

“

ż 1

0

8
ÿ

n“0

r2n`1

ż 2π

0

`

Repanq
2 cos2pnθq ` Impanq

2 sin2
pnθq

˘

dθ dr

“

ż 1

0

8
ÿ

n“0

r2n`1πpRepanq
2 ` Impanq

2q dr

ě

ż 1

0

r3πRepa1q
2 “

π

4
Repa1q

2.

Thus we see that

Repa1q
2 ď

4

π

ż

D
u2 dA,

so

uxp0q “ Repa1q ď
2
?
π
||u||H .

This shows that the operator norm is at most 2{
?
π. And by inspecting the above proof, we see that equality

holds if Repanq “ Impanq “ 0 for n ‰ 1 and Impa1q “ 0. This is achieved when fpzq “ z, i.e. upx, yq “ x, so
the operator norm is exactly 2{

?
π. Alternatively one could compute directly that upx, yq “ x achieves this

bound.
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Problem 6. Let

X :“

"

ξ ÞÑ

ż

R
eiξxfpxq dx : f P L1pRq

*

.

Show that (a) X is a subset of C0pRq, (b) X is a dense subset of C0pRq, and (c) X ‰ C0pRq.

Solution. Note that ξ ÞÑ
ş

R e
iξxfpxq is the function pfp´ξq. For the sake of a having a convenient no-

tation, we will prove each of these results for the Fourier transform. Obviously (a)-(c) will follow.

(a) Continuity follows immediately from the dominated convergence theorem, since
∣∣e´iξxfpxq∣∣ ď |fpxq| ,

which is integrable by hypothesis.

By directly calculating the integral, it is easy to see that ps lies in C0pRq when s is a sum of characteristic
functions of open intervals. The set of such functions is dense in L1pRq, so given f P L1 choose s with

||f ´ s||1 ă ε. Then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pf ´ ps
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď ||f ´ s||1 ă ε, and so

lim
|ξ|Ñ8

pfpξq ď lim
|ξ|Ñ8

spξq ` ε “ ε.

But ε was arbitrary, so the limit is 0.
Remark. One could also solve this problem by invoking the density of C8c (or even C1

c ) in L1pRq and
then applying integration by parts.

(b) We claim that C8c pRq is dense in CcpRq. To see this, fix f P CcpRq and choose M large enough so
that |fpxq| ă ε when |x| ą M. Let g be a smooth function such that |fpxq ´ gpxq| ă ε for x P
r´pM`1q,M`1s. Also let β : RÑ r0, 1s be a smooth bump function with supppβq Ď r´pM`1q,M`1s
and which takes the value 1 on r´M,M s. Then βg is smooth, and we have ||f ´ βg||8 ă 2ε.

So C8c pRq is dense in CcpRq, and in particular the space of Schwartz functions is dense in CcpRq.
The Fourier transform is a bijection on the space of Schwartz functions, so X contains all Schwartz
functions which gives a dense subset.

(c) Recall that the Fourier transform F is an injective bounded linear map from L1pRq to C0pRq. If the
Fourier transform was surjective onto C0pRq then by the open mapping theorem F´1 : C0pRq Ñ L1pRq
would be bounded.

Let h “ χr´1,1s and let hi P C
8
c pRq be a uniformly bounded sequence of functions which converges

to h in L2 (for instance, bump functions would suffice). Also let gi “ F´1phiq. Note that the gi’s
are Schwartz functions and therefore lie in L1. (Alternatively, this must be true by the hypothesis
of surjectivity.) Now h lies in L2 and is therefore the Fourier-Plancherel transform of a function g.
Since the Fourier-Plancherel transform is an L2 isometry, we have that gi Ñ g in L2. By passing to a
subsequence if necessary, we may assume that gi Ñ g pointwise almost everywhere.

On the other hand g is not in L1, otherwise its Fourier transform would be continuous. Thus by Fatou’s
lemma, limiÑ8 ||gi||1 “ 8. However this contradicts the boundedness of F´1, since we assumed that
the hi’s were uniformly bounded.

Remark. It turns out that gpxq “ sinpxq
x . However this wasn’t important to us. In fact we could have

taken h to be any bounded L2 function which doesn’t agree a.e. with a continuous function.

Problem 7. Let f : C Ñ C be an entire function such that log |f | is absolutely integrable with respect to
planar Lebesgue measure. Show that f is constant.

Solution. Suppose that f is not constant. By Liouville there exists z0 P C such that log |fpz0q| ą 1.
Recall that log |f | is subharmonic. By the mean value property we have

ż

R2

log |fpzq|dλ “

ż 8

r“0

r

ż 2π

0

log |fpz0 ` re
iθq| dθ dr ě

ż 8

r“0

2πr dr “ 8.
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Problem 8a. Let A and B be positive definite nˆ n real symmetric matrices with the property
ˇ

ˇ

ˇ

ˇBA´1x
ˇ

ˇ

ˇ

ˇ ď ||x||

for all x P Rn, where ||x|| denotes the usual Euclidean norm. Show that for each pair x, y P Rn,

z ÞÑ
@

y,BzA´zx
D

admits an analytic continuation from 0 ă z ă 1 to the whole complex plane.

Solution. Since A and B are symmetric and positive definite, we can write A “ SAΛAS
´1
A and B “

SBΛBS
´1
B where ΛA and ΛB are diagonal matrices with positive diagonal entries. Then for z P p0, 1q,

A´z “ SAΛzAS
´1
A and Bz “ SBΛzBS

´1
B , where ΛzA is simply the matrix gotten by raising each diagonal entry

to the power z. The given function is seen to be a polynomial in the zth powers of the eigenvalues of B
and the inverses of the eigenvalues of B, and therefore extends to a holomorphic function on C. (Note that
λz “ elogpλqz, which is holomorphic.)

Problem 8b. Show that
ˇ

ˇ

ˇ

ˇBθA´θx
ˇ

ˇ

ˇ

ˇ ď ||x|| for all 0 ď θ ď 1.

Solution. For x, y P Rn, let fx,ypzq be holomorphic function from part (a).
When Repzq “ 0 we note that the eigenvalues of Bz and A´z have norm 1. These matrices are symmetric,

so they each have operator norm 1, which implies that

|fx,ypzq| “
∣∣@y,BzA´zxD∣∣ ď ||y|| ˇˇˇˇBzA´zxˇˇˇˇ ď ||y|| ||x|| .

When Repzq “ 1, write z “ 1` bi. Then
ˇ

ˇ

ˇ

ˇBzA´z
ˇ

ˇ

ˇ

ˇ

op
“
ˇ

ˇ

ˇ

ˇBizBA´1A´iz
ˇ

ˇ

ˇ

ˇ

op
ď
ˇ

ˇ

ˇ

ˇBiz
ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇBA´1
ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇA´iz
ˇ

ˇ

ˇ

ˇ

op
ď 1,

and so
|fx,ypzq| ď ||y||

ˇ

ˇ

ˇ

ˇBzA´zx
ˇ

ˇ

ˇ

ˇ ď ||y|| ||x|| .

Also note that fx,y is bounded on the strip S “ tz : Repzq P r0, 1su, since each function λz is bounded
on the strip (recall the solution to part (a)). By the Hadamard three lines theorem, we conclude that fx,y is
bounded by ||x|| ||y|| everywhere in S. (Alternatively one can mimic the proof of this theorem by applying
the Phragmen-Lindelof method.)

Finally for θ P r0, 1s we have
ˇ

ˇ

ˇ

ˇBθA´θx
ˇ

ˇ

ˇ

ˇ “ sup
||y||“1

|fx,ypθq| ď ||x|| .

Problem 9. Let P pzq be a non-constant polynomial, all of whose zeros lie in a half plane tz P C : Repzq ă σu.
Show that all zeros of P 1pzq also lie in the same half plane.

Solution. Write P pzq “ pz ´ a1q ¨ ¨ ¨ pz ´ anq. Then we have

P 1pzq

P pzq
“

1

z ´ a1
` . . .`

1

z ´ an
.

Suppose that P 1pzq “ 0. If P pzq “ 0 also, then z is obviously in the same half plane, so assume otherwise.
Then in particular we have

0 “ Re

ˆ

1

z ´ a1

˙

` . . .` Re

ˆ

1

z ´ an

˙

“
Repzq ´ Repa1q

|z ´ a1|
2

` . . .`
Repzq ´ Repanq

|z ´ an|2
.
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So

Repzq
n
ÿ

j“1

1

|z ´ aj |2
“

n
ÿ

j“1

Repajq

|z ´ aj |2
ă σ

n
ÿ

j“1

1

|z ´ aj |2
,

so Repzq ă σ.

Problem 10. Let f : C Ñ C be a non-constant entire function. Without using either of the Picard
theorems, show that there exist arbitrarily large complex numbers z for which fpzq is a positive real.

Solution. Fix a closed ball Br centered at 0 of radius r so that fpzq P CzRě0 for |z| ą r. By com-
pactness, |fpzq| attains a maximum value R on Br. Then fpzq ´ R is a holomorphic function which avoids
the poitive real axis.

Let φ : CzRě0 Ñ D be a conformal equivalence of the complex plane with the positive real axis removed,
and the open unit disc. Such a map exists by the Riemann mapping theorem. For the sake of being concrete
we may take

φpzq “

?
z ´ i

?
z ` i

where
?
eiθ “ eiθ{2 for θ P r0, 2πq.

The map z ÞÑ φpfpzq´Rq is holomorphic and bounded, and therefore constant by Liouville. So for some
constant C, we have fpzq “ φ´1pCq `R. We conclude that f is constant.

Problem 11. Let fpzq “ ´πz cotpπzq be a meromorphic function on C.

(a) Locate all poles of f and determine their residues.

(b) Show that for each n ě 1 the coefficient of z2n in the Taylor expansion of fpzq about z “ 0 coincides
with

an “

8
ÿ

k“1

2

k2n
.

Solution. (a) We have

´πz cotpπzq “
´πz cospπzq

sinpπzq
.

From this representation it is clear that f has simple poles at every nonzero integer. (because sinpπzq has a
simple pole at every integer). So to calculate the residue at z “ n we have

Respf, z “ nq “ lim
zÑn

´πzpz ´ nq cospπzq

sinpπzq
“ lim

zÑn
´z ¨ cospπzq ¨

πpz ´ nq

sinpπpz ´ nqq
“ p´1qn`1n.

(b) Here we use the other standard representation

π cotpπzq “
8
ÿ

k“´8

1

z ´ k
“

1

z
`

8
ÿ

k“1

2z

z2 ´ k2
,

so we have

fpzq “ ´1´
8
ÿ

k“1

2z2

z2 ´ k2
.

Write fpzq “ gpz2q where gpzq “ ´1 ´
ř8

k“1
2z
z´k2 . Note that g is holomorphic except at the points where

it equals 8 because the series defining it converges uniformly on compact sets. So the coefficient of z2n in
the power series for f is the same as the coefficient of zn in the power series for g. It now suffices to show
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that gpnqp0q “ n! ¨
ř8

k“1
2
k2n . Write gpzq “ ´1´ 2zhpzq, where hpzq “

ř8

k“1
1

z´k2 . Again, h is holomorphic
except for at the points where it blows up. Therefore we have

gpnqp0q “ ´2
n
ÿ

j“0

ˆ

n

j

˙

pz ÞÑ zqpjqp0qhpn´jqp0q “ ´2hpn´1qp0q.

Since the series defining h converges uniformly on compact sets, it can be differentiated term-by-term, so
it’s easy to see by induction that

hpnqpzq “
8
ÿ

k“1

p´1qnn!

pz ´ k2qn`1
.

Therefore

gpnqp0q “ ´2hpn´1qp0q “ n!
8
ÿ

k“1

2

k2n
.

Problem 12. Let f : HÑ H be a holomorphic function obeying

lim
yÑ8

yfpiyq “ i and |fpzq| ď
1

Impzq
for all z P H.

(a) For ε ą 0, write gεpxq :“ 1
π Im fpx` iεq. Show that

fpz ` iεq “

ż

R

gεpxq

x´ z
dx.

(b) Show that there exists a Borel probability measure µ on R such that

fpzq “

ż

R

dµpxq

x´ z
dx.

Solution.
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10 Fall 2013

Problem 1. Let U and V be open and connected sets in the complex plane C, and f : U Ñ C be a
holomorphic function with fpUq Ď V. Suppose that f is a proper map from U into V , i.e., f´1pKq Ď U is
compact, whenver K Ď V is compact. Then f is surjective.

Solution. We use a connectedness argument. First note that f can’t be constant on U , otherwise f
isn’t proper. Then by the open mapping theorem, fpUq is open.

We claim that V zfpUq is also open. Fix v P V zfpUq, and let B1 Ď B2 Ď . . . Ď V be a seqence of nested
closed balls around v such that

Ş

iPNBi “ v. We have

H “ f´1ptvuq “ f´1

˜

č

iPN
Bi

¸

“
č

iPN
f´1pBiq.

By properness, each f´1pBiq is compact. In general, a nested sequence of nonempty compact sets has
nontrivial intersection1 It follows that one of the sets f´1pBiq must be empty. The interior of Bi is an open
neighborhood of v lying in V zfpUq. But v P V zfpUq was arbitrary, so V zfpUq is open.

Since fpUq is nonempty, and V is connected we must have V “ fpUq.

Problem 2. Show that there is no function f that is holomorphic near 0 P C and satisfies

fp1{n2q “
n2 ´ 1

n5

for all large n P N.

Solution. Since f is holomorphic near 0, there is an r ą 0 such that f has a power series expansion

fpzq “
8
ÿ

j“0

ajz
j

valid in Bp0, rq. If f is identically zero then it obviously does not satisfy the condition, so assume it isn’t.
Then let k be the smallest j for which aj ‰ 0, so we can write

fpzq “ xk
8
ÿ

j“k

ajz
j´k.

When n is big enough so that 1{n2 ă r, we have

fp1{n2q “
1

n2k

8
ÿ

j“1

aj
n2pj´kq

.

We have the inequalities

|fp1{n2q| ď
1

n2k

˜

|ak| `
1

n2

∣∣∣∣∣ 8
ÿ

j“k`1

aj
n2pj´k´1q

∣∣∣∣∣
¸

ď
p3{2q|ak|

n2k

|fp1{n2q| ě
1

n2k

˜

|ak| ´
1

n2

∣∣∣∣∣ 8
ÿ

j“k`1

aj
n2pj´k´1q

∣∣∣∣∣
¸

ě
p1{2q|ak|

n2k

for sufficiently large n. Thus if the condition fp1{n2q “ pn2 ´ 1q{n5 is satisfied, we would have

p1{2q|ak|

n2k
ď

n2 ´ 1

n5
ď
p3{2q|ak|

n2k

1To see this, consider a sequence consisting of a point from each set.
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for all sufficiently large n. But since pn2´ 1q{n5 is asymptotic to n´3 as nÑ8, it can’t be Θpn´2kq for any
integer k, and so there is no integer k for which this is true. So f can’t satisfy the condition.

Alternate Solution. By setting x “ 1{n, we have fpx2q “ x3 ´ x5 for all x of the form 1{n where
n P N is large enough. We also have fp0q “ 0 by continuity. Thus fpx2q is a holomorphic function on a
neighborhood of 0 which agrees with x3 ´ x5 on a set with a limit point. So fpx2q “ x3 ´ x5 everywhere on
a neighborhood of 0. Then for |z| small enough we must have

z3 ´ z5 “ fpz2q “ fpp´zq2q “ p´zq3 ´ p´zq5,

which is false for z ‰ 0.

Problem 3. Does there exist a holomorphic function f : DÑ C such that

lim
nÑ8

|fpznq| “ `8

for all sequences tznu in D with limnÑ8 |zn| “ 1?

Solution. There does not exist such a function. Roughly, we would like to apply the minimum princi-
ple on the disk. Unfortunately f may take on the value 0 so this doesn’t work directly. We can rectify the
situation as follows.

By hypothesis, f cannot have a sequence of zeros approaching the boundary of D. Moreover the zeros of
f cannot have a limit point in the interior of D, otherwise f would be identically 0. Moreover each zero of f
occurs with finite multiplicity. So by compactness, f has only finitely many zeros α1, . . . aαn in D counting
multiplicity. Let ppzq “ pz ´ α1q . . . pz ´ αnq. Then ppzq{fpzq has removable singularities at the zeros of f ,
and hence may be regarded as an analytic function on D. By hypothesis, ppzq{fpzq extends continuously to
take the value 0 on the boundary of D. But then by the maximum principle, ppzq{fpzq is identically 0, which
is a contradiction.

Problem 4. Let u be a non-negative continuous function on Dzt0u that is subharmonic on Dzt0u. Suppose
that u|BD “ 0 and

lim
rÑ0`

1

r2 logp1{rq

ż

tzPC:0ă|z|ăru

upzq dλpzq “ 0,

where integration is with respect to Lebesgue measure λ on C. Show that then u ” 0.

Solution. First we want to show that upzq “ oplog |1{z|q as |z| Ñ 0. Fix ε ă 0. By the hypothesis,
let |z| be small enough so that

ż

tzPC:0ă|w|ă3|z|{2u

upwq dλpwq ă ε|z|2 log |1{z|.

Then by the mean value property for subharmonic functions we have

upzq ď
1

πp|z|{2q2

ż

twPC:|w´z|ăp1{2q|z|u

upwq dλpwq ď
4π

|z|2

ż

twPC:0ă|w|ă3|z|{2u

upwq dλpwq ă
4πε|z|2 log |1{z|

|z|2
,

which shows that upzq “ oplog |1{z|q as |z| Ñ 0.

Now let α ą 0 and note that the function fpzq :“ α log |1{z| is harmonic on Dzt0u. Thus we know that
u ´ f does not have a maximum value inside Dzt0u. Notice that since upzq “ oplog |1{z|q as |z| Ñ 0,
upzq ´ fpzq Ñ ´8 as |z| Ñ 0. Thus there exists an r ą 0 such that upzq ´ fpzq ď 0 for |z| ď r. Now
on the compact set S :“ tz P C : r ď |z| ď 1u, u ´ f is continuous so it achieves a maximum. But the
maximum must be achieved on the boundary of f because u ´ f doesn’t have any maxima inside Dzt0u.
Since u´ f “ 0 on BD and u´ f ď 0 on |z| “ r by choice of r, this implies that u´ f ď 0 in all of Dzt0u.
So upzq ´ α log |1{z| ď 0 for all z P Dzt0u, and since α is arbitrary this implies upzq ď 0 for all z P Dzt0u,
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which since u ě 0 by hypothesis gives that u is identically zero.

Problem 5. Let tfnu be a sequence of holomorphic functions on D and suppose that

ż

D
|fnpzq| dλpzq ď 1

for all n P N. Show that then there exists a subsequence tfnku that converges uniformly on all compact
subsets of D.

Solution. We would like to show that the functions fn form a normal family. Since each fn is holo-
morphic, this is equivalent to verifying that the fn’s are uniformly bounded on the closed ball Br “ Bp0, rq
for each r P p0, 1q. (Note that each compact subset of D is contained in some such ball.) Fix z0 P Br and let
U “ Bpz0, 1´ |z0|q. Applying the mean value property we have

1 ě

ż

U

|fnpzq|dλpzq ě

ˇ

ˇ

ˇ

ˇ

ż

U

fnpzqdλ

ˇ

ˇ

ˇ

ˇ

ě πp1´ |z0|q
2|fpz0q| ě πp1´ rq2|fpz0q|.

Therefore |fpz0q| ď
1

πp1´rq2 for all z0 P Br, and so f is uniformly bounded on compact sets.

Problem 6. Let U Ď C be a bounded open set with 0 P U , and f : U Ñ C be holomorphic with
fpUq Ď U and fp0q “ 0. Show that |f 1p0q| ď 1. Hint: Consider the iterates fn “ f ˝ ¨ ¨ ¨ ˝ f

loooomoooon

n times

of f .

Solution. First we prove by induction that pfnq1p0q “ pf 1p0qqn. The case n “ 1 is obviously true. Supposing
pfn´1q1p0q “ pf 1p0qqn´1, since fp0q “ 0 we have

pfnq1p0q “ pfn´1 ˝ fq1p0q “ pfn´1q1pfp0qqf 1p0q “ pf 1p0qqn,

so the induction is finished. Note that since U is a bounded set and fpUq Ď U , also fnpUq Ď U for all n
and there is an M such that |fnpzq| ď M for all z P U and all n. Since U is open, let R ą 0 be such that
Bp0, Rq Ď U . Then applying the Cauchy estimate to fn, we get

|f 1p0q|n “ |pfnq1p0q| ď
1

R
sup
|z|“R

|fnpzq| ď
M

R

for all n. If |f 1p0q| ą 1 this would be impossible because |f 1p0q|n would tend to infinity as n Ñ 8, so
|f 1p0q| ď 1.

Problem 7. Show that there is a dense set of functions f P L2pr0, 1sq such that x ÞÑ x´1{2fpxq P L1pr0, 1sq

and
ş1

0
x´1{2fpxq dx “ 0.

Solution. Let S :“ tf P L2pr0, 1sq : x ÞÑ x´1{2fpxq P L1pr0, 1sq and
ş1

0
x´1{2fpxq dx “ 0u. Since the

set of continuous functions with compact support properly contained in r0, 1s is dense in L2pr0, 1sq, it suffices
to show that S is dense in that set. Let g be a function which is continuous on rδ, 1s and identically zero on
r0, δs for some fixed δ ą 0. Fix ε ą 0. Define

I :“

ż 1

δ

x´1{2gpxq dx “ ă 8

because x´1{2 is bounded on rδ, 1s. Now define the function fε by

fεpxq :“

$

’

&

’

%

gpxq x P rδ, 1s
´Iε
δε x

´1{2`ε x P p0, δq

0 x “ 0

.
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We calculate

ż 1

0

x´1{2fεpxq dx “
´Iε

δε

ż δ

0

x´1`ε dx` I “ 0

and

||fε ´ g||
2
2 “

ż δ

0

|fεpxq ´ gpxq|2 dx ď 4

ż δ

0

|fεpxq|
2 dx

ă
4I2ε2

δ2ε

ż δ

0

x´1`2ε dx “
4I2ε2

δ2ε
¨
δ2ε

2ε
“ 2I2ε,

which can be made as small as desired. So S is dense in L2pr0, 1sq.

Problem 8(a). Compute

lim
kÑ8

ż k

0

xn
´

1´
x

k

¯k

dx

where n P N.

Solution. Define the functions fkpxq :“ xnp1 ´ x{kqk ¨ χr0,ks. For each x P r0,8q, as soon as k ě x

we have fkpxq “ xnp1´ x{kqk, so we see that fkpxq Ñ xne´x pointwise on r0,8q. Also note that for each k,
fkpxq ě 0 for all x P r0,8q because p1 ´ x{kq ě 0 for x P r0, ks and fkpxq “ 0 for x ą k. We want to show
that fkpxq ď fk`1pxq for all x so that we can use the Monotone Convergence Theorem. By the AM-GM
inequality, we have

ˆ

1 ¨
´

1´
x

k

¯k
˙1{pk`1q

ď
1` k

`

1´ x
k

˘

k ` 1
“

1` k ´ x

k ` 1
“ 1´

x

k ` 1
,

so p1´x{kqk ď p1´x{pk` 1qqk`1. This establishes that fk ď fk`1. Since xne´x is integrable on r0,8q, the
Monotone Convergence Theorem gives

lim
kÑ8

ż k

0

xn
´

1´
x

k

¯k

dx “

ż 8

0

fkpxq dx “

ż 8

0

xne´x dx “ n!

Problem 8(b). Compute

lim
kÑ8

ż 8

0

´

1`
x

k

¯´k

cospx{kq dx.

Solution. For each k ě 2 define fkpxq :“ p1`px{kqq´k cospx{kq. For a fixed x P r0,8q, we have cospx{kq Ñ 1
as k Ñ8 and p1` px{kqq´k Ñ e´x as k Ñ8. Thus fkpxq converges pointwise to e´x on r0,8q. Using the
same AM-GM inequality argument as in the problem above, we see

ˆ

1 ¨
´

1`
x

k

¯k
˙1{pk`1q

ď
1` k

`

1` x
k

˘

k ` 1
“

k ` 1` x

k ` 1
“ 1`

x

k ` 1
,

which establishes p1` x{kqk ď p1` x{pk ` 1qqk`1. Thus fkpxq ě fk`1pxq for all x P r0,8q. So we have the
estimate

|fkpxq| ď
´

1`
x

k

¯´k

ď
1

p1` x{2q2

which is integrable on r0,8q, for all k ě 2. Thus by the Dominated Convergence Theorem we have

lim
kÑ8

ż 8

0

´

1`
x

k

¯´k

cospx{kq dx “

ż 8

0

e´x “ 1.
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Note. Alternate way of showing that Dominated Convergence applies: we just need to show that 0 ď
p1 ´ x{kqk ď e´x for all k and all x P r0, ks. Equivalent, we want k logp1 ´ x{kq ď ´x. Expanding
t ÞÑ logp1´ tq in a power series around t “ 0 gives this.

Problem 9. Let X be a Banach space, Y be a normed linear space, and B : X ˆ Y Ñ R be a bilin-
ear function. Suppose that for each x P X there exists a constant Cx ě 0 such that |Bpx, yq| ď Cx||y|| for
all y P Y , and for each y P Y there exists Cy ě 0 such that |Bpx, yq| ď Cy||x|| for all x P X.

Show that then there exists a constant C ě 0 such that |Bpx, yq| ď C||x||||y|| for all x P X and all y P Y .

Solution. For each y P Y , define the function Ty : X Ñ R by Typxq “ Bpx, yq. Since B is bilinear,
Ty is a linear functional on X. By hypothesis, for each y we have |Typxq| “ |Bpx, yq| ď Cy||x||, so Ty is
actually a bounded linear functional. Let F “ tTy : ||y|| “ 1u. This is a family of bounded linear functionals
on X, and for each x P X we have by the other hypothesis

sup
||y||“1

|Typxq| “ sup
||y||“1

|Bpx, yq| ď Cx ă 8.

Thus sinceX is a Banach space, we can apply the uniform boundedness principle to conclude that sup||y||“1 ||Ty|| ă
8. This means that there is a C ě 0 such that ||Ty|| ď C for any ||y|| “ 1, which means that |Typxq| “
|Bpx, yq| ď C||x|| for any x P X and any ||y|| “ 1. Then by linearity in the second variable we get that
|Bpx, yq| ď C||x||||y|| for any x P X, y P Y .

Problem 10a. Let f P L2pRq and define hpxq “
ş

R fpx ´ yqfpyq dy for x P R. Show that then there
exists a function g P L1pRq such that

hpξq “

ż

R
e´iξxgpxq dx

for ξ P R, i.e. h is the Fourier transform of a function in L1pRq.

Solution. We are motivated by the fact that if g were such a function, then we would have Fpgq “
f ˚ f “ FpF´1pfqq ˚ FpF´1pfqq “ FpF´1pfq2q, so g “ F´1pfq2.

Let F denote the Fourier-Plancherel transform. Recall it is an isometric isomorphism L2 Ñ L2. Given
f P L2, define g :“ F´1pfq2. It’s clear that g P L1. Let p̈ denote the regular Fourier transform L1 Ñ L8.
Recall that p̈ and Fp¨q agree on L1 X L2. We verify

pg “ {F´1pfqF´1pfq “ FpF´1pfqq ˚ FpF´1pfqq “ f ˚ f.

In the previous line we used the identity pab “ Fpaq ˚Fpbq for a, b P L2. Here is a proof of it (not sure if this
would be required on the qual or not):
We know the identity holds for Schwartz functions (this follows from basic properties of the Fourier transform
and a lot of Fubini’s theorem). Let an, bn be Schwartz functions with an Ñ a and bn Ñ b in L2. We know

that zanbn “ Fpanq˚Fpbnq for each n, so it suffices to show that zanbn Ñ pab and Fpanq˚Fpbnq Ñ Fpaq˚Fpbq
in L8. We have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

zanbn ´ pab
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L8
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

{anbn ´ ab
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L8
ď ||anbn ´ ab||L1 ď ||pan ´ aqb||L1 ` ||pbn ´ bqa||L1

ď ||an ´ a||L2 ||b||L2 ` ||bn ´ b||L2 ||a||L2 Ñ 0

||Fpanq ˚ Fpbnq ´ Fpaq ˚ Fpbq||L8 ď ||Fpan ´ aq ˚ Fpbq||L8 ` ||Fpbn ´ bq ˚ Fpaq||L8
ď ||Fpan ´ aq||L2 ||Fpbq||L2 ` ||Fpbn ´ bq||L2 ||Fpaq||L2

“ ||an ´ a||L2 ||b||L2 ` ||bn ´ b||L2 ||a||L2 Ñ 0.
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Problem 10b. Conversely, show that if g P L1pRq, then there is a function f P L2pRq such that the
Fourier transform of g is given by x ÞÑ hpxq :“

ş

R fpx´ yqfpyq dy.

Solution. Using a similar motivating argument as in part (a), we see that we want to set f “ F´1p
a

qgq
(recall that qgpxq :“ gp´xq and that for Schwartz functions, F2psq “ qs). This is a little annoying because
a

qg isn’t even necessarily defined. But in general, for measurable functions h : RÑ C, we can define
a

hpxq
to be the square root defined by removing the positive real axis if hpxq is not a positive real, and define it
to be the positive real square root if hpxq is a positive real. The representation

?
h “ sqrt1ph ¨ χtx:hpxqRR`uq ` sqrt2ph ¨ χtx:hpxqPR`uq

where sqrt1 is the branch cut square root and sqrt2 is the positive real square root immediately shows that
the square root defined this way is measurable, and it’s clear that

?
h P L2 if and only if h P L1. So the

definition f :“ F´1p
a

qgq P L2 makes sense. Again, we just verify

f ˚ f “ F´1p
a

qgq ˚ F´1p
a

qgq “ Fpqqgq “ Fpgq.

Here we have used the identity F´1paq ˚ F´1pbq “ Fp qabq for a, b P L2. This is proven using a similar
argument as for the corresponding identity in part (a), recalling that F´1 “ F3 for Schwartz functions.

Problem 11. Consider the space Cpr0, 1sq of real-valued continuous functions on the unit interval r0, 1s.

We denote by ||f ||8 :“ supxPr0,1s |fpxq| the supremum norm and by ||f ||2 :“
´

ş1

0
|fpxq|2

¯1{2

the L2-norm of

a function f P Cpr0, 1sq.
Let S be a subspace of Cpr0, 1sq. Show that if there exists a constant K ě 0 such that ||f ||8 ď K ||f ||2

for all f P S, then S is finite-dimensional.

Solution. Let S denote the closure of S with respect to the L2 norm. It obviously suffices to show
that S is finite-dimensional. First we show that S is still contained in Cpr0, 1sq. Suppose f P S, then there is
a sequence fn P S with ||fn ´ f ||2 Ñ 0 as nÑ8. For any n,m, we have ||fn ´ fm||8 ď K ||fn ´ fm||2, and
since tfnu converges in L2, it is also Cauchy in L2, so by the above inequality it is also a Cauchy sequence
in Cpr0, 1sq. Since Cpr0, 1sq is complete, there is some g P Cpr0, 1sq with ||fn ´ g||8 Ñ 0 as n Ñ 8. Note
that since ||h||2 ď ||h||8 for any h P Cpr0, 1sq, we have

||g ´ f ||2 ď ||g ´ fn||2 ` ||fn ´ f ||2 ď ||g ´ fn||8 ` ||fn ´ f ||2 Ñ 0

as nÑ8. Thus ||g ´ f ||2 “ 0, so f “ g in L2, hence f is continuous. Thus S Ď Cpr0, 1sq.

For each x P r0, 1s, define the map between normed vector spaces φx : pS, ||¨||2q Ñ R by f ÞÑ fpxq.
This is clearly a linear functional on the space S. For any f P S, we have

|φxpfq| “ |fpxq| ď ||f ||8 ď K ||f ||2 ,

so in fact φx is a bounded linear functional on S. Since S is a closed subspace of the Hilbert space L2pr0, 1sq,
it is also a Hilbert space, and thus by the Riesz representation theorem for each x there exists some gx P S
such that fpxq “ φxpfq “ xf, gxy for all f P S. Note also that for each x

||gx||
2
2 “ | xgx, gxy | “ |gxpxq| ď ||gx||8 ď K ||gx||2 ,

so ||gx||2 ď K.

Now let tf1, . . . , fNu be any linearly independent set in S. By applying the Gram-Schmidt process if
necessary we may assume that it is an orthonormal set. Then by Bessel’s inequality, we have for each x that

N
ÿ

j“1

|fjpxq|
2 “

N
ÿ

j“1

| xfj , gxy |
2 ď ||gx||

2
2 ď K2.
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Then integrating both sides from 0 to 1 we get

K2 ě

N
ÿ

j“1

ż 1

0

|fjpxq|
2 dx “

N
ÿ

j“1

||fj ||
2
2 “ N.

This shows that a linearly independent set in S can have at most K2 elements and thus dimpSq ď K2 ă 8.

Problem 12(a). Let f : r0, 1s Ñ R be a continuous function that is absolutely continuous on each in-
terval rε, 1s with 0 ă ε ď 1. Show that f is not necessarily absolutely continuous on r0, 1s.

Solution. Let fpxq “ x sinp1{xq for x ą 0 and fp0q “ 0. For any x ą 0, f is differentiable and

f 1pxq “ sinp1{xq ´
cosp1{xq

x
.

So for a fixed ε ą 0 and any x P rε, 1s, we have

|f 1pxq| ď |sinp1{xq| `

∣∣∣∣cosp1{xq

x

∣∣∣∣ ď 1`
1

ε
.

Thus f 1 is bounded on rε, 1s, so f is Lipschitz and thus f is absolutely continuous on rε, 1s.

Let xn “ 1{2πn and yn “ 1{pπ ` 2πnq. Note that we have

|xn ´ yn| “

∣∣∣∣ π

4π2n2 ` 2π2n

∣∣∣∣ ă 1

n2

|fpxnq ´ fpynq| “ |xn ` yn| “
∣∣∣∣ π ` 4πn

4π2n2 ` 2π2n

∣∣∣∣ .
In particular,

ř8

n“1 |xn ´ yn| ă 8 and
ř8

n“1 |fpxnq ´ fpynq| “ 8. Suppose that f were absolutely con-

tinuous on r0, 1s. Then pick ε “ 1 and let δ be such that for any N,M ,
řM
n“N |xn ´ yn| ă δ implies

řM
n“N |fpxnq ´ fpynq| ă 1. But by the convergence and divergence of the above series, we can pick an N

such that
ř8

n“N |xn ´ yn| ă δ and then we can pick an M such that
řM
n“N |fpxnq ´ fpynq| ą 1, which is a

contradiction. Thus f is not absolutely continuous on r0, 1s.

Problem 12(b). Show that if f is of bounded variation on r0, 1s, then f is absolutely continuous on
r0, 1s.

Solution. Let TVra,bs denote the total variation of f on the interval ra, bs. Since f is continuous and
of bounded variation on r0, 1s, we can show that TVr0,xs is a continuous function of x. Fix ε ą 0. Since f is
of bounded variation, pick a partition t0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1u such that

n
ÿ

j“1

|fptjq ´ fptj´1q| ą TVr0,1s ´ ε.

Since f is continuous, we can pick an h P p0, t1q such that |fphq ´ fp0q| ă ε. By adding h into the original
partition, the variation can only increase. Furthermore, th, t1, . . . , tnu is a partition of rh, 1s, so we get

ε` TVrh,1s ą |fphq ´ fp0q| ` |fpt1q ´ fphq| `
n
ÿ

j“2

|fptjq ´ fptj´1q| ą TVr0,1s ´ ε,

which implies TVr0,hs “ TVr0,1s ´ TVrh,1s ă 2ε. Since TV r0, xs is an increasing function, this shows that it
is continuous at 0.
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Now we want to show that f is absolutely continuous on r0, 1s. Fix ε ą 0 and let h ą 0 be such that
TVr0,hs ă ε. By hypothesis, f is absolutely continuous on rh, 1s, so let δ ą 0 be as in the definition of
absolute continuity on rh, 1s. Let a1 ă b1 ď a2 ă ¨ ¨ ¨ ď an ă bn be such that

řn
k“1 bk ´ ak ă δ. By dividing

one of the intervals into two subintervals, the variation can only increase, so without loss of generality we
may assume that h R pak, bkq for any k. Let ` be the index such that b` ď h ď a``1. Since ta1, b1, . . . , a`, b`u
is a partition of r0, hs, by the choice of h we have

ÿ̀

j“1

|fpbjq ´ fpajq| ď TVr0,hs ă ε.

By absolute continuity on rh, 1s, we have

n
ÿ

j“``1

|fpbjq ´ fpajq| ă ε

and hence
n
ÿ

j“1

|fpbjq ´ fpajq| ă 2ε,

which establishes that f is absolutely continuous on r0, 1s.
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11 Spring 2014

Problem 1. Let pX,A, µq be a σ-finite measure space. For each t P R let et be the characteristic
function of the interval pt,8q. Prove that if f, g : X Ñ R are A-measurable, then ||f ´ g||L1pXq “
ş

R ||et ˝ f ´ et ˝ g||L1pXq dt.

Solution. We have
ż

R
||et ˝ f ´ et ˝ g||L1 dt “

ż

R

ˆ
ż

R
|et ˝ fpxq ´ et ˝ gpxq|dx

˙

dt

“

ż

R

ˆ
ż

R
|et ˝ fpxq ´ et ˝ gpxq|dt

˙

dx,

where we are justified in switching the order of integration by Tonelli’s theorem since µ is σ-finite. Now
observe that |et ˝ fpxq ´ et ˝ gpxq| is equal to 1 if either fpxq ă t ď gpxq or gpxq ă t ď fpxq and 0 otherwise.
Thus the inner integral evaluates to |fpxq ´ gpxq|, which gives the desired result.

Problem 2. Let f P L1pR, dxq and β P p0, 1q. Prove that

ż

R

|fpxq|

|x´ a|β
dx ă 8

for (Lebesgue) a.e. a P R.

Solution. Write F paq “
ş

R
|fpxq|
|x´a|β

dx. We would be done if we could show that
ş

R F paqda ă 8. Unfor-

tunately this isn’t true. However it is enough to show that
ş

R upaqF paqda ă 8 for some strictly positive
u.

We take upaq “ minpa´2, 1q, with the convention that up0q “ 1. By Tonelli’s theorem, we write

ż

R
upaqF paqda “

ż

R
upaq

ˆ
ż

R

|fpxq|

|x´ a|β
dx

˙

da

“

ż

R
|fpxq|

ˆ
ż

R

upaq

|a´ x|β
da

˙

dx.

Let I be the interval rx´ 1, x` 1s. We bound the inner integral as follows:

ż

R

upaq

|a´ x|β
da “

ż

I

upaq

|a´ x|β
da`

ż

RzI

upaq

|a´ x|β
da

ď

ż

I

1

|a´ x|β
da`

ż

RzI
upaqda

ď

ż

I

1

|a´ x|β
da`

ż

R
upaqda

“

ż

r´1,1s

1

|a|β
da`

ż

R
upaqda,

where we applied a linear change of variables in the last step. But β P p0, 1q so the first integral is finite,
and it’s clear the second integral integral is finite. So there is a constant C, independent of x such that
ş

R
upaq
|a´x|β

ă C. Returning to the original integral, we have

ż

R
upaqF paqda ď

ż

R
C|fpxq|dx “ C ||f ||L1 ,

which is finite by hypothesis. It follows that F paq ă 8 for a.e. a P R.
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Problem 3.1. Let ra, bs be a finite interval and let f : ra, bs Ñ R be a bounded Borel measurable function.
Prove that tx P ra, bs : f is continuous at xu is Borel measurable.

Solution. Let

En :“ tx P ra, bs : there exists a δ ą 0 such that |fpaq ´ fpbq| ă 1{n for any a, b P px´ δ, x` δqu.

Note that f is continuous at x if and only if x P
Ş8

n“1En. So to show the set of continuities of f is Borel
it suffices to show that each En is an open set. Let x P En and let δ be as in the definition of En. We
show that px ´ δ{2, x ` δ{2q Ď En. Indeed, if |y ´ x| ă δ{2, then for any a, b P py ´ δ{2, y ` δ{2q we have
|a´ x|, |b´ x| ă δ, so |fpaq ´ fpbq| ă 1{n. Thus y P En with the choice δ{2, so En is open.

Problem 3.2. Prove that f is Riemann integrable if and only if it is continuous almost everywhere.

Solution. Let I be the upper Riemann integral of f and I be the lower Riemann integral of f . We
know that we can find a sequence of nested partitions P1 Ď P2 Ď . . . of ra, bs such that the mesh size of
Pn tends to 0 as n Ñ 8 and limnÑ8 Upf, Pnq “ I and limnÑ8 Lpf, Pnq “ I. Denote by Ek,n the kth
subinterval of the partition Pn and let mk,n and Mk,n be the infimum and supremum respectively of f on
Ek,n. Define the functions Un and Ln by

Ln :“
ÿ

k

mk,nχEk,n

Un :“
ÿ

k

Mk,nχEk,n .

By construction we have
şb

a
Un “ Upf, Pnq and

şb

a
Ln “ Lpf, Pnq. Also, since the partitions are nested, we

have
L1 ď L2 ď . . . ď f ď . . . ď U2 ď U1.

Since tUnu and tLnu are both monotone, they converge pointwise to functions U and L respectively such
that L ď f ď U . By applying the Dominated Convergence Theorem to both Ln and Un with U1 as the

dominating function, we see that
şb

a
L “ I and

şb

a
U “ I. Now we have that f is Riemann intergrable if

and only if I “ I, which happens if and only if
şb

a
L “

şb

a
U , which since L ď U happens if and only if

L “ U almost everywhere, and since L ď f ď U this happens if and only if Lpxq “ fpxq “ Upxq almost
everywhere. Note that the set of x which appear as a partition point of some Pn is at most countable, and
thus has measure zero and can be ignored. For other x, the statement that Lpxq “ fpxq “ Upxq is exactly
the statement that f is continuous at x (because the mesh size of the partition tends to 0). Thus we conclude
that f is Riemann integrable if and only if f is continuous almost everywhere.

Problem 4a. Consider a sequence tanu Ď r0, 1s. For f P Cpr0, 1sq, let us denote

φpfq “
8
ÿ

n“1

2´nfpanq.

Prove that there is no g P L1pr0, 1sq such that φpfq “
ş

fpxqgpxq dx is true for all f P Cpr0, 1sq.

Solution. Suppose there was such a g. Let fk be the function which is zero outside ra1 ´ 1{k, a1 ` 1{ks,
equal to 1 at a1, and linear in between (the graph is a triangle of height 1 and width 2{k centered at a1).
Then for each k we have φpfkq ě 1{2. But we also have fk Ñ 0 pointwise almost everywhere and |fk| ď 1,

so by the dominated convergence theorem,
ş1

0
fkg Ñ 0, which is a contradiction.

Problem 4b. Each g P L1pr0, 1sq defines a continuous functional Tg on L8pr0, 1sq by

Tgpfq “

ż

fpxqgpxq dx.
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Prove that there are continuous functionals on L8pr0, 1sq that are not of this form.

Solution. Suppose not, i.e. that every element of pL8q˚ is of the form Tg for some g P L1. Then the
map g ÞÑ Tg is a normed vector space isomorphism L1 Ñ pL8q˚. Indeed, it is surjective by assumption,

injective because Tg “ 0 implies
ş1

0
fg “ 0 for all f P Cpr0, 1sq, which implies g “ 0, and bounded because

||Tg||op “ sup
||f ||L8“1

∣∣∣∣ż 1

0

fg

∣∣∣∣ ď ∣∣∣∣ż 1

0

g

∣∣∣∣ ď ||g||L1 .

Thus by the open mapping theorem, it’s inverse is also bounded and therefore it’s an isomorphism. Thus
L1 » pL8q˚. Since L1 is separable, this implies pL8q˚ is separable, which implies L8 is separable. But this
is a contradiction: tχr0,rsu0ără1 is an uncountable discrete set in L8.

Alternate Solution (using part a). Note that φ is a bounded linear functional on the space Cpr0, 1sq, so

by Hahn-Banach φ extends to a bounded linear functional rφ on L8pr0, 1sq. If rφ was of the form Tg then its
restriction φ would also be of this form, which contradicts part (a).

Problem 5a. Prove that `1pNq and `2pNq are separable Banach spaces but `8pNq is not.

Solution. Let X be either `1pNq or `2pNq (the proof that follows works for both). Define the set

Sn :“ tf P X : fpkq P Q` iQ for all k and fpkq “ 0 for k ą nu

and let S “
Ť8

n“1 Sn. Note that each Sn can be identified with pQ ` iQqn, which is countable, so S is
countable as well. We now show that S is dense in X. Let f P X and fix ε ą 0. Let e be either 1 or 2
depending on if X is `1pNq or `2pNq. Since

ř8

k“1 |fpkq|
e ă 8, there is an N such that

ř8

k“N`1 |fpkq|
e ă ε.

For each k ď N , since Q` iQ is dense in C, pick qk P Q` iQ such that |qk ´ fpkq| ă pε{Nq
1{e. Now define

g by gpkq “ qk for k ď N and gpkq “ 0 for k ą N . Then we see that g P SN Ď S and

||f ´ g||X “

8
ÿ

k“1

|fpkq ´ gpkq|e “
N
ÿ

k“1

|fpkq ´ qk|
e `

8
ÿ

k“N`1

|fpkq|e ă ε` ε “ 2ε.

Thus S is dense in X, so X is separable.

For `8pNq, for any subset A Ď N, define fA P `8pNq by fApkq “ 1 if k P A and 0 otherwise. Note
that for any two subsets A and B, if A ‰ B then ||fA ´ fB ||`8 “ 1. But since there are uncountably many
subsets of N, the collection tfAuAĎN is an uncountable discrete subset of `8pNq, which means `8pNq can’t
be separable.

Problem 5b. Prove that there exists no bounded linear surjective map T : `2pNq Ñ `1pNq.

Solution. If such a map existed then it would induce a bounded injective map T˚ : l8pNq Ñ l2pNq between
the dual spaces. Taking duals again, we obtain a surjective bounded linear map T˚˚ : l2pNq Ñ pl8pNqq˚.
But the image of a separable space under a bounded linear map is separable, so pl8pNqq˚ must be separable.
But then l8pNq is separable, which is a contradiction.

Problem 6a. Given a Hilbert space H, let tanu be a sequence with ||an|| “ 1 for all n. Recall that
the closed convex hull of tanu is the closure of the set of all convex combinations of elements in tanu. Show
that if tanu spans H linearly, then H is finite dimensional.

Solution. Suppose tanu linearly spans H and suppose that H is infinite-dimensional. By inductively
removing any elements an which are in the span of ta1, . . . , an´1u, we may assume that tanu is a linearly
independent set in H. Define SN :“ spanpa1, . . . , aN q. We know that SN is a finite-dimensional subspace of
H and is therefore closed. We also know that SN does not contain any open sets because if SN contained the
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open ball Bpx, rq, then since S is a subspace it would also contain the set Bpx, rq ´ x “ Bp0, rq, and then it
would also have to contain the set n ¨Bp0, rq “ Bp0, nrq for all integers n, implying that SN would be equal
to all of H. But since H is infinite dimensional this is not the case. Hence SN has empty interior and since
SN is closed, SN is nowhere dense. By the assumption that tanu spans H, we see that H “

Ť8

N“1 SN . But
this is a countable union of nowhere dense sets, and since Hilbert spaces are complete, this contradicts the
Baire category theorem. Thus H must be finite dimensional.

Problem 6b. Show that if xan, ξy Ñ 0 for all ξ P H, then 0 is in the closed convex hull of tanu.

Solution. Fix ε ą 0. It suffices to show the existence of a convex combination of the an with norm
less than ε. Set aN1

“ a1. Since xan, aN1
y Ñ 0 as n Ñ 8, pick aN2

so that |xaN2
, aN1

y| ă ε. Now since
xan, aN1

y and xan, aN2
y both tend to 0 as n Ñ 8, we can pick aN3 so that |xaN3 , aN1

y| , |xaN3 , aN2
y| ă ε.

Continuing this construction inductively we get a subsequence aNk with the property that every pairwise
inner product in the subsequence has absolute value less than ε. Now let r be big enough so that 1{r ă ε
and consider the convex combination p1{rqaN1

` . . .` p1{rqaNr . We have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

r
aN1 ` . . .`

1

r
aNr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

r2
xaN1 ` . . . aNr , aN1 ` . . . aNry

“
1

r2

˜

r
ÿ

j“1

ˇ

ˇ

ˇ

ˇaNj
ˇ

ˇ

ˇ

ˇ

2
`

ÿ

i‰j

@

aNi , aNj
D

¸

ă
1

r2

`

r ` r2ε
˘

ă
3

2
ε.

Problem 7. Characterize all entire functions f with |fpzq| ą 0 for z large and

lim sup
zÑ8

|log |fpzq||
|z|

ă 8.

Solution. The condition that |fpzq| ą 0 for |z| large implies that all of the zeros of f lie in some bounded
set, and since the zeros have to be discrete, f has only finitely many zeros. Let ppzq be the polynomial with
the same zeros as f , counting multiplicity. Then fpzq{ppzq is a nonvanishing entire function, so we can write
fpzq{ppzq “ ehpzq for some entire function h. So we have the representation fpzq “ ppzqehpzq where p is a
polynomial and h is entire. We have

lim sup
zÑ8

|log |fpzq||
|z|

“ lim sup
zÑ8

|log |ppzq||
|z|

`
| log |Rephpzqq||

|z|
“ lim sup

zÑ8

| log |Rephpzqq||

|z|
ă 8.

Thus we have |Rephpzqq| ď C|z| for some constant C and all z. We claim this implies that h is a degree 1
polynomial. It would be obvious if the bound had |hpzq| instead of |Rephpzqq|, but it doesn’t, so we have to
do more work. Write h “ u` iv and also write

hpzq “ hpreiθq “
8
ÿ

n“0

anr
neinθ.

Then we have upreiθq “
ř8

n“0 r
npRepanq cospnθq´ Impanq sinpnθqq. Using various orthonormality properties

and the fact the the power series converges uniformly on compact sets, one can compute

ż 2π

0

upreiθqe´ikθ dθ “ πrkak

for each fixed k. Thus

|ak|r
k ď

1

π

ż 2π

0

|upreiθq| dθ.
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Combining this with the mean value property for u, we have

|ak|r
k ` 2up0q ď

1

π

ż 2π

0

p|upreiθq| ` upreiθqq dθ ď
1

π
¨ 2π ¨ 2Cr “ 4Cr

by the estimate on |Rephq| from above. Thus we have |ak| ď 4Cr1´k ´ 2up0qr´k. This holds for any r, so
we can take r Ñ8 to conclude that ak “ 0 for any k ą 1. This implies that h is a degree 1 polynomial.

So we conclude that if f satisfies the given conditions, then fpzq “ ppzqeaz`b for some polynomial p and
a, b P C. It’s clear that every function of this form satisfies the conditions, so this is a complete characteri-
zation.

Problem 8. Construct a non-constant entire function fpzq such that the zeros of f are simple and co-
incide with the set of all (positive) natural numbers.

Solution. Use the canonical product representation. Let

fpzq “
8
ź

n“1

´

1´
z

n

¯

ez{n.

This clearly has the right zeros. We just need to show f is entire. It’s enough to show that the product
converges uniformly and absolutely on compact sets. Equivalently, we need to show that

8
ÿ

n“1

|logp1´ z{nq ` z{n|

converges uniformly on compact sets. Examining the power series expansion of logp1´ xq around 0, we see
that there exists δ ą 0 such that |x| ă δ implies | logp1´ xq ` x| ď |x|2. Fix a compact set Bp0, Rq. Pick n
big enough so that R{n ă δ and also so that n ą R. Then for any |z| ď R, we have |z|{n ă δ, so

|logp1´ z{nq ` z{n| ď |z|2

n2
ď

R2

n2
.

Thus the series in question is eventually majorized by the convergent series
ř8

n“1R
2{n2 for all |z| ď R,

which shows that it converges uniformly and absolutely on Bp0, Rq.

Problem 9. Prove Hurwitz’ Theorem: Let Ω Ď C be a connected open set and fn, f : Ω Ñ C holo-
morphic functions. Assume that fnpzq converges uniformly to fpzq on compact subsets of Ω. Prove that if
fnpzq ‰ 0 for all z P Ω and all n, then either f is identically zero or fpzq ‰ 0 for all z P Ω.

Solution. Since fn Ñ f uniformly on compact sets, we also know that f 1n Ñ f 1 uniformly on compact
sets. Suppose that f is not identically zero. Then the zeros of f are isolated. Fix any z0 P Ω. Choose
an r ą 0 small enough so that f has no zeros in Bpz0, rq except for possibly at z0 and |fpzq| ě δ ą 0 for
|z ´ z0| “ r. Because BBpz0, rq is compact and each fn is nonvanishing, each fn is bounded away from 0 on
BBpz0, rq, and since f is also bounded away from zero on it, we have 1{fn Ñ 1{f uniformly on BBpz0, rq.
Therefore by the argument principle, we have

0 “ lim
nÑ8

p# zeros of fn inside Bpz0, rqq “ lim
nÑ8

ż

BBpz0,rq

f 1npzq

fnpzq
dz “

ż

BBpz0,rq

f 1pzq

fpzq
dz “ p# zeros of f inside Bpz0, rqq .

Therefore fpz0q ‰ 0, and since this argument can be applied at any point z0, we conclude that f is nonvan-
ishing in Ω.

Problem 10. Let α P r0, 1szQ and let tanu P `
1pNq with an ‰ 0 for all n. Show that

fpzq “
ÿ

ně1

an
z ´ eiαn
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converges and defines a function that is analytic in D which does not admit an analytic continuation to any
domain larger than D.

Solution. Each of the summands is analytic in D, so to show that f is analytic in D it suffices to show that
the sum converges uniformly on compact sets. Note that it is enough to show that sum converges uniformly
on Dr “ tz : |z| ă ru For z P Dr we have∣∣∣∣∣ 8ÿ

n“k

an
z ´ eiαn

∣∣∣∣∣ ď 8
ÿ

n“k

|an|
|z ´ eiαn|

ă
1

1´ r

8
ÿ

n“k

|an| ,

which converges to 0 as k Ñ 8. Thus the sequence of partial sums for f is uniformly Cauchy on Dr. This
establishes that the, sum converges everywhere in D, and defines an analytic function in D.

Let Ω be any region containing D. Then Ω contains an open arc of the unit circle. Since α is irrational, the
points teiαnu are dense in the unit circle, so there is some eiαk P Ω. The intuition is that this is a contradiction
because f will blow up near eiαk, but it’s hard to show this directly. Instead let gpzq “ pz´ eiαkqfpzq. Since
f is analytic in Ω by assumption, gpeiαkq “ 0. Consider for 0 ă r ă 1

gpreiαkq “ ak `
ÿ

n‰k

anpr ´ 1qeiαk

reiαk ´ eiαn

where changing the order of summation is allowed because the series converges absolutely on each circle
|z| “ r for r ă 1. Now note that we have∣∣∣∣anpr ´ 1qeiαk

reiαk ´ eiαn

∣∣∣∣ ď |an|
1´ r

1´ r
ď |an|

for all r ă 1, so by the Dominated Convergence theorem we have

gpeiαkq “ lim
rÑ1´

gpreiαkq “ ak `
ÿ

n‰k

lim
rÑ1´

anpr ´ 1qeiαk

reiαk ´ eiαn
“ ak ‰ 0,

which is a contradiction.

Problem 11. For each p P p´1, 1q, compute the improper Riemann integral
ż 8

0

xp

x2 ` 1
dx.

Solution. Define logpzq to be the branch with the negative imaginary axis removed, i.e. Implogpreiθqq “
θ P p´π{2, 3π{2q. Then define

fpzq :“
zp

z2 ` 1
“

exppp log zq

z2 ` 1
.

Integrate f over the contour which consists of a half circle in the upper half plane from ´R to R, then along
the negative real axis from ´R to ´ε, then a half circle in the upper half plane from ´ε to ε, then along the
positive real axis from ε to R. The contributions from the two half circles go to 0 as εÑ 0, RÑ8 and you
are left with

p1` expppπiqq

ż 8

0

xp

x2 ` 1
dx “ 2πi ¨ Resz“i fpzq “ π ¨ expppπi{2q

(I left out the computation of the residue). After rearranging you get that the answer is π
2 cosppπ{2q .

Problem 12. Compute the number of zeros, including multiplicity, of fpzq “ z6 ` iz4 ` 1 in the up-
per half plane.

Solution. Since the polynomial is even, z is a root of multiplicity m if and only if ´z is a root of multiplicity
m. Therefore the roots in the open upper half plane are in bijection with the roots in the open lower half
plane. If r ‰ 0 is real, then Impfprqq “ r4 which is nonzero. Since fp0q ‰ 0 we see that f has no real roots.
Since z has 6 total roots (counting multiplicity), exactly 3 of them must lie in the upper half plane.
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12 Fall 2014

Problem 1. Show that

A :“ tf P L3pRq :

ż

R
|fpxq|2 dx ă 8u

is a Borel subset of L3pRq.

Solution. Define the functional φn on L3pRq by

φnpfq “

ż n

´n

|f |2.

Note that we have

A “

8
ď

m“1

8
č

n“1

tf P L3pRq : φnpfq ď mu.

So to show A is Borel it suffices to prove that φn is a continuous function from L3pRq Ñ R. For f, g P L3,
we have

|φnpfq ´ φnpgq| ď
ż n

´n

∣∣f2 ´ g2
∣∣ ď ż n

´n

|f ´ g| p|f |` |g|q

ď

ż n

´n

|f ´ g| |f | `
ż n

´n

|f ´ g| |g|

ď

ˆ
ż n

´n

|f ´ g|3
˙1{3 ˆż n

´n

|f |3
˙1{3 ˆż n

´n

13

˙1{3

`

ˆ
ż n

´n

|f ´ g|3
˙1{3 ˆż n

´n

|g|3
˙1{3 ˆż n

´n

13

˙1{3

ď p2nq1{3 ||f ´ g||L3 p||f ||L3 ` ||g||L3q .

Fix ε ą 0. If ||f ´ g||L3 ă ε ¨ p3p2nq1{3 ||f ||L3q
´1 and ||f ´ g||L3 ă ||f ||L3 , then

|φnpfq ´ φnpgq| ă p2nq1{3p3 ||f ||L3q ||f ´ g||L3 ă ε.

Thus φnpfq is continuous at f for every f P L3pRq, so we’re done.

Problem 2. Construct an f P L1pRq so that fpx ` yq does not converge almost everywhere to fpxq as
y Ñ 0. Prove that your f has this property.

Solution. Let K be a fat Cantor set contained in r0, 1s. Recall that K is closed, has positive measure,
and that each point in K is a boundary point. Take f “ χK . Since K is closed, f is measurable, and since
K has finite measure, f lies in L1. But for each x P K every neighborhood U of x contains a point u which
lies outside K and hence has fpuq “ 0. Therefore for each x P K, fpx ` yq does not converge to fpxq as
y Ñ 0. This is enough, since K has positive measure.

Problem 3. Let pfnq be a bounded sequence in L2pRq and suppose that fn Ñ 0 Lebesgue almost ev-
erywhere. Show that fn Ñ 0 in the weak topology on L2pRq.

Solution. To show that fn Ñ 0 in the weak topology on L2pRq, we need to show that φpfnq Ñ 0 for
every bounded linear functional φ on L2pRq. Since L2pRq is a Hilbert space, by the Riesz representation
theorem we know that every bounded linear functional φ is of the form φpfq “

ş

fpxqgpxq dx for some
g P L2pRq. So it suffices to show that for any g P L2pRq, we have

ş

fnpxqgpxq dx Ñ 0 as n Ñ 8. Since
fn Ñ 0 pointwise almost everywhere, we also have that fng Ñ 0 pointwise almost everywhere. By the
Vitali Convergence Theorem, to conclude that

ş

fng Ñ 0, it suffices to show that the sequence tfngu is both
uniformly integrable and tight.
As a reminder, uniformly integrable means that for every ε ą 0 there exists a δ ą 0 such that for any n,
mpAq ă δ implies

ş

A
|fng| ă ε. Tight means that for any ε ą 0, there exists a subset E Ď R such that for
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any n,
ş

Ec
|fng| ă ε.

We know that tfnu is a bounded sequence in L2pRq, so let ||fn||L2 ď M for all n. First we show uni-
form integrability. Fix ε ą 0. Since |g|2 is integrable, there is a δ so that mpAq ă δ implies

ş

A
|g|2 ă ε{M .

Now for any n, we have by Cauchy-Schwarz that if mpAq ă δ,

ż

A

|fng| ď

ˆ
ż

A

|fn|
2

˙1{2 ˆż

A

|g|2
˙1{2

ď ||fn||L2

ε

M
ď ε,

so the family tfngu is uniformly integrable.

For tightness, fix ε ą 0. Since |g|2 is integrable, there is a set E such that
ş

Ec
|g|2 ă ε{M . Then for

any n, by the same Cauchy-Schwarz argument we have

ż

A

|fng| ď ε.

Thus tfngu is tight, so we conclude that
ş

fng Ñ 0 as nÑ8.

Problem 4. Given f P L2pr0, πsq, we say that f P G if f admits a representation of the form

fpxq “
8
ÿ

n“0

cn cospnxq with
8
ÿ

n“0

p1` n2q|cn|
2 ă 8.

Show that if f P G and g P G then fg P G.

Solution. The motivation for this is that the cn are basically the Fourier coefficients of f , so the con-
dition for membership in G translates as p1` n2q1{2 pfpnq P `2. So G is basically a “Fourier series version” of
the Sobolev space H1.

First we want to make a technical modification so that we can work directly with the regular Fourier
coefficients (it makes stuff easier later). It’s clear that L2pr0, πsq is in bijection with the space L2

e :“ the
subspace of L2pr´π, πsq consisting of even functions. So we identify each f P G with its even extension to
r´π, πs. For f P G, the given condition implies that

8
ÿ

n“0

|cn| “
8
ÿ

n“0

|cn|p1` n
2q1{2p1` n2q´1{2 ď

˜

8
ÿ

n“0

|cn|
2p1` n2q

¸1{2 ˜
8
ÿ

n“0

p1` n2q´1

¸1{2

ă 8.

Thus by the Weierstrass M-test, we know that the given series representation for f converges absolutely and
uniformly on r´π, πs. Recall that tcospnxqu8n“0 is an orthonormal basis for the Hilbert space L2

e. For a fixed
n, we calculate in two different ways the inner product

xf, cospnxqy “

B

f,
1

2
peinx ` e´inxq

F

“
1

2
p pfpnq ` pfp´nqq “ pfpnq because f is even

xf, cospnxqy “
1

2π

ż π

´π

fpxq cospnxq dx “
1

2π

ż π

´π

8
ÿ

m“1

cm cospmxq cospnxq dx

“

8
ÿ

m“1

cm
1

2π

ż π

´π

cospmxq cospnxq dx “

#

1
2cn n ‰ 0

c0 n “ 0

where switching the order is justified because of the uniform convergence. Thus we conclude that for f P G,
the coefficients cn are exactly equal to 2 pfpnq for n ‰ 0 and pfp0q for n “ 0. So the problem is equivalent to

showing that for f, g P G, we have p1` n2q1{2xfgpnq P `2.
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Let f, g P G. The same argument from above that showed the uniform convergence of the series repre-

sentations also shows that the representations f or gpxq “
ř8

n“´8
{f or gpnqeinx converge uniformly, so we

can compute the Fourier coefficients

xfgpnq “
1

2π

ż π

´π

fpxqgpxqe´inx dx “
1

2π

ż π

´π

8
ÿ

k“´8

pfpkqeikx
8
ÿ

`“´8

pgp`qei`xe´inx dx

“

8
ÿ

k,`“´8

pfpkqpgp`q
1

2π

ż π

´π

eipk``´nqx dx “

8
ÿ

k“´8

pfpkqpgpn´ kq “ p pf ˚ pgqpnq.

Also note the elementary estimate

p1` n2q1{2 “ p1` pn´ k ` kq2q1{2 “ p1` pn´ kq2 ` k2 ` 2pn´ kqkq1{2 ď p1` 2pn´ kq2 ` 2k2q1{2

ď p2` 2pn´ kq2 ` 2` 2k2q1{2 À p1` pn´ kq2q1{2 ` p1` k2q1{2,

valid for any k P R. So we estimate

p1` n2q1{2xfgpnq À
8
ÿ

k“´8

p1` k2q1{2 pfpkqpgpn´ kq `
8
ÿ

k“´8

p1` pn´ kq2q1{2pgpn´ kq pfpkq

“ pp1` k2q1{2 pfpkq ˚ pgqpnq ` pp1` k2q1{2pgpkq ˚ pfqpnq.

Thus we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p1` n2q1{2xfgpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`2
À

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p1` k2q1{2 pfpkq ˚ pg

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`2
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p1` k2q1{2pgpkq ˚ pf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`2

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p1` k2q1{2 pfpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`2
||pg||`1 `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p1` k2q1{2pgpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pf
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`1
by Young’s convolution inequality

ă 8

because we showed at the very beginning that f P G implies pf P `1. Thus p1 ` n2q1{2xfgpnq P `2 so we’re
done.

Problem 5. Let φ : r0, 1s Ñ r0, 1s be continuous and let dµ be a Borel probability measure on r0, 1s.
Suppose µpφ´1pEqq “ 0 for every Borel set E Ď r0, 1s with µpEq “ 0. Show that there is a Borel measurable
function w : r0, 1s Ñ r0,8q so that

ż

f ˝ φpxq dµpxq “

ż

fpyqwpyqdµpyq

for all continuous f : r0, 1s Ñ R.

Solution. Since φ is continuous, it is Borel measurable. The condition that µpφ´1pEqq “ 0 whenever
µpEq “ 0 says that the measure φ˚µ is absolutely continuous with respect to µ. Both µ and φ˚µ are finite
measures on r0, 1s, so by the Radon-Nikodym theorem there is a Borel measurable function w such that

pφ˚µqpAq “

ż

A

wpxq dµpxq

for all Borel sets A. Since φ˚µ is a positive measure, we know that w is a nonnegative function. Also, if f
is any continuous function on r0, 1s, then it is also integrable on r0, 1s, so by a well-known property of the
Radon-Nikodym derivative,

ż 1

0

fpφpxqq dµpxq “

ż 1

0

fpxq dpφ˚µqpxq “

ż 1

0

fpxqwpxq dµpxq.
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Problem 6. Let X be a Banach space and let X˚ be its dual space. Suppose X˚ is separable; show
that X is separable (you should assume the Axiom of Choice).

Solution. Let tfnu
8
n“1 be a countable dense subset of X˚. By definition of operator norm, for each n

pick xn P X with ||xn|| “ 1 such that |fnpxnq| ą p1{2q ||fn||. Let M “ spantxnu. We first want to show that
M is dense in X, i.e. M “ X. Suppose that y R M . Then by the Hahn-Banach theorem, there is a linear
functional f P X˚ such that f “ 0 on M and fpyq ‰ 0. By the separability of X˚, there is a subsequence
tfnku that converges to f in the operator norm topology. We have

||fnk ´ f || ě |fnkpxnkq ´ fpxnkq| “ |fnkpxnkq| ą
1

2
||fnk || ,

and since ||fnk ´ f || Ñ 0 as k Ñ 8, this implies that ||fnk || Ñ 0 as k Ñ 8 as well, which implies that
fnk Ñ 0. But fnk Ñ f , and f is not identically zero, so this is a contradiction. Thus M “ X, so M is dense
in X.

Now to show X is separable, it suffices to find a countable set which is dense in M . Let S be the sub-
set of M which consists only of linear combinations with coefficients in Q` iQ. S is a countable set because
it can be put in bijection with

Ť8

n“1pQ ` iQqn, which is countable. Since Q ` iQ is dense in C, it follows
that S is dense in M , so S is dense in X and hence X is separable.

Problem 7. Find an explicit conformal mapping from the upper half plane slit along the vertical seg-
ment

tz P C : Impzq ą 0uzp0, 0` ihs, h ą 0

to the unit disk.

Solution. Start with Ω1 “ tz P C : Impzq ą 0uzp0, 0 ` ihs. Let f1pzq “ iph{zq. This is a conformal map
Ω Ñ Ω2 :“ tz : Repzq ą 0uzr1,8q. Let f2pzq “ z2. This is a conformal map Ω1 Ñ Ω2 :“ Czr1,8qzp´8, 0s.
Let f3pzq “ 1{z ´ 1. This is a conformal map Ω2 Ñ Ω3 :“ Czp´8, 0s. Let f4pzq be the branch of

?
z

that you get by removing the negative real axis. Then this is a conformal map Ω3 Ñ H. Finally let
f5pzq “ pz ´ iq{pz ` iq; this is a conformal map HÑ D. Thus f :“ f5 ˝ f4 ˝ f3 ˝ f2 ˝ f1 is a conformal map
Ω Ñ D.

Problem 8. Let f : CÑ C be an entire function. Show that

|fpzq| ď Cea|z|

for some constants C and a if and only if we have

|f pnqp0q| ď Mn`1

for some constant M .

Solution. First suppose that |fpzq| ď Cea|z| for all z P C. Then by applying the Cauchy estimates to
a disk of radius R centered at 0, we get

|f pnqp0q| ď
n!

Rn
CeaR.

Since f is entire, the above inequality is valid for any R ą 0, so we choose R “ n{a to get

|f pnqp0q| ď
n!an

nn
Cen ď C ¨ peaqn ď Mn`1

for some constant M .

Conversely, suppose that |f pnqp0q| ďMn`1 for all n. Then, since f is entire, we can write f as a power series

fpzq “
8
ÿ

n“0

anz
n
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and it is valid for all z P C. We know that the power series coefficients are given by

an “
f pnqp0q

n!
,

so we have

|fpzq| ď
8
ÿ

n“0

|an||z|
n ď

8
ÿ

n“0

Mn`1

n!
|z|n “ MeM |z|

for all z P C.

Problem 9. Let Ω Ď C be open and connected. Suppose pfnq is a sequence of injective holomorphic
functions defined on Ω such that fn Ñ f locally uniformly in Ω. Show that if f is not constant, then f is
also injective in Ω.

Solution. Since fn Ñ f locally uniformly, we know that f is also holomorphic. We first prove the fol-
lowing variation of Hurwitz’s theorem: If each fn has at most one zero in Ω, then either f is identically zero
or f has at most one zero in Ω.

Suppose that f is not identically zero. Then the zeros of f are isolated. Suppose that fpz0q “ 0. Pick
r ą 0 small enough so that f has no other zeros in Bpz0, rq. Since f is nonzero on BBpz0, rq, which is
compact, we have |fpzq| ě δ ą 0 for |z ´ z0| “ r. This shows that 1{fn Ñ 1{f uniformly on BBpz0, rq. We
also know that f 1n Ñ f 1 uniformly on compact sets. Thus we conclude that

lim
nÑ8

ż

BBpz0,rq

f 1npzq

fnpzq
dz “

ż

BBpz0,rq

f 1pzq

fpzq
dz.

By the argument principle, the right side of this equation is equal to the number of zeros of f inside Bpz0, rq,
which is one. Similarly, the left side is equal to the number of zeros of fn inside Bpz0, rq. Thus the above
equation implies that for sufficiently large n, fn has exactly one zero inside Bpz0, rq. So we have shown that
given a zero of f and a sufficiently small ball around that zero, then n can be made sufficiently large so that
fn has zero inside that ball. Thus, if f had two zeros, we could put two disjoint balls around them, then the
previous statement would imply that fn would eventually have to have two zeros, which is a contradiction.
Thus we conclude that f has only one zero.

Now, for any w P C, we have that fn ´ w converges locally uniformly to f ´ w. Since each fn is injec-
tive, fn ´w has at most one zero in Ω. Thus f ´w is either identically zero or has at most one zero. Since
this is true for every w P C, it implies that f is either constant or injective.

Problem 10. Let us introduce a vector space B as follows.

B “

$

&

%

u : CÑ C : u is holomorphic and

ĳ

C

|upx` iyq|2e´px
2
`y2q dx dy ă 8

,

.

-

.

Show that B becomes a complete vector space when equipped with the norm

||u||
2
“

ĳ

C

|upx` iyq|2e´px
2
`y2q dx dy.

Solution. Define a measure µ on C by dµ “ e´px
2
`y2qdx dy, i.e.

µpAq :“

ż

A

e´px
2
`y2qdx dy.
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Note that µ is a finite measure on C, and L2pµq is a complete vector space. Thus B is simply the subspace of
L2pµq consisting of holomorphic functions, so to show that B is complete it suffices to show that B is closed
with respect to the L2pµq norm.

Let tfnu be a sequence in B converging to f P L2pµq. We need to show that f is holomorphic. To do
that, it suffices to show that fn Ñ f uniformly on compact subsets of C. Let K Ď C be compact. Then
K 1 :“ tz P C : distpz,Kq ď 1u is also compact, so in particular, we have e´px

2
`y2q ě c ą 0 on K 1 and

λpK 1q ă 8 where λ denotes Lebesgue measure on C. For any z P K, we use the mean value property of
holomorphic functions to write

fnpzq ´ fmpzq “
1

π

ż

Bpz,1q

pfnpwq ´ fmpwqq dλpwq,

thus we have by Cauchy-Schwarz

|fnpzq ´ fmpzq| ď
1

π

ż

Bpz,1q

|fnpwq ´ fmpwq| dλpwq

ď
1

π
λpBpz, 1qq1{2

˜

ż

Bpz,1q

|fnpwq ´ fmpwq|
2 dλpwq

¸1{2

ď
1

π
λpK 1q1{2

˜

1

c

ż

Bpz,1q

|fnpwq ´ fmpwq|
2c dλpwq

¸1{2

ď MK

˜

ż

Bpz,1q

|fnpwq ´ fmpwq|
2e´px

2
`y2qdλpwq

¸

ď MK ||fn ´ fm||L2pµq .

Since tfnu converges in the L2pµq norm, the above inequality implies that ||fn ´ fm||L8pKq Ñ 0 as n,mÑ8,

meaning that tfnu is uniformly Cauchy on K. Since L8 is complete, this means that fn converges uniformly
on K to some function g. In particular, fn converges pointwise to g on K. But we know that fn converges
to f in L2pµq, and thus (by passing to a subsequence if necessary) we also know that fn converges to f
pointwise. Thus we must have f “ g, so we conclude that fn converges uniformly to f on K. This holds for
any compact set K Ď C and thus we know that f must be holomorphic, so B is a closed subspace of L2pµq
and therefore complete.

Problem 11. Let Ω Ď C be open, bounded, and simply connected. Let u be harmonic in Ω and as-
sume that u ě 0. Show the following: for each compact set K Ď Ω, there exists a constant CK ą 0 such
that

sup
xPK

upxq ď CK inf
xPK

upxq.

Solution. Since Ω is open, simply connected and not all of C, by the Riemann mapping theorem there
is a conformal map φ : D Ñ Ω. Then the function vpzq “ upφpzqq is a harmonic function on D. Let K
be any compact subset of Ω. Then φ´1pKq is a compact subset of D, so there is some r P p0, 1q such that
φ´1pKq Ď Bp0, rq Ď Bp0, rq Ď D. Since u is nonnegative, so is v, and thus by Harnack’s inequality, for any
z P φ´1pKq we have

1´ r

1` r
vp0q ď

1´ |z|

1` |z|
vp0q ď vpzq ď

1` |z|

1´ |z|
vp0q ď

1` r

1´ r
vp0q.

The left inequality shows that infzPφ´1pKq vpzq ě
1´r
1`rvp0q, which implies vp0q ď 1`r

1´r infzPφ´1pKq vpzq. Then
by putting this into the right inequality we get

vpzq ď

ˆ

1` r

1´ r

˙2

inf
zPφ´1pKq

vpzq
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for any z P φ´1pKq, so supzPφ´1pKq vpzq ď
´

1`r
1´r

¯2

infzPφ´1pKq vpzq. The constant
´

1`r
1´r

¯2

depends only on

the set K, so we conclude
sup

zPφ´1pKq

upφpzqq ď CK inf
zPφ´1pKq

upφpzqq,

and since φ is a bijection this is the same as saying supwPK upwq ď CK infwPK upwq.

Problem 12. Let Ω “ tz P C : |z| ą 1u. Suppose u : Ω Ñ R is bounded and continuous on Ω and
subharmonic on Ω. Prove the following: if upzq ď 0 for all |z| “ 1 then upzq ď 0 for all z P Ω.

Solution. Let vpzq “ up1{zq. Then v is subharmonic on A :“ Dzt0u and bounded and continuous on
Azt0u because z ÞÑ 1{z is a conformal map from A Ñ Ω. Fix ε ą 0 and let fpzq “ vpzq ´ ε log |1{z|. Since
log |z| is harmonic on A, we know that f does not have a local maximum in A. Also, since u is bounded,
v also is, and thus fpzq Ñ ´8 as |z| Ñ 0. So there exists an r ą 0 such that fpzq ď 0 for |z| ď r. Now
f is continuous on the compact set tz P C : r ď |z| ď 1u, so it achieves a maximum somewhere. But since
fpzq ď 0 for all |z| “ r and all |z| “ 1, if that maximum were positive then it would have to be achieved on
the interior of A, which contradicts the maximum principle. Thus the maximum is at most zero, so fpzq ď 0
for all r ď |z| ď 1, and by choice of r this implies that f ď 0 on A. Thus we have vpzq ď ε log |1{z| for all
z P A. Since ε is arbitrary, this means vpzq “ up1{zq ď 0 for all z P A, which means that upwq ď 0 for all
w P Ω.
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13 Spring 2015

Problem 1. Let f P L1pRq. Show that

lim
nÑ8

n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣ “
ż

|fpxq| dx.

Solution. Let V be the set of functions which are finite linear combinations of characteristic functions
of closed intervals. First we show that the result holds for elements of V . Let g P V and write

g “
M
ÿ

j“1

αj ¨ χraj ,bjs.

Let n be sufficiently large so that for each ´n2 ď k ď n2, the interval rk{n, pk ` 1q{ns does not intersect
more than one of the intervals raj , bjs. Then in particular, on each subinterval rk{n, pk ` 1q{ns, f is either
non-negative or non-positive, depending on the sign of αj . Thus we have, for such sufficiently large n,

n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣ “ n2
ÿ

k“´n2

ż pk`1q{n

k{n

|fpxq| dx “

ż n

´n

|fpxq| dx,

so

lim
nÑ8

n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣ “
ż

|fpxq| dx.

Thus the result holds for functions in V .

We know that V is dense in L1pRq. Let f P L1pRq and fix ε ą 0. We need to show that when n is
sufficiently large, we have ∣∣∣∣∣∣

n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣´
ż

|fpxq| dx

∣∣∣∣∣∣ ă ε.

Let g be an element of V such that ||f ´ g||L1 ă ε{3. We have the estimate∣∣∣∣∣∣
n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣´
ż

|fpxq| dx

∣∣∣∣∣∣ ď
∣∣∣∣ż |fpxq| dx´ ż

|gpxq| dx

∣∣∣∣`
∣∣∣∣∣∣

n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

gpxq dx

∣∣∣∣∣´
ż

|gpxq| dx

∣∣∣∣∣∣
`

∣∣∣∣∣∣
n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣´ n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

gpxq dx

∣∣∣∣∣
∣∣∣∣∣∣

“: I ` II ` III.

By choice of g, we have I ă ε{3. Since we have already proved the result for elements of V , let n be large
enough so that II ă ε{3. Finally, by taking absolute values inside multiple times we have

III ď
n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx´

ż pk`1q{n

k{n

gpxq dx

∣∣∣∣∣ ď n2
ÿ

k“´n2

ż pk`1q{n

k{n

|fpxq ´ gpxq| dx “

ż n

´n

|fpxq ´ gpxq| dx

ď ||f ´ g||L1 ă ε{3.

Thus we conclude that ∣∣∣∣∣∣
n2
ÿ

k“´n2

∣∣∣∣∣
ż pk`1q{n

k{n

fpxq dx

∣∣∣∣∣´
ż

|fpxq| dx

∣∣∣∣∣∣ ă ε

76



for all sufficiently large n and thus the result holds for all f P L1pRq.

Problem 2. Let f P L2
locpRnq, g P L3

locpRnq. Assume that for all real r ě 1, we have
ż

rď|x|ď2r

|fpxq|2 dx ď ra,

ż

rď|x|ď2r

|gpxq|3 dx ď rb.

Here a and b are such that 3a` 2b` n ă 0. Show that fg P L1pRnq.

Solution. Let E0 “ tx P Rn : |x| ď 1u and for k ě 1 let Ek “ tx P Rn : 2k´1 ď |x| ď 2ku. Since
each Ek is compact for k ě 0, |f |2 and |g|3 are integrable on each Ek, which also implies by compactness
that |f | and |g| are integrable on each Ek. To show that fg P L1pRnq it suffices to show that

8
ÿ

k“1

ż

Ek

|fpxqgpxq| dx ă 8.

For each k ě 1, by Hölder’s inequality using 1{6` 1{2` 1{3 “ 1, we have

ż

Ek

|fpxqgpxq| dx ď

ˆ
ż

Ek

16 dx

˙1{6 ˆż

Ek

|fpxq|2 dx

˙1{2 ˆż

Ek

|gpxq|3 dx

˙1{3

ď pλnpEkqq
1{6pp2k´1qaq1{2pp2k´1qbq1{3.

Since Ek Ď r´2k, 2ks, we have λnpEkq ď p2
k`1qn. Thus we have

ż

Ek

|fpxqgpxq| dx ď p2k`1qn{6p2k´1qa{2p2k´1qb{3 “ 4n{6 ¨ p2k´1qn{6`a{2`b{3.

By hypothesis, n{6` a{2` b{3 ă 0, so let ´δ P pn{6` a{2` b{3, 0q. Then we have

8
ÿ

k“1

ż

Ek

|fpxqgpxq| dx ď 4n{6
8
ÿ

k“1

p2k´1q´δ “ 4n{6
8
ÿ

k“1

ˆ

1

2δ

˙k´1

ă 8

because 2δ ą 1. Thus fg P L1pRnq.

Problem 3a. Let f P L1
locpRnq and let

Mfpxq “ sup
rą0

1

mpBpr, xqq

ż

Bpr,xq

|fpyq| dy

be the Hardy-Littlewood maximal function. Show that

mptx : Mfpxq ą suq ď
Cn
s

ż

|fpxq|ąs{2

|fpxq| dx, s ą 0,

where the constant Cn depends on n only. The Hardy-Littlewood maximal theorem may be used.

Solution. Suppose that B Ď Rn is a ball and that 1
mpBq

ş

B
|fpyq|dy ą s. Then we have

s ¨mpBq ă

ż

BXtx:|fpxq|ďs{2u

|fpyq|dy `

ż

BXtx:|fpxq|ąs{2u

|fpyq|dy

ď
s

2
¨mpBq `

ż

BXtx:|fpxq|ąs{2u

|fpyq|dy.

Define f̃pxq to be fpxq if |fpxq| ą s{2 and 0 otherwise. It follows from the work above that
ż

B

|f̃pyq|dy ą
s

2
.
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Thus if Mfpxq ą s, then Mf̃pxq ą s{2. Applying the Hardy-Littlewood maximal inequality to f̃ gives

mptx : Mfpxq ą suq ď mptx : Mf̃pxq ą s{2uq

ď
Cn
s

ż

|f̃pyq|dy

“
Cn
s

ż

|fpxq|ąs{2

|fpyq|dy,

for some constant Cn.

Problem 3b. Prove that if φ P C1pRq, φp0q “ 0, and φ1 ą 0, then

ż

φpMfpxqq dx ď Cn

ż

|fpxq|

˜

ż

0ătă2|fpxq|

φ1ptq

t
dt

¸

dx.

Solution. Using part (a), we estimate the integral on the right by

Cn

ż

|fpxq|

˜

ż

0ătă2|fpxq|

φ1ptq

t
dt

¸

dx “ Cn

ĳ

tpx,tq:0ătă2|fpxq|u

|fpxq|
φ1ptq

t
dx dt by Tonelli because φ1 ą 0

“ Cn

ż 8

0

φ1ptq

t

ż

|fpxq|ąt{2

|fpxq| dx dt

ě

ż 8

0

φ1ptq

t
t ¨mtx : Mfpxq ą tu dt “

ż 8

0

φ1ptq ¨mtx : Mfpxq ą tu dt

“

ż 8

0

φ1ptq

ż

Mfpxqąt

dx dt

“

ĳ

tpx,tq:0ătăMfpxqu

φ1ptq dx dt again by Tonelli because φ1 ą 0

“

ż

xPR

ż Mfpxq

0

φ1ptq dt dx “

ż

pφpMfpxqq ´ φp0qq dx “

ż

φpMfpxqq dx.

Problem 4. Let f P L1
locpRq be 2π-periodic. Show that the linear combinations of the translates fpx´aq, a P

R, are dense in L1pp0, 2πqq if and only if each Fourier coefficient of f is ‰ 0.

Solution. For a function u P L1pr0, 2πsq, denote by ûpnq the nth Fourier coefficient of u. First sup-

pose that f̂pnq “ 0 for some n. Then note that for any linear combination of translates of f , hpxq “

α1fpx ´ a1q ` . . . ` αmfpx ´ amq, we have ĥpnq “ α1e
´ina1 f̂pnq ` . . . ` αme

´inam f̂pnq “ 0. But then the
span of the linear translates of f can’t possibly be dense in L1, because if we let gpxq “ einx, then ĝpnq “ 1,
and since the map u ÞÑ û is a continuous mapping L1 Ñ `8, there can’t be a sequence of linear combinations
of translates of f converging to g in L1.

Conversely, suppose that f̂pnq ‰ 0 for every n. Let M be the closure (with respect to the L1 norm) of
spantfpx ´ aq : a P Ru and suppose that M ‰ L1. Then by the Hahn-Banach theorem, there is a nonzero
bounded linear functional φ P pL1q˚ which is zero on M . Since pL1q˚ » L8, we get that there exists a
nonzero g P L8 such that

ż 2π

0

gpxqfpx´ aq dx “ 0

for every a P R. If we consider the above integral as a function of a, call it hpaq, then h is identically
zero, so in particular it is 2π-periodic, so we can look at its Fourier coefficients. A standard computation
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shows that ĥpnq “ ĝpnqf̂pnq for all n, and since h is identically zero, ĥpnq “ 0 for all n. Since f̂pnq ‰ 0
for all n, this implies that ĝpnq “ 0 for all n, but this contradicts the fact that g is nonzero, so we’re done.

Problem 5. Let u P L2pRq and let us set

Upx, ξq “

ż

e´px`iξ´yq
2
{2upyq dy, x, ξ P R.

Show that Upx, ξq is well-defined on R2 and that there exists a constant C ą 0 such that for all u P L2pRq,
we have

ĳ

|Upx, ξq|2 e´ξ
2

dx dξ “ C

ż

|upyq|2 dy.

Determine C explicitly.

Solution. To show that Upx, ξq is well-defined, note that by Cauchy-Schwarz

ż ∣∣∣e´px`iξ´yq2{2upyq∣∣∣ dy ď

ˆ
ż

e´px`iξ´yq
2

dy

˙1{2 ˆż

|upyq|2 dy

˙1{2

ă 8.

Now we expand

Upx, ξq “ e´x
2
{2eξ

2
{2e´ixξ

ż

exy´y
2
{2upyqeiξy dy.

For a fixed x, let

fxpyq “ upyqexy´y
2
{2.

Then we see that

f̂xpξq “

ż

exy´y
2
{2upyqe´2πiξy dy,

so
Upx, ξq “ e´x

2
{2eξ

2
{2e´ixξ f̂xp´ξ{p2πqq.

Therefore, by Plancherel and Tonelli since everything is non-negative, we have
ĳ

|Upxξq|2e´ξ
2

dx dξ “

ĳ

e´x
2

|f̂xp´ξ{p2πqq|
2 dx dξ “ 2π

ż

e´x
2

ż ∣∣∣f̂xpξq∣∣∣2 dξ dx
“ 2π

ż

e´x
2

ż

|fxpyq|
2 dy dx “ 2π

ĳ

e´x
2
`2xy´y2 |upyq|2 dy dx

“ 2π

ż

|upyq|2
ˆ
ż

e´px´yq
2

dx

˙

dy “ 2π3{2

ż

|upyq|2 dy.

Problem 6. When B1 and B2 are Banach spaces, we say a linear operator T : B1 Ñ B2 is compact
if for any bounded sequence pxnq in B1, the sequence pTxnq has a convergent subsequence. Show that if T
is compact then ImpT q has a dense countable subset.

Solution. Since T is a compact operator, we know that for any bounded set A Ď B1, T pAq is a rela-
tively compact subset of B2. Let An “ tx P B1 : ||x||B1

ď nu. Then we can write B1 “
Ť8

n“1An, so we

have ImpT q “
Ť8

n“1 T pAnq. Since each An is a bounded set, each T pAnq is relatively compact. This means

that T pAnq is compact. Since compact sets are separable (this follows from the totally bounded definition of
compactness), it follows that T pAnq has a countable dense subset. We need to upgrade this to a countable

dense subset of T pAnq. Let E be a countable dense subset of T pAnq. Start with rE :“ E X T pAnq. For any

x P EzT pAnq, there is a sequence txku P T pAnq converging to x. Add the sequence txku to rE. Repeating

this process for every x P EzT pAnq, we see that rE is at most a countable union of countable sequences and
is thus countable, and it’s clear that it is dense in T pAnq. Thus T pAnq also has a countable dense subset for
each n. Thus by taking the (countable) union of these dense subsets, we see that ImpT q “

Ť8

n“1 T pAnq has
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a countable dense subset.

Problem 7. Suppose fn : D Ñ H is a sequence of holomorphic functions and fnp0q Ñ 0 as n Ñ 8.
Show that fnpzq Ñ 0 uniformly on compact subsets of D.

Solution. Any compact subset of D is contained in Bp0, rq for some 0 ă r ă 1, so it suffices to show
that fn Ñ 0 uniformly on Bp0, rq for each 0 ă r ă 1. Fix such an r. Note that since each fn takes values
only in H, we can define a single-valued analytic branch of gnpzq :“

a

fnpzq on D. Each gn is a holomorphic
function from D to Ω :“ tz P C : Repzq, Impzq ą 1u and it is still true that gnp0q Ñ 0 as n Ñ 8. Let
un “ Repgnq and vn “ Impgnq. We also have unp0q, vnp0q Ñ 0 as nÑ8. Since gn is holomorphic and takes
values in Ω, un and vn are both positive harmonic functions on D. Thus for any z P Bp0, rq, we can apply
Harnack’s inequality to get

|unpzq| ď
1` |z|

1´ |z|
|unp0q| ď

1` r

1´ r
|unp0q|,

which shows that un Ñ 0 uniformly on Bp0, rq. The same argument holds for vn. Thus since Repgnq and
Impgnq both converge uniformly to 0 on Bp0, rq, gn also does. Finally, since |fnpzq| “ |gnpzq|

2, this also
shows that fn Ñ 0 uniformly on Bp0, rq, so we are done.

Alternate solution. Let gn “
fn´i
fn`i

. The relation fn “
p´iqpgn`1q

gn´1 shows that it suffices to show that

the gn converge locally uniformly to ´1. Note the gn are holomorphic maps D Ñ D. Let ψ´1
n be an au-

tomorphism of D which takes gnp0q to 0 and let hn “ ψ´1
n ˝ gn. Then hn is holomorphic with hnp0q “ 0.

Write gn “ ψn ˝ hn. We want to show that gn converges locally uniformly to ´1. Fix a compact set
K :“ Bp0, rq Ď D. By the Schwarz lemma, hnpKq Ď K. So to show gn Ñ ´1 uniformly on K, it’s enough
to show ψn Ñ ´1 uniformly on K. This is just a calculation: for any |z| ď r, we have

|ψnpzq ´ gnp0q| “

∣∣∣∣∣ z ` gnp0q1` gnp0qz
´ gnp0q

∣∣∣∣∣ “ |z|∣∣∣1` gnp0qz∣∣∣ p1´ |gnp0q|2q ď
2r

1´ r
p1´ |gnp0q|

2q

for sufficiently large n (where “sufficiently large” here only depends on the convergence of gnp0q to ´1, so
this is uniform in |z| ď r). Since gnp0q Ñ ´1 by hypothesis (because fnp0q Ñ 0), this shows ψn Ñ ´1
uniformly on K, so we’re done.

Problem 8. Let f : CÑ C be holomorphic and suppose

sup
xPR
t|fpxq|2 ` |fpixq|2u ă 8 and |fpzq| ď e|z| for all z P C.

Deduce that f is constant.

Solution. By Liouville’s theorem, to show f is constant it is enough to show that f is bounded. The
first given condition implies that there is some M ă 8 such that |fpzq| ďM for all z with either Repzq “ 0
or Impzq “ 0. First we show that f is bounded in the first quadrant A :“ tz : Repzq ą 0, Impzq ą 0u.

We use the Phragmen-Lindelöf method. Fix ε ą 0, and define

gpzq “ fpzq ¨ expp´εpe´iπ{4zq3{2q

where w ÞÑ w3{2 is defined by removing the branch cut along the negative real axis, so that preiθq3{2 “
r3{2ei3θ{2. We wish to show that |gpzq| Ñ 0 as |z| Ñ 8 in A. Writing z “ reiθ, we have

|gpzq| “ |fpzq| exppRep´εpe´iπ{4zq3{2qq ď expprq expp´εr3{2 Repe´i3π{8ei3θ{2qq

ď expprq expp´εr3{2 cosp3θ{2´ 3π{8qq.

OnA, since θ P p0, π{2q, we have 3θ{2´3π{8 P p´3π{8, 3π{8q, and thus cosp3θ{2´3π{8q ą cosp3π{8q “: δ ą 0.
So we have

|gpzq| ď exppr ´ εδr3{2q
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and this tends to 0 as |z| “ r Ñ8.

So pick R big enough so that |gpzq| ď M for all z P A with |z| ě R. Now A X Bp0, Rq is a bounded
domain such that |gpzq| ďM everywhere on the boundary. Thus, since g is holomorphic, it follows from the
maximum principle that |g| ďM everywhere in AXBp0, Rq. Thus by choice of R, |g| ďM on all of A. This
means that for any z P A,

|fpzq| ď M ¨

∣∣∣exppεpe´iπ{4zq3{2q
∣∣∣ .

Since ε is arbitrary, we can take εÑ 0 and thus conclude that |fpzq| ďM for all z P A.

Since M is a bound for |fpzq| on the entirety of the real and imaginary axes, we can repeat this argu-
ment in each of the other three quadrants and hence obtain that |fpzq| ď M for all z P C, implying that f
is a bounded entire function and thus f must be constant.

Problem 9. Let Ω “ tz P C : |z| ą 1 and Repzq ą ´2u. Suppose u : Ω Ñ R is bounded, continuous,
and harmonic on Ω and also that upzq “ 1 when |z| “ 1 and that upzq “ 0 when Repzq “ ´2. Determine
up2q.

Solution. Note that Ω is a region on which the Dirichlet problem can be solved, so the function u is
uniquely determined by its boundary values. We want to conformally map Ω to an annulus, on which we can
determine u easily. Note that the map z ÞÑ 1{z is a conformal map from Ω to Ω1 “ Dztz P C : |z`1{4| ď 1{4u.
We now want to conformally map Ω1 to the annulus tz P C : r ă |z| ă 1u. It suffices to find a conformal
map which fixes the unit circle and maps 0 to r and ´1{2 to ´r. We know that the map

φ : z Ñ
z ´ α

1´ αz

fixes the unit circle, so we just need to pick an α such that φp0q “ r and φp´1{2q “ ´r. Solving the system
of equations, we find that ´α “ r “ 2´

?
3 is the right choice.

So we know that z ÞÑ φp1{zq is a conformal map from Ω to the annulus A “ tz P C : r ă |z| ă 1u,
with the line Repzq “ ´2 mapping onto the inner circle |z| “ r and the unit circle mapping to itself. So we
find a harmonic function v on A with vpzq “ 0 for |z| “ r and vpzq “ 1 for |z| “ 1. The function

vpzq “
log |z{r|
logp1{rq

accomplishes this. Thus the original function u is given by

upzq “ vpφp1{zqq “
1

logp1{rq
log

∣∣∣∣ 1` rz

rz ` r2

∣∣∣∣ .
So up2q “ 1

logp1{rq log
∣∣∣ 1`2r

2r`r2

∣∣∣.
Problem 10. Determine

ż 8

´8

dy

p1` y2qp1` px´ yq2q

for all x P R.

Solution. For a fixed x P R, integrate the function

fpzq “
1

p1` z2qp1` px´ zq2q

around a half circle in the upper half plane from R to ´R and then along the real axis from ´R to R. After
computing the residues and taking the limit (the contribution from the half circle goes to 0) you get that
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the answer is 2π
x2`4 .

Problem 11. Let Ω “ Dzt0u. Prove that for every bounded harmonic function u : Ω Ñ R there is a
harmonic function v : Ω Ñ R obeying

Bu

Bx
“
Bv

By
,

Bu

By
“ ´

Bv

Bx
.

Solution. Let ˚du “ ´uy dx ` ux dy be the conjugate differential of u. We know that for any 0 ă r ă 1,
the function u satisfies

ż

|z|“r

upreiθq dθ “ α logprq ` β

for some constants α and β, and α is given by the quantity
ż

|z|“r

˚du,

which is constant with respect to r. Since u is bounded on Ω, write |u| ďM , then we have∣∣∣∣∣
ż

|z|“r

upreiθq dθ

∣∣∣∣∣ ď
ż

|z|“r

|upreiθq| dθ ď 2πrM,

which tends to 0 as r Ñ 0`. This implies that we must have α “ 0. Thus in particular
ş

|z|“1{2
˚du “ 0.

Since the circle |z| “ 1{2 forms a homology basis for Ω, this implies that
ş

γ
˚du “ 0 for any curve γ Ď Ω,

so ˚du is an exact differential on Ω. This implies that there is a function v on Ω satisfying dv “ ˚du, i.e.
vx “ ´uy and vy “ ux. The only thing left to verify is that v is harmonic. Note that we can define f “ u`iv
on Ω and since f satisfies the Cauchy-Riemann equations, it is holomorphic on Ω, and therefore its real and
imaginary parts are harmonic, so v is harmonic on Ω.

Alternate solution. It is a standard fact that a harmonic function on a simply connected domain has
a harmonic conjugate. So to show the existence of v it suffices to show that u can be extended to be har-
monic on all of D. We know that u is continuous on the circle |z| “ 1{2, so let h be the function which is
harmonic in |z| ă 1{2 and solves the Dirichlet problem with boundary values upwq for |w| “ 1{2. If we show
that u “ h everywhere where they are both defined, then this shows that u can be extended to be harmonic
at 0. Let f “ u ´ h. Then f is a function which is harmonic in |z| ă 1{2 and is equal to 0 everywhere
on |z| “ 1{2. Also, since u and h are both bounded, f is bounded. We now proceed with the standard ε
argument. Fix ε ą 0 and consider the function z ÞÑ fpzq ` ε log |2z|. This function is harmonic in |z| ă 1{2
and is equal to 0 on the boundary |z| “ 1{2. Furthermore, since f is bounded, this function tends to ´8
as z Ñ 0. Therefore, we may pick 0 ă r ą 1{2 such that fpzq ` ε log |2z| ď 0 for |z| ď r. Now since
fpzq ` ε log |2z| is harmonic on r ă |z| ă 1{2 and vanishes on the boundary, by the maximum principle we
conclude that fpzq ď ´ε log |2z| for all r ă |z| ă 1{2, and by choice of r we also have that fpzq ď ´ε log |2z|
for all z P Ω. Now taking ε Ñ 0 we conclude that fpzq ď 0 for all z P Ω, so upzq ď hpzq in Ω. Now we can
repeat the entire argument again with f̃ :“ h´u in place of f , and conclude that hpzq ď upzq in Ω, so h “ u
and we are done.

Problem 12. Find all entire functions f : CÑ C that obey

f 1pzq2 ` fpzq2 “ 1.

Prove your list is exhaustive.

Solution. By taking the derivative of the above equation, we see that a necessary condition is

2f 1pzqf2pzq ` 2fpzqf 1pzq “ 2f 1pzqpf2pzq ` fpzqq “ 0
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for all z P C. This means we have tz P C : f 1pzq “ 0u Y tz P C : f2pzq ` fpzq “ 0u “ C, so at least one of
those sets must have a limit point, and since f is holomorphic, both f 1 and f2 ` f also are, and thus we
either have f 1 “ 0 or f2 ` f “ 0 on all of C.

If f 1 “ 0, then f is a constant, and the only constants which satisfy the original equation are fpzq “ ˘1.
Now focus on the case f2 ` f “ 0. We show that the most general function that satisfies this is given by
fpzq “ a cospzq ` b sinpzq. We can write f as a power series fpzq “

ř8

n“0 anz
n, and since f2pzq “ ´fpzq

and power series can be differentiated term by term, we conclude that an “ ´pn ` 2qpn ` 1qan`2 for each
n. This shows that a solution f is uniquely determined by its first two coefficients a0 and a1, which means
the set of solutions is a 2-dimensional subspace of the vector space of entire functions. Since we know that
cospzq and sinpzq are two linearly independent solutions, it follows that fpzq “ a cospzq` b sinpzq is the most
general solution. Plugging this into the original condition, we get

p´a sinpzq ` b cospzqq2 ` pa cospzq ` b sinpzqq2 “ a2 ` b2 “ 1.

Thus we conclude that all of the solutions of the original equation are fpzq “ ˘1 or fpzq “ a cospzq` b sinpzq
where a2 ` b2 “ 1.
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14 Fall 2015

Problem 1. Let gn be a sequence of measurable functions on Rd, such that |gnpxq| ď 1 for all x, and assume
that gn Ñ 0 almost everywhere. Let f P L1pRdq. Show that the sequence

f ˚ gnpxq “

ż

fpx´ yqgnpyq Ñ 0

uniformly on each compact subset of Rd, as nÑ8.

Solution. Fix r ą 0 and let Br denote the closed ball of radius r centered at the origin. We will show that
f ˚ gn converges uniformly on Br.

For an arbitrary a ą 0, we and x P Br have

|f ˚ gnpxq| ď

ż

|fpx´ yqgnpyq|dy

“

ż

Ba

|fpx´ yq| ¨ |gnpyq|dy `

ż

RzBa
|fpx´ yq| ¨ |gnpyq|dy

ď

ż

Ba

|fpx´ yq| ¨ |gnpyq|dy `

ż

RzBa
|fpx´ yq|dy

We analyze each of these last two integrals separately.
For the second integral, we recall that x P Br, so we have

ż

RzBa
|fpx´ yq| ď

ż

RzBa´r
|fpyq|dy,

after a linear change of variables. Then for fixed ε ą 0 we may choose an a “ apεq so that this integral is
bounded by ε2.

For the first integral, recall that the integral of an L1 function over a set of small measure is small. So by
Egarov we may find a measurable set E Ď Ba so that fn Ñ f uniformly on BazE, and

ş

E
fpx ´ yqdy ă ε1.

Then for large enough n we have
ż

Ba

|fpx´ yq| ¨ |gnpyq|dy “

ż

E

|fpx´ yq| ¨ |gnpyq|dy `

ż

BazE

|fpx´ yq| ¨ |gnpyq|dy

ď

ż

E

|fpx´ yq|dy ` ε1
ż

BazE

|gnpyq|dy

ď ε1p1` λdpBaqq.

Combining the two pieces, we have

|f ˚ gnpxq| ď ε1 ¨ p1` λdpBapεqqq ` ε.

By choosing ε1 “ ε{p1 ` λdpBapεqqq, we see that |f ˚ gnpxq| ă 2ε for large enough n. Since this bound is
independent of x, we conclude that f ˚ gn Ñ 0 uniformly on Br.

Remark. One can also solve this problem by first solving it when f has compact support and then ap-
plying an approximation argument. This is equivalent, but perhaps conceptually simpler since some of the
details get abstracted into the compact support case.

Problem 2. Let f P LppRq, 1 ă p ă 8, and let a P R be such that a ą 1 ´ 1{p. Show that the
series

8
ÿ

n“1

ż n`n´a

n

|fpx` yq| dy

2This follows by “continuity from below” for general measures.
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converges for almost all x P R.

Solution. Let q be the conjugate exponent so that 1{p` 1{q “ 1. Define

gpxq “
8
ÿ

n“1

ż n`n´a

n

|fpx` yq| dy.

With a change of variables we can write

gpxq “
8
ÿ

n“1

n´a
ż 1

0

|fpx` n` n´azq| dz.

Applying Hölder’s inequality for sums we have

|gpxq| ď

˜

8
ÿ

n“1

n´aq

¸1{q ˜
8
ÿ

n“1

ˆ
ż 1

0

|fpx` n` n´azq| dz

˙p
¸1{p

.

Since aq ą 1 by hypothesis, the first term on the right side is just a constant C, and applying Hölder to the
integral in the second term we get

|gpxq| ď C

˜

8
ÿ

n“1

˜

ˆ
ż 1

0

1q
˙1{q ˆż 1

0

|fpx` n` n´az|p dz

˙1{p
¸p¸1{p

“ C

˜

8
ÿ

n“1

ż 1

0

|fpx` n` n´azq|p dz

¸1{p

.

To show g is finite almost everywhere it is sufficient to show that
şN`1

N
|gpxq|p dx ă 8 for each N P Z. We

have

ż N`1

N

|gpxq|p dx ď Cp
ż N`1

N

8
ÿ

n“1

ż 1

0

|fpx` n` n´azq|p dz dx

“ Cp
ż 1

0

8
ÿ

n“1

ż N`1

N

|fpx` n` n´azq|p dx dz

by two applications of the Monotone Convergence Theorem and one application of Tonelli’s Theorem. Chang-
ing variables again we get

ż N`1

N

|gpxq|p dx ď Cp
ż 1

0

8
ÿ

n“1

ż N`1`n`n´az

N`n`n´az

|fpuq|p du dz

ď Cp
ż 1

0

8
ÿ

n“1

ż N`n`2

N`n

|fpuq|p du dz

ď Cp
ż 1

0

2 ||f ||
p
Lp dz “ 2Cp ||f ||

p
Lp ă 8.

Thus
şN`1

N
|g|p is finite for any integer N , so we conclude that gpxq is finite almost everywhere.

Problem 3. Let f P L1
locpRdq be such that for some 0 ă p ă 1, we have∣∣∣∣ż fpxqgpxq dx∣∣∣∣ ď ˆ

ż

|gpxq|p
˙1{p

,

for all g P C0pRdq (continuous functions with compact support). Show that fpxq “ 0 a.e.

Solution.
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We would like to apply the condition of the problem when g is a characteristic function. Unfortunately
characteristic functions aren’t continuous, but we’re able to recover the same information via a suitable
approximation.

Lemma. Let K be a compact set. Then |
ş

K
fpxqdx| ď λdpKq

1{p.
Proof: Fix ε ą 0 and let U be an open set with compact closure containing K such that

ş

UzK
|fpxq|dx ă ε.

(This is possible by continuity from above together with the fact that the integral of f over a set of small
measure is small.) By replacing U with a set of smaller measure if necessary, we may suppose in addition
that λdpUzKq ă ε. Let gK be a continuous function Rd Ñ r0, 1s which takes the value 1 on K and 0 outside
of U (such a function exists by Urysohn). We have

ˇ

ˇ

ˇ

ˇ

ż

fpxqgKpxqdx´

ż

K

fpxqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

fpxqpgKpxq ´ χKpxqqdx

ˇ

ˇ

ˇ

ˇ

ď

ż

UzK

|fpxq|

ă ε.

Then we have
ˇ

ˇ

ˇ

ˇ

ż

K

fpxqdx

ˇ

ˇ

ˇ

ˇ

ď ε`

ˇ

ˇ

ˇ

ˇ

ż

fpxqgKpxqdx

ˇ

ˇ

ˇ

ˇ

ď ε`

ˆ
ż

|gKpxq|
p

˙1{p

ď ε` λdpUq
1{p

ď ε` pλdpKq ` εq
1{p.

But ε was arbitrary, so we the lemma follows by taking the limit as εÑ 0`.

Now fix a cube C Ď Rd of side length s. For any positive integer N we may dissect C into Nd cubes
tCiuiPrNds of side lengths s{N . By the lemma,

ż

Ci

fpxqdx ď λdpCiq
1{p “

´ s

N

¯d{p

.

Summing over all Ci we find that

ż

C

fpxqdx ď Nd ¨

´ s

N

¯d{p

“ sd{p ¨Ndp1´1{pq.

But 1´ 1
p ă 0, so the right-hand side tends to 0 as N Ñ 8. Thus we conclude that

ş

C
fpxqdx for all cubes

C.
Every open set is a union of countably many cubes with disjoint interiors. Therefore

ş

U
fpxqdx “ 0 for

any open set U. Then by continuity from above,
ş

M
fpxq must be zero for any measurable set M , from which

it follows that f is 0 a.e.

Alternate solution. Same idea as the first solution but the technical details are different.

Fix a large closed ball S “ Bp0, Rq, it’s enough to show f “ 0 a.e. on S. Suppose not. Then
Claim: There exists a δ ą 0 and a set E Ď S with λpEq ą 0 with the property that for any subset F Ď E,∣∣ş
F
fpxq dx

∣∣ ą δλpF q.
Assume the claim for now. A corollary of the claim is that there exist sets E of arbitrarily small positive
measure satisfying the inequality in the claim. Fix such a set E with measure small enough to satisfy
δλpEq ą λpEq1{p (possible because 1{p ą 1).

Fix ε ą 0 (assume w.l.o.g that ε ă λpEq{10). Since f is integrable on S, let α ą 0 be small enough so
that λpAq ă 2α and A Ď S implies

ş

A
|f | ă ε. We may also pick α ă ε. Take a compact set K and an open
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set U with K Ď E Ď U Ď S and λpEzKq, λpUzEq ă ε. Let g be a continuous function with 0 ď g ď 1, g “ 1
on K, and g “ 0 outside U . Then g also has compact support. We have the estimates

ˆ
ż

|gpxq|p dx

˙1{p

“

˜

ż

K

|gpxq|p `

ż

UzK

|gpxq|p dx

¸1{p

ď pλpKq ` 2εq
1{p

ď pλpEq ` 2εq
1{p

∣∣∣∣ż fpxqgpxq dx∣∣∣∣ “
∣∣∣∣∣
ż

K

fpxqgpxq dx`

ż

UzK

fpxqgpxq dx

∣∣∣∣∣ ě
∣∣∣∣ż
K

fpxq dx

∣∣∣∣´ ż

UzK

|fpxq| dx

ě δλpKq ´ ε ě δpλpEq ` εq ´ ε “ δλpEq ´ pδ ` 1qε.

By the hypothesis of the problem, this implies

δλpEq ´ pδ ` 1qε ď pλpEq ` 2εq1{p.

Since ε was arbitrary, taking εÑ 0 gives δλpEq ď λpEq1{p, a contradiction by the choice of E at the beginning.

We need to prove the claim. Suppose f is not a.e. 0. Then by continuity from below, there is some
δ ą 0 such that λtx P S : |fpxq| ą 2δu ą 0. For any k, we have the decomposition

tx P S : |fpxq| ą 2δu “

tx P S : |fpxq| ą 2δ, argpfq P r´2π{k, 2π{kqu Y . . .Y tx P S : |fpxq| ą 2δ, argpfq P r´2πpk ´ 3q{k, 2πpk ´ 1q{kq, u

so one of those sets has positive measure. By multiplying f by a rotation, without loss of generality we can
assume

λpEq :“ λtx P S : |fpxq| ą 2δ, argpfq P r´2π{k, 2π{kqu ą 0.

Let k be big enough so that |fpxq| ą 2δ and argpfq P r´2π{k, 2π{kq implies Repfq ą δ. Then for any subset
F Ď E, we have ∣∣∣∣ż

F

f

∣∣∣∣ ě ∣∣∣∣ż
F

Repfq

∣∣∣∣ ą δλpF q.

This proves the claim, so we’re done.

Problem 4a. Let H be a separable infinite-dimensional Hilbert space and assume that penq is an or-
thonormal system in H. Let pfnq be another orthonormal system which is complete, i.e. the closure of the

span of pfnq is all of H. Show that if
ř8

n“1 ||fn ´ en||
2
ă 1 then the orthonormal system penq is also complete.

Solution. Let v be a vector which is orthogonal to each of the ei. It suffices to show that v “ 0. Since
pfiq is an orthonormal system, we can write v “

ř8

n“1 xv, fny fn. Using this expression as motivation, we
define w “

ř8

n“1 xv, fny en. Note that v and w are orthogonal, while the original condition suggests that
they should be close in some suitable sense. More precisely, by applying Cauchy-Schwarz we have

||v ´ w||
2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“1

xv, fny pfn ´ enq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

˜

8
ÿ

n“1

|xvn, fny| ||fi ´ ei||

¸2

ď

˜

8
ÿ

n“1

|xv, fiy|2
¸

¨

˜

8
ÿ

n“1

||fn ´ en||
2

¸

ď ||v||
2
.

On the other hand, v and w are orthogonal, so ||v ´ w||
2
“ ||v||

2
`||w||

2
. Thus ||w||

2
“ 0, and by our original

definition of w we must have xv, fny “ 0 for all n. Since pfnq is a complete system, this means that v “ 0 as
desired.

Problem 4b. Assume we only have
ř8

n“1 ||fn ´ en||
2
ă 8. Prove that it is still true that penq is complete.

Solution. Let EN “ spanpeN , eN`1, . . .q and FN “ spanpfN , fN`1, . . .q. The condition that
ř8

n“1 ||fn ´ en||
2
ă
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8 tells us that for big n, en and fn are very close together, so the subspaces EN and FN should also be
“close together” when N is big enough. For a closed subspace M Ď H, let πM : H Ñ M be the orthogonal
projection onto M . We show that ||πEN ´ πFN ||op Ñ 0 as N Ñ 8 (this is one way of saying the subspaces
are close to each other). For any x P H we have

||pπEN ´ πFN qpxq|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“N`1

xx, eny en ´ xx, fny fn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“N`1

xx, eny pen ´ fnq `
8
ÿ

n“N`1

xx, en ´ fny fn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

n“N`1

|xx, eny| ||en ´ fn|| `

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“N`1

xx, en ´ fny fn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1{2

ď

˜

8
ÿ

n“N`1

|xx, eny|2
¸1{2 ˜

8
ÿ

n“N`1

||en ´ fn||
2

¸1{2

`

˜

8
ÿ

n“N`1

∣∣∣xx, en ´ fny2∣∣∣
¸1{2

ď ||x||

˜

8
ÿ

n“N`1

||en ´ fn||
2

¸1{2

`

˜

8
ÿ

n“N`1

||x||
2
||en ´ fn||

2

¸1{2

ď ||x|| ¨ 2

˜

8
ÿ

n“N`1

||en ´ fn||
2

¸1{2

where we have used Cauchy-Schwarz for sums, the Pythagorean theorem, and Cauchy-Schwarz in H. This
shows that ||πEN ´ πFN ||

2
op ď 4

ř8

n“N`1 ||en ´ fn||
2
, which goes to 0 as N Ñ8 by hypothesis.

We know that H “ EN ‘ EKN for any N because EN is closed. So to show that spanptenuq “ H,
it’s enough to find an N such that te1, . . . , eNu spans EKN . Since the en are orthonormal, we at least
know that spanpe1, . . . , eN q Ď EKN for each N . The ej are also independent, so it suffices to find an
N such that dimpEKN q ď N . By the assumption that tfnu is a complete system, we also know that
spanpf1, . . . , fN q “ FKN , so dimpFKN q “ N . Finally, since πSK “ id ´ πS for any closed subspace S, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
πEKN ´ πFKN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

op
“ ||πEN ´ πFN ||op Ñ 0 as N Ñ8. Pick N to be large enough so that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
πEKN ´ πFKN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

op
ď 1{2.

Now the desired result follows from the following lemma.

Claim: Let S and T be two closed subspaces of H with ||πS ´ πT ||op ď 1{2 and dimpT q “ N ă 8.
Then dimpSq ď N .
Proof: Let x1, . . . , xN`1 be any N ` 1 vectors in S. Then πT px1q, . . . , πT pxN`1q are N ` 1 vectors in an
N -dimensional space, so we have

0 “ α1πT px1q ` . . .` αN`1πT pxN`1q “ πT pα1x1 ` . . .` αN`1xN`1q

But also since each xj P S, we have πSpα1x1 ` . . .` αN`1xN`1q “ α1x1 ` . . .` αN`1xN`1, so

||α1x1 ` . . .` αN`1xN`1|| “ ||πSpα1x1 ` . . .` αN`1xN`1q ´ πT pα1x1 ` . . .` αN`1xN`1q||

ď
1

2
||α1x1 ` . . .` αN`1xN`1|| ,

which implies α1x1 ` . . .` αN`1xN`1 “ 0, so the xj are a dependent set. So any set of N ` 1 vectors in S
is dependent, so dimpSq ď N .

Problem 5. A function f P Cpr0, 1sq is called Hölder continuous of order δ ą 0 if there is a constant
C such that |fpxq ´ fpyq| ď C|x´ y|δ for all x, y P r0, 1s. Show that the Hölder continuous functions form a
meager set in Cpr0, 1sq.

Solution. Define Λδ to be the set of all Hölder continuous functions of order δ on r0, 1s and let Λ be
the set of all Hölder continuous functions of any order on r0, 1s. First note that δ ą η implies that Λδ Ď Λη,
so we can write

Λ “

8
ď

n“1

Λ1{n.
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Since a countable union of meager sets is meager, it suffices to show that Λδ is a meager subset of Cpr0, 1sq
for any fixed δ. We can write

Λδ “
8
ď

m“1

tf P Λδ : ||f ||Λδ ď mu “:
8
ď

m“1

Em

where the norm ||f ||Λδ is defined by

|fp0q| ` sup
x,yPr0,1s

|fpxq ´ fpyq|

|x´ y|δ

(this is one of the standard norms on the space of Hölder continuous functions). So it suffices to show that
each Em is closed and nowhere dense with respect to the L8 norm.

To show Em is closed, suppose that fn P Em and fn converges uniformly to f P Cpr0, 1sq. Fix ε ą 0,
and for any x, y P r0, 1s, let n be big enough so that |f ´ fn| ă ε|x´ y|δ ď ε on r0, 1s. Then we have

|fp0q| `
|fpxq ´ fpyq|

|x´ y|δ
ď |fp0q ´ fnp0q| ` |fnp0q| `

|fpxq ´ fnpxq|

|x´ y|δ
`
|fnpxq ´ fnpyq|

|x´ y|δ
`
|fnpyq ´ fpyq|

|x´ y|δ

ď ||fn||Λδ ` 3ε ď M ` 3ε,

and since the left side does not depend on ε, we conclude that

|fp0q| `
|fpxq ´ fpyq|

|x´ y|δ
ď m

for all x, y, so ||f ||Λδ ď m. Therefore Em is closed.

For nowhere dense, let f P Em and fix ε ą 0. We just need to show the existence of some h R Em
with ||h´ f ||L8 ď ε. Fix any g R Λδ (for example, gpxq “ xδ{2 works) and by scaling, we may assume
||g||L8 “ 1. Then let h “ f ` εg. Then we clearly have ||h´ f ||L8 “ ε. Since g R Λδ, we can find points
xn, yn such that

|gpxnq ´ gpynq|

|xn ´ yn|δ
ě

n

ε
.

Then we have

|hpxnq ´ hpynq|

|xn ´ yn|δ
“
|fpxnq ` εgpxnq ´ fpynq ´ εgpynq|

|xn ´ yn|δ

ě ε
|gpxnq ´ gpynq|

|xn ´ yn|δ
´
|fpxnq ´ fpynq|

|xn ´ yn|δ
ě n´m,

which goes to 8 as nÑ8, so h R Λδ. Therefore Em is closed and nowhere dense, so we’re done.

Problem 6. Let u P L2pRdq and say that u P H1{2pRdq (a Sobolev space) if

´

1` |ξ|1{2
¯

ûpξq P L2pRdq.

Here û is the Fourier transform of u. Show that u P H1{2pRdq if and only if

ĳ

|upx` yq ´ upxq|2

|y|d`1
dx dy ă 8.
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Solution. Since u P L2pRdq, we know immediately that û P L2pRdq also, so we just need to show that
`

1` |ξ|1{2
˘

ûpξq P L2pRdq if and only if the above double integral is finite. It suffices to prove that

ż

|ξ| |ûpξq|2 dξ À
ĳ

|upx` yq ´ upxq|2

|y|d`1
dx dy À

ż

|ξ| |ûpξq|2 dξ,

where throughout this problem À denotes an implied constant which depends only on d. First note that by
Plancherel, we have

ĳ

|upx` yq ´ upxq|2

|y|d`1
dx dy “

ż

1

|y|d`1

ż ∣∣1´ e2πiy¨ξ
∣∣2 |ûpξq|2 dξ dy “

ż

|ûpξq|2
ż

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy dξ,

so it now suffices just to prove the estimates

|ξ| À

ż

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy À |ξ|.

For the upper bound, we have the estimate

ż

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy “

ż

|y|ď1{p2|ξ|q

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy `

ż

|y|ą1{p2|ξ|q

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy

ď

ż

|y|ď1{p2|ξ|q

|4πy ¨ ξ|2

|y|d`1
dy `

ż

|y|ą1{p2|ξ|q

4

|y|d`1 dy
because |1´ ez| ď 2|z| for |z| ď 1{2

À |ξ|2
ż

|y|ď1{p2|ξ|q

|y|2

|y|d`1
dy `

ż

|y|ą1{p2|ξ|q

1

|y|d`1
dy

À |ξ| ` |ξ| À |ξ|.

Now we do the lower bound. For ξ fixed, define E “ ty P Rd : |y ¨ ξ| ě p1{2q|y||ξ|u. We estimate

ż

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy ě

ż

|y|ď1{p3|ξ|q,yPE

∣∣1´ e2πiy¨ξ
∣∣2

|y|d`1
dy

ě

ż

|y|ď1{p3|ξ|q,yPE

|πy ¨ ξ|2

|y|d`1
dy because |ez ´ 1| ě p1{2q|z| for |z| ď 1{3

Á

ż

|y|ď1{p3|ξ|q,yPE

p1{2q|y|2|ξ|2

|y|d`1
dy Á |ξ|2

ż

|y|ď1{p3|ξ|q,yPE

1

|y|d´1
dy.

Now note that membership in E is determined only by the direction of y and is independent of the magnitude
of y. So since the above integrand is a function only of |y|, and E takes up a “positive proportion” of all of
Rd (this can be made precise), it follows that the above integral is

Á |ξ|2
ż

|y|ď1{p3|ξ|q

1

|y|d´1
dy Á |ξ|,

which concludes the proof of the lower bound, so we are done.

Problem 7. Assume that fpzq is analytic in D and continuous on D. If fpzq “ fp1{zq when |z| “ 1,
prove that fpzq is constant.

Solution. Define the function g by

gpzq :“

#

fpzq |z| ď 1

fp1{zq |z| ě 1
.
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Because of the condition that fpzq “ fp1{zq for |z| “ 1, we see that g is continuous on all of C. We now
mimic the proof of the Schwarz reflection principle to show that g is analytic on all of C. By Morera’s
theorem, it is enough to show that

ż

BR

gpzq dz “ 0

for any rectangle R. It is clear from the definition that g is analytic inside D and so we don’t need to consider
rectangles R that are contained in D. Also, since z ÞÑ 1{z is a conformal map from CzD into Dzt0u, we also
see that g is analytic on the exterior of D, so we also don’t need to consider rectangles that are contained
in the exterior of D. Thus we only need to consider rectangles which intersect the unit circle. For such a
rectangle, split the contour along the arc of the unit circle into a band of width δ (this is hard to explain
without a picture). Since g is analytic on both the inside and the outside of D, the integral over this split
contour is necessarily 0. Then, since g is continuous everywhere, as we let δ Ñ 0, the integral over the split
contour approaches the integral over the original rectangle, and so we conclude that

ş

BR
gpzq dz “ 0 for all

rectangles R and thus g is analytic on all of C.

Now note that since f is continuous on D, which is compact, f must be bounded, and thus g must also
be bounded. But g is entire, so g must be a constant, which means f must also be a constant.

Problem 8. Assume that fpzq is an entire function that is 2π-periodic in the sense that fpz ` 2πq “ fpzq,
and

|fpx` iyq| ď Ceα|y|

for some C ą 0, where 0 ă α ă 1. Prove that f is constant.

Solution. Since fpzq is 2π periodic, we can express f as the pullback of a holomorphic function on the
cylinder. More formally, we can write

fpzq “ gpeizq

where we define g on Czt0u by gpzq “ fp 1
i logpzqq. Since f is 2π-periodic, the branch of log is irrelevant, and

g is well-defined.
The given bound implies that |gpey ¨ eixq| ď Ceα|y|. Thus we have

|gpzq| ď C exppα| log |z||q.

As |z| Ñ 0, we have |gpzq| ď Cz´α, but α ă 1, so g has a removable singularity at 0, and we can extend g
to an analytic function on C. Similarly as |z| Ñ 0, we have |gpzq| ď Czα, and so g must be constant. This
immediately implies that f is constant.

Problem 9. Let pfjq be a sequence of entire functions such that, writing z “ x` iy, we have

ĳ

C

|fjpzq|
2e´|z|

2

dx dy ď C, j “ 1, 2, . . .

for some constant C ą 0. Show that there exists a subsequence pfjkq and an entire function f such that we
have

ĳ

C

|fjkpzq ´ fpzq|
2e´2|z|2 dx dy Ñ 0, k Ñ8.

Solution. By the mean value property and Cauchy-Schwarz, for any z P C with |z| ě 2 and any j we
can write

|fjpzq| À
ż

Bpz,1q

|fjpwq| dx dy À

˜

ż

Bpz,1q

|fjpwq|2 dx dy

¸1{2

ď e
1
2 p|z|`1q2

˜

ż

Bpz,1q

|fjpwq|2 e´|w|
2

dx dy

¸1{2

ď Ce
1
2 p|z|`1q2 .
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In particular, this implies that the sequence tfju is uniformly bounded on every compact subset of C, so it
is a normal family. Thus it has a subsequence tfjku which converges uniformly on every compact subset of
C. Since each fj is entire, we also know that the limit function f is entire and also satisfies the estimate

|fpzq| À e
1
2 p|z|`1q2 .

for |z| ě 2.

To show the desired conclusion, fix ε ą 0. Let R be big enough so that

ż

|z|ąR

e´|z|
2
`|z|`1 dx dy ă ε.

Since fjk Ñ f uniformly on every compact subset of C, we may choose k to be big enough so that

ż

|z|ďR

|fjkpzq ´ fpzq|
2e´2|z|2 dx dy ă ε.

Thus we have the estimate
ż

C
|fjkpzq ´ fpzq|

2e´2|z|2 dx dy “

ż

|z|ďR

|fjkpzq ´ fpzq|
2e´2|z|2 dx dy `

ż

|z|ąR

|fjkpzq ´ fpzq|
2e´2|z|2 dx dy

ă ε`

ż

|z|ąR

pC 1 ¨ 2e
1
2 p|z|`1q2q2e´2|z|2 dx dy

ď ε` C2
ż

|z|ąR

e´|z|
2
`|z|`1 dx dy ă p1` C2qε,

which establishes the desired conclusion.

Problem 10. Use the Residue Theorem to prove that

ż 8

0

ecos x sinpsinxq
dx

x
“

π

2
pe´ 1q

Use a large semicircle as part of the contour.

Solution. For real x, the integrand can be written as 1
x Impee

ix

q. We can rewrite our integral as

ż 8

0

Impee
ix

q
dx

x
“ Im

ż 8

´8

ee
ix dx

x
,

where the equality holds provided the second integral exists (which it will).

Set fpzq “ 1
z e
eiz and let ΓR denote a large semicircular contour of radius R with endpoints at ´R and

R. Also let γr denote a small clockwise contour of radius r with endpoints at ´r and r.
Note that f is holomorphic everywhere except z “ 0, where it has a simple pole with residue e. Thus by

(a variant of) the residue theorem for “indented contours”, we have

lim
rÑ0

ż

γr

fpzqdz “ ´
1

2
¨ 2πi ¨ e “ ´iπe.

On the outer contour we have
ż

ΓR

fpzqdz “ i

ż π

0

ee
iR exppiθq

dθ.

Note that for θ P r0, πs, ∣∣∣eiR exppiθq
∣∣∣ “ e´R sinpθq ď 1.
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Thus by the bound |ez| ď e|z|, our integrand is dominated by e. Also as RÑ8, the same bound shows that
the integrand tends pointwise to e0 “ 1 (except at θ “ 0 and θ “ π), so by dominated convergence,

ż

ΓR

fpzqdz Ñ iπ as RÑ8.

By Cauchy’s applying Cauchy’s theorem to a contour joining the two semicircles, we have

0 “ 2

ż R

´r

fpzqdz `

ż

γr

fpzqdz `

ż

ΓR

fpzqdz,

and taking the limit as r Ñ 0 and RÑ8 gives

ż 8

0

fpxqdx “ i
π

2
pe´ 1q.

Finally, the imaginary part of this is the desired value.

Problem 11. Let Ω “ tpx, yq P R2 : x ą 0, y ą 0u and let u be subharmonic in Ω, continuous in Ω,
such that

upx, yq ď |x` iy| ,

for large px, yq P Ω. Assume that

upx, 0q ď ax, up0, yq ď by, x, y ě 0,

for some a, b ą 0. Show that
upx, yq ď ax` by, px, yq P Ω.

Solution. We use the Phregman-Linedlöf method. Fix ε ą 0 and, writing px, yq “ reiθ, define

φpx, yq “ ax` by ` εr3{2 cos

ˆ

´3π

8
`

3θ

2

˙

.

Note that εr3{2 cos
`

´3π
8 ` 3θ

2

˘

is the real part of the function fpzq “ ´εpe´iπ{4zq3{2, which is single-valued
and analytic in Ω, so φ is harmonic in Ω (because ax` by is clearly harmonic). Thus, since u is subharmonic
in Ω, we know that v :“ u´ φ does not have any local maximum in Ω.

We want to show that vpx, yq Ñ ´8 as r Ñ 8 in Ω. Note that since for px, yq P Ω we have θ P p0, π{2q, we
have ´3π{8` 3θ{2 P p´3π{8, 3π{8q and thus cosp´3π{8` 3θ{2q ą cosp3π{8q “: δ ą 0. So as r Ñ8, by the
hypothesis that upx, yq ă r for r sufficiently large, we have

vpx, yq “ upx, yq ´ ax´ by ´ εr3{2 cos

ˆ

´3π

8
`

3θ

2

˙

ď r ´ εδr3{2 Ñ ´8

as r Ñ 8. Thus we can pick an R large enough so that vpx, yq ď 0 for all r ě R. We also know from the
other hypotheses that on the x-axis,

vpx, 0q “ upx, yq ´ ax´ εr3{2 cos

ˆ

´3π

8
`

3θ

2

˙

ď 0

and similarly on the y-axis vp0, yq ď 0. Thus we can now apply the maximum principle to v on the bounded
region tpx, yq P Ω : r ď Ru, and since v ď 0 on the boundary, we conclude that v ď 0 throughout the entire
region, and thus by choice of R, vpx, yq ď 0 for all px, yq P Ω. This means that

upx, yq ď ax` by ` εr3{2 cos

ˆ

´3π

8
`

3θ

2

˙
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for each px, yq P Ω, and since ε is arbitrary, we conclude that upx, yq ď ax` by for all px, yq P Ω.

Problem 12. Find a function upx, yq harmonic in the region between the circles |z| “ 2 and |z ´ 1| “ 1
which equals 1 on the outer circle and 0 on the inner circle (except at the point where the circles are tangent
to each other).

Solution. Let Ω “ tz P C : |z| ă 2, |z ´ 1| ą 1u be the original region. We want to conformally map
Ω to a region on which such a function can easily be found and then pull it back. The map z ÞÑ 1{pz ´ 2q
sends Ω to the strip tz P C : ´1{2 ă Repzq ă ´1{4u, with the circle |z| “ 2 going to the line Repzq “ ´1{4
and the circle |z´1| “ 1 going to the circle Repzq “ ´1{2. So we are looking for a harmonic function v which
satisfies vpzq “ 0 when Repzq “ ´1{2 and vpzq “ 1 when Repzq “ ´1{4. The function vpzq “ Rep4z ` 2q
clearly satisfies this and is harmonic because it is the real part of an analytic function. Therefore the function

upzq “ v

ˆ

1

z ´ 2

˙

“ Re

ˆ

4

z ´ 2
` 2

˙

“ Re

ˆ

2z

z ´ 2

˙

is a harmonic function on Ω with the desired properties.
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15 Spring 2016

Problem 1a. Let
Ktpxq “ p4πtq´3{2e´|x|

2
{4t, x P R2, t ą 0,

where |x| is the Euclidean norm of R3. Show that the linear map

f ÞÑ t1{2pKt ˚ fq, L3pR3q Ñ L8pR3q

is bounded uniformly in t ą 0.

Solution. Throughout this problem, we use the symbol À to denote an implied constant which does
not depend on f , x or t. For any x P R3, we calculate∣∣∣t1{2pKt ˚ fqpxq

∣∣∣ À t´1

ż

R3

exp

ˆ

´1

4t
|x´ y|2

˙

|fpyq| dy ď t´1

ˆ
ż

R3

|fpyq|3 dy

˙1{3 ˆż

R3

exp

ˆ

´3

8t
|x´ y|2 dy

˙˙2{3

by Hölder’s inequality. Making the change of variables z “
?

3?
8
px´ yq in the last integral, we get

∣∣∣t1{2pKt ˚ fqpxq
∣∣∣ À t´1 ||f ||L3

˜

ż

R3

exp

˜

´

∣∣∣∣ z?t
∣∣∣∣2
¸

dz

¸2{3

“ t´1 ||f ||L3

˜

ˆ
ż

R
expp´pu{

?
tq2q du

˙3
¸2{3

by Tonelli’s theorem

À t´1 ||f ||L3 p
?
πtq2 À ||f ||L3 .

Thus
ˇ

ˇ

ˇ

ˇt1{2pKt ˚ fq
ˇ

ˇ

ˇ

ˇ

L8
À ||f ||L3 , so we see that f ÞÑ t1{2pKt ˚fq is a bounded linear operator whose operator

norm is bounded uniformly in t ą 0.

Problem 1b. Prove that t1{2 ||Kt ˚ f ||L8 Ñ 0 as tÑ 0, for f P L3pR3q.

Solution. We know that CcpR3q, the set of continuous functions with compact support, is dense in L3pRq.
If g P CcpR3q, then we have

|pKt ˚ gqpxq| ď

ż

R3

|Ktpx´ yqgpyq| dy ď ||g||L8

ż

R3

|Ktpx´ yq| dy À ||g||L8

where again the implied constant here does not depend on t. Thus we have t1{2 ||Kt ˚ g||L8 Ñ 0 as t Ñ 0
for all g P CcpR3q.

Now let f be any function in L3pR3q. Let the linear operator φt : L3pR3q Ñ L8pR3q be defined by

φtpfq “ t1{2pKt ˚ fq.

Recall that in part (a) we showed that there is a constant C, independent of t, such that ||φtpfq||L8 ď C ||f ||L3

for all f P L3. Fix ε ą 0. By density, we can pick g P CcpR3q such that ||f ´ g||L3 ă ε{2C. Since we have
proved the result for functions in CcpR3q, we can now pick a δ ą 0 such that for all t ă δ, ||φtpgq||L8 ă ε{2.
Then we conclude that for any t ă δ we have

t1{2 ||Kt ˚ f ||L8 “ ||φtpfq||L8 ď ||φtpgq||L8 ` ||φtpf ´ gq||L8 ă
ε

2
` C ||f ´ g||L3 ă ε.

This shows that limtÑ0 t
1{2 ||Kt ˚ f ||L8 “ 0 for any f P L3pR3q.

Problem 2. Let f P L1pRq. Show that the series

8
ÿ

n“1

1
?
n
fpx´

?
nq
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converges absolutely for almost all x P R.

Solution. Let

gpxq “
8
ÿ

n“1

1
?
n

∣∣fpx´?nq∣∣ .
We show that

şM`1

M
gpxq dx is finite for every integer M , which is enough to conclude that gpxq ă 8 for

almost every x P rM,M ` 1s, which in turn implies that gpxq is finite almost everywhere, which is exactly
what we need to prove.

For a fixed integer M , we have

ż M`1

M

gpxq dx “

ż M`1

M

8
ÿ

n“1

1
?
n

∣∣fpx´?nq∣∣ “ 8
ÿ

n“1

1
?
n

ż M`1

M

|fpx´
?
nq| dx

by the Monotone Convergence Theorem, and after changing variables we get

ż M`1

M

gpxq dx “

8
ÿ

n“1

1
?
n

ż M`1´
?
n

M´
?
n

|fpyq| dy.

For each integer k, there are 2k ` 1 integers n such that k ă
?
n ď k ` 1. For each of these integers n, we

have rM ´
?
n,M ` 1´

?
ns Ď rM ´ k ´ 1,M ` 1´ ks. Thus the above sum is bounded by

8
ÿ

k“1

p2k ` 1q ¨
1

k

ż M`1´k

M´k´1

|fpyq| dy ď 3
8
ÿ

k“1

«

ż M´k

M´k´1

|fpyq| dy `

ż M`1´k

M´k

|fpyq| dy

ff

ď 6 ||f ||L1 .

Thus we conclude that
şM`1

M
gpxq ă 8, so gpxq is finite almost everywhere.

Problem 3. Let f P L1
locpRq be real-valued and assume that for each integer n ą 0, we have

f

ˆ

x`
1

n

˙

ě fpxq,

for almost all x P R. Show that for each real number a ě 0 we have

fpx` aq ě fpxq

for almost all x P R.

Solution. Let E be the (measure zero) set of x P Rn that do not have the property of the hypothesis.
Define F “

Ť

pPQpE ` pq. This is a countable union of measure zero sets so it also has measure zero. If
a “ 0, the result is obvious, so let a ą 0 be fixed. By the Lebesgue differentiation theorem, we know that

fpx` aq ´ fpxq “ lim
rÑ0`

1

2r

ż x`r

x´r

pfpy ` aq ´ fpyqq dy.

for all x outside of some measure zero set G. We show that fpx` aq ´ fpxq ě 0 for all x outside of G. It is
enough to show that for any interval rb, cs,

ż c

b

fpy ` aq dy ě

ż c

b

fpyq dy,

or equivalently
ż c`a

b`a

fpyq dy ě

ż c

b

fpyq dy.
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We can write a in binary as

a “ m`
8
ÿ

j“1

εj
2j

“

8
ÿ

j“1

1

kj

where tkju is some sequence of integers (not necessarily distinct, because there could by many 1s at the

beginning). Let aN “
řN
j“1 1{kj . For any y R F and any N , we know that y ` aN R E by construction of

F . Therefore we have fpy ` aN q “ fpy ` aN´1 ` 1{kN q ě fpy ` aN´1q. By induction and the fact that
y ` aN R E for each N , we see that fpy ` aN q ě fpyq for all N . Therefore, since F has measure zero, this
means

ż c`aN

b`aN

fpyq dy “

ż c

b

fpy ` aN q dy ě

ż c

b

fpyq dy.

Defining fN pyq “ fpyqχrb`aN ,c`aN spyq, we see that

ż

R
fN pyq dy ě

ż c

b

fpyq dy.

Since fN Ñ fχrb`a,c`as pointwise as N Ñ 8 and |fN | ď |f |χrb,c`as for all N , and |f |χrb,c`as is integrable,
by the Dominated Convergence Theorem we conclude that

ż c`a

b`a

fpyq dy “

ż

R
fχrb`a,c`as ě

ż c

b

fpyq dy.

Thus we conclude that fpx` aq ´ fpxq ě 0 for all x for which the Lebesgue differentiation theorem applies
to the function x ÞÑ fpx` aq ´ fpxq, which is almost all x P R.

Problem 4. Let V1 be a finite-dimensional subspace of the Banach space V . Show that there exists a
continuous projection P : V Ñ V1, i.e., a continuous linear map P : V Ñ V1 such that P 2 “ P and the range
of P is equal to V1.

Solution. Let te1, . . . , enu be a basis for V1. Without loss of generality we may assume that ||ej || “ 1
for each j. For a fixed j, we know that spanteiui‰j is a closed subspace of V . Thus by the Hahn-Banach the-
orem, there is a linear functional fj P V

˚ such that fjpejq “ ||ej || “ 1 and fjpxq “ 0 for all x P spanteiui‰j .
Now define the map P : V Ñ V1 by

P pxq :“
n
ÿ

j“1

fjpxqej .

It is clear that ImpP q Ď V1 by construction, and since each fj is linear, P is also linear. We see that P is
continuous because

||Px´ Py|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

fjpx´ yqej

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

j“1

|fjpx´ yq| ||ej || ď

˜

n
ÿ

j“1

||fj ||

¸

||x´ y|| .

Finally, for any v P V1, we write v “ v1e1 ` . . .` vnen and note that

Pv “
n
ÿ

j“1

fjpv1e1 ` . . .` vnenqej “
n
ÿ

j“1

vjej “ v.

This implies both that P 2 “ P and that V1 Ď ImpP q, so ImpP q “ V1. Thus P is the desired map.

Problem 5. For f P C80 pR2q define upx, tq by

upx, tq “

ż

R2

eix¨ξ
sinpt|ξ|q

|ξ|
fpξq dξ, x P R2, t ą 0.
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Show that limtÑ8 ||up¨, tq||L2 “ 8 for a set of f that is dense in L2pRq.

Solution. We claim the desired result holds for all f in the set

S :“ tf P L2 : lim
xÑ0

|fpxq| “ 8u.

Define

gtpξq “
sinpt|ξ|q

|ξ|
fpξq,

then we see that

upx, tq “

ż

R2

eix¨ξgtpξq dξ “ ĝtpxq.

Therefore by Plancherel we have

||up¨, tq||
2
L2 “ ||ĝt||

2
L2 “ ||gt||

2
L2 “

ż
ˆ

sinpt|ξ|q

|ξ|

˙2

|fpξq|2 dξ ě

ż

Bp0,π{p2tqq

ˆ

sinpt|ξ|q

|ξ|

˙2

|fpξq|2 dξ

Á

ż

Bp0,π{p2tqq

ˆ

t|ξ|

|ξ|

˙2

|fpξq|2 dξ “ t2
ż

Bp0,π{p2tqq

|fpξq|2 dξ

ě t2 ¨ λ2pBp0, π{p2tqqq ¨ min
|ξ|“π{p2tq

|fpξq|2 Á min
|ξ|“π{p2tq

|fpξq|2,

which goes to 8 as tÑ8 for f P S.

Now we need to show S is dense in L2. Fix f P L2, ε ą 0. Let gpxq “ |x|´1{2 ¨ χBp0,1qpxq P L
2pR2q.

Pick a continuous function φ with ||f ´ φ||L2 ă ε and let h “ φ` εg. It’s clear that h P S and we have

||f ´ h||L2 ď ||f ´ φ||L2 ` ||εg||L2 ď εp1` ||g||L2q.

So S is dense in L2.

Problem 6. Suppose that tφnu is an orthonormal system of continuous functions in L2pr0, 1sq and let

S be the closure of the span of tφnu. If supfPSzt0u
||f ||L8
||f ||L2

is finite, prove that S is finite dimensional.

Solution. We consider S as a subspace of L2pr0, 1sq equipped with the L2 norm on r0, 1s. The sup condition
on S tells us that there exists a constant M such that for any f P S, ||f ||L8 ď M ||f ||L2 . For a fixed
x P r0, 1s, note that the map f ÞÑ fpxq is a linear functional on S and that

|fpxq| ď ||f ||L8 ď M ||f ||L2 ,

which shows that this is in fact a bounded linear functional on S. Since S is a closed subspace of the Hilbert
space L2pr0, 1sq, S is also a Hilbert space by itself, and thus by the Riesz representation theorem we know
that there exists a function gx P S such that fpxq “ xf, gxy for all f P S. Moreover, notice that

||gx||
2
L2 “ xgx, gxy “ |gxpxq| ď ||gx||L8 ď M ||gx||L2 ,

which implies that ||gx||L2 ďM for each x P r0, 1s.

Now let tf1, . . . , fNu be any orthonormal set in S. By Bessel’s inequality, for each x P r0, 1s we have

M2 ě ||gx||
2
L2 ě

N
ÿ

n“1

|xfn, gxy|2 “

N
ÿ

n“1

|fnpxq|
2.

Integrating both sides from 0 to 1 we obtain

M2 ě

N
ÿ

n“1

ż 1

0

|fnpxq|
2 dx “

N
ÿ

n“1

||fn||
2
L2 “ N.
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This shows that any orthonormal set in S can contain no more than M2 elements, which implies that
dimpSq ďM2.

Problem 7. Determine
ż 8

0

xa´1

x` z
dx

for 0 ă a ă 1 and Repzq ą 0.

Solution. Pick the branch of log with the positive real axis cut out and integrate

fpwq :“
wa´1

w ` z
“

expppa´ 1q logpwqq

w ` z

along a “Pac-Man” contour with a circle of radius ε around 0, a large semicircle of radius R, and an angle of
α away from the positive real axis. The integrals over the circles go to 0 in the limit and the two integrals
along the straight paths combine in the limit as αÑ 0 to give

p1´ expp2πiaqq

ż 8

0

ta´1

t` z
dt.

Then calculate the residue at w “ ´z, it’s equal to p´zqa´1 (this is well-defined because since Repzq ą 0,
´z does not lie on the positive real axis). So we conclude that the answer is

ż 8

0

ta´1

t` z
dt “

2πip´zqa´1

1´ expp2πiaq
.

Problem 8. Let fn : H Ñ H be a sequence of holomorphic functions. Show that unless |fn| Ñ 8

uniformly on compact subsets of H, there exists a subsequence converging uniformly on compact subsets of
H.

Solution. By Marty’s Theorem, we know that the family tfnu is either a normal family or tends uni-
formly to 8 on every compact set if and only if the spherical derivatives

ρnpzq “
|f 1npzq|

1` |fnpzq|2

are uniformly bounded on every compact set. So suppose that fn does not tend uniformly to 8 on every
compact set. Then if we show that tfnu is a normal family, it implies that tfnu has a subsequence that
converges uniformly on all compact sets. So it suffices to show that the quantites ρnpzq above are uniformly
bounded on compact sets.

Define

gnpzq “
fnpzq ´ i

fnpzq ` i
.

Then each gn is a holomorphic function HÑ D. In particular, the family tgnu is uniformly bounded on all
of H, so tgnu is a normal family. Thus we know that the quantities

|g1npzq|

1` |gnpzq|2

are uniformly bounded on compact subsets of H. Now we have the calculation

|g1npzq|

1` |gnpzq|2
“

4
|f 1npzq|

2

|fnpzq`i|2

1` |fnpzq´i|2

|fnpzq`i|2

“
4|f 1npzq|

2

|fnpzq ` i|2 ` |fnpzq ´ i|2
“ 2 ¨

|f 1npzq|

1` |fnpzq|2
“ 2ρnpzq.
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This shows that ρnpzq must also be uniformly bounded on compact subsets of H and thus tfnu is a normal
family, so we are done.

Alternate solution. Without using Marty’s theorem (it’s not such a standard result).

Let gn be defined as in the first solution, so that gn : HÑ D is holomorphic. Fix a compact set K Ď H. The
gn are uniformly bounded, so there is a subsequence gnk converging uniformly to another function g on K.
Let vk “ gnk . First suppose that g ‰ 1 anywhere on K. Then, since gpKq is compact (g is continuous as a
local uniform limit of continuous functions), |gpzq ´ 1| is bounded away from 0 for z P K. Therefore, letting

f “
´ipg ` 1q

pg ´ 1q
,

we have for any z P K

|fnkpzq ´ fpzq| “
∣∣∣∣vkpzq ` 1

vkpzq ´ 1
´
gpzq ` 1

gpzq ´ 1

∣∣∣∣ “ 2

∣∣∣∣ vkpzq ´ gpzq

pvkpzq ´ 1qpgpzq ´ 1q

∣∣∣∣ À 2 |vkpzq ´ gpzq| ,

which shows that fnk Ñ f uniformly on K. This is the “subsequence converging uniformly on compact
subsets of H” part of the problem.

On the other hand, now assume that gpz0q “ 1 for some z0 P K. We want to show that in fact g is
identically 1 and vk Ñ 1 uniformly on K. Fix a conformal map T : DÑ H with T p0q “ z0 and let hk “ vk˝T .
Let

ψkpzq “
z ` hkp0q

1` hkp0q

be an automorphism of D taking 0 to hkp0q. Let uk “ ψ´1
k ˝ hk so that we have hk “ ψk ˝ uk where

uk : D Ñ D is holomorphic and satisfies ukp0q “ 0. Since T is conformal, to show vk Ñ 1 locally uniformly
it is enough to show hk Ñ 1 locally uniformly. It’s enough to show hk Ñ 1 uniformly on the closed ball
Bp0, rq for 0 ă r ă 1. By the Schwarz lemma, we have unpBp0, rqq Ď Bp0, rq, so to show hk Ñ 1 uniformly
on Bp0, rq it’s enough to show ψk Ñ 1 uniformly on Bp0, rq. This is true because for any z P Bp0, rq we have

|ψkpzq ´ hkp0q| “
|z|

|1` hkp0qz|
p1´ |hnp0q|

2q ď
2r

1´ r
p1´ |hnp0q|

2q

which tends to 0 uniformly for z P Bp0, rq. So we have shown hk Ñ 1 locally uniformly on D, which shows
vk Ñ 1 locally uniformly. It then follows that

fnk “
p´iqpvk ` 1q

vk ´ 1

tends locally uniformly to 8.
So far we’ve only shown that a subsequence of the fn tends locally uniformly to 8. But the argument

above can be applied to any subsequence of the fn to conclude that any subsequence of the fn has a further
subsequence converging locally uniformly to 8, which implies that fn Ñ8 locally uniformly.

Problem 9. Let f : CÑ C be entire and assume that |fpzq| “ 1 when |z| “ 1. Show that fpzq “ Czm for
some integer m ą 0 and C P C with |C| “ 1.

Solution. We know that f is not identically zero, so the zeros of f are isolated and thus f has only
finitely many zeros inside D. Denote them by a1, . . . , an, where each root is listed as many times as its
multiplicity. Define

Bpzq :“
n
ź

j“1

z ´ aj
1´ ajz

.

Notice that B is a function which is analytic in D, has exactly the same zeros as f in D, and satisfies
|Bpzq| “ 1 for all |z| “ 1. Thus f{B and B{f are two nonvanishing analytic functions in D which have mod-
ulus 1 on BD. By the maximum modulus principle, we conclude that |B{f | ď 1 and |f{B| ď 1 throughout
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D, which implies that |f{B| “ 1 throughout D, which by the open mapping theorem implies that f{B must
be equal to a constant C with |C| “ 1 on all of D.

So we can write

fpzq “ CBpzq “ C
n
ź

j“1

z ´ aj
1´ ajz

for all z P D. Since f is entire, by the uniqueness of analytic continuations we know that B must also be
entire. But notice that if any aj is nonzero, then B has a pole at aj , which would be a contradiction. So we
must have all aj “ 0 and thus Bpzq “ zm for some integer m. Since we know fpzq “ CBpzq “ Czm for all
z P D, since both sides are entire functions this implies that fpzq “ Czm for all z P C.

Alternate solution. This solution is basically just a worse version of the first one, but it uses the re-
flection principle so it’s cool.

The fact that |f | “ 1 on the unit circle essentially allows us to use the reflection principle. But we need to
get rid of the roots at 0 first. More concretely:

Let m be the order of vanishing of f at 0 and let gpzq “ z´mfpzq. Then g is entire, gp0q ‰ 0, and we still
have |gpzq| “ 1 for all |z| “ 1. We can write this as 1 “ gpzqgpzq “ gpzqgp1{zq for |z| “ 1. The function
z ÞÑ 1

gp1{zq
is analytic in a neighborhood of the unit circle (because gp1{zq does not vanish on the unit circle)

and agrees with g on the unit circle. Therefore since the unit circle has a limit point, by uniqueness of
analytic continuation we have

gpzq “
1

gp1{zq
for all z ‰ 0.

Taking z Ñ 8, we see that limzÑ8 gpzq “ 1{gp0q ă 8 because g does not vanish at 0. So g is bounded,
but it’s not necessarily entire because zeros of g inside D reflect to poles outside of D. Let a1, . . . , am be the
zeros of g inside D, counted with multiplicity. Then

z ÞÑ gpzq
pz ´ 1{a1q ¨ ¨ ¨ pz ´ 1{anq

pz ´ a1q ¨ ¨ ¨ pz ´ anq

is bounded and entire, so it must be a constant. Therefore we conclude

fpzq “ Czm
pz ´ a1q ¨ ¨ ¨ pz ´ anq

pz ´ 1{a1q ¨ ¨ ¨ pz ´ 1{anq
,

but since f is entire, it can’t have any of those poles, so it also can’t have any of the corresponding zeros, so
fpzq “ Czm.

Problem 10. Does there exist a function fpzq holomorphic in the disk |z| ă 1 such that lim|z|Ñ1 |fpzq| “ 8?
Either find one or prove that none exist.

Solution. No such function exists. Suppose f had that property. Then in particular f is not identi-
cally zero, so f has only finitely many zeros r1, . . . , rn P D (where roots are listed as many times as their
multiplicity). Let gpzq “ fpzq{pz ´ r1q ¨ ¨ ¨ pz ´ rnq. Then g is a function which is holomorphic and nonva-
nishing in D, and since pz ´ r1q ¨ ¨ ¨ pz ´ rnq does not tend to 8 as |z| Ñ 1, we still have that |gpzq| Ñ 8

as |z| Ñ 1. Since g is nonvanishing, 1{g is also holomorphic in D and |1{gpzq| Ñ 0 as |z| Ñ 1. But apply-
ing the maximum principle to 1{g, we see that |1{g| can’t have any local maximum inside D, and since it
extends continuously to be identically zero on BD, this implies that 1{g must be identically zero on all of
D, which is a contradiction because g is a holomorphic function on D. Thus no such function f can exist.

Problem 11. Assume that fpzq is holomorphic on |z| ă 2. Show that

max
|z|“1

∣∣∣∣fpzq ´ 1

z

∣∣∣∣ ě 1.
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Solution. Let M be the max in question, and let γ be the counterclockwise contour around the unit
circle. By the ML inequality

ˇ

ˇ

ˇ

ˇ

ż

γ

fpzq ´
1

z
dz

ˇ

ˇ

ˇ

ˇ

ď 2πM.

On the other hand,
ż

γ

fpzq ´
1

z
dz “ 0´ 2πi “ ´2πi.

Therefore 2π ď 2πM, hence the result.

Alternate solution. I think these two solutions are essentially equivalent but this one feels less like a
trick.

Suppose instead that |fpzq ´ 1{z| ă 1 for all |z| “ 1. Let C be the unit circle. The idea is that the
image of C under 1{z has winding number ´1 around the origin, and if fpzq is always less than 1 away from
1{z, then f should also wind C around the origin ´1 times, which is bad.

By assumption we have |zfpzq ´ 1| ă |z| “ 1 for all z P C. So the image of C under zfpzq is contained
in Bp1, 1q, which implies it has winding number 0 around the origin. Therefore by the argument principle,
zfpzq has no zeros inside D, which is impossible if f is analytic. Alternatively, one can apply Rouche’s
theorem to the inequality |zfpzq ´ 1| ă |z| “ 1 to conclude that zfpzq has the same number of zeros in D as
the constant function 1, which is zero (the first argument given here is essentially just a proof of Rouche’s
theorem).

Problem 12a. Find a real-valued harmonic function v defined on the disk |z| ă 1 such that vpzq ą 0
and limzÑ1 vpzq “ 8.

Solution. Define vpzq “ log
∣∣∣ z`1
z´1 ´ 1

∣∣∣. It is clear that vpzq Ñ 8 as z Ñ 1. To see that v is harmonic

in D, note that the map z ÞÑ z`1
z´1 ´ 1 is nonvanishing on D, so z ÞÑ log

´

z`1
z´1 ´ 1

¯

is a well-defined analytic

function on D, and vpzq “ Re
´

log
´

z`1
z´1 ´ 1

¯¯

, so v is harmonic in D. To show that vpzq ą 0 on D, note

that z ÞÑ z´1
z`1 ´ 1 is a conformal map from D to tz P C : Impzq ă ´1u, so

∣∣∣ z´1
z`1 ´ 1

∣∣∣ ą 1 for all z P D and

thus vpzq ą 0.

“Alternate” Solution Simply define vpzq “ ´ log
∣∣ z´1

2

∣∣ . On the disc, z´1
2 is nonzero and holomorphic, so

vpzq is harmonic. It is also non-negative since z´1
2 ă 1 for |z| ă 1. The blowup near 1 is clear.

Problem 12b. Let u be a real-valued harmonic function in the disk |z| ă 1 such that upzq ď M ă 8

and limrÑ1 upre
iθq ď 0 for almost all θ. Show that upzq ď 0.

Solution. For any 0 ă r ă 1, u is harmonic on the closed disk |z| ď r. So for any 0 ă s ă 1, we
can use the Poisson integral formula to write

uprseiθq “
1

2π

ż 2π

0

r2 ´ prsq2

|reiφ ´ rseiθ|2
upreiφq dφ. (2)

For a fixed s and θ, define

grpφq “
r2 ´ prsq2

|reiφ ´ rseiθ|2
upreiφq.

We see that gr is bounded on r0, 2πs because u ďM on all of D by hypothesis and |reiφ´ rseiθ|2 is bounded
away from 0 because s ă 1. So say that |grpφq| ď A for all φ P r0, 2πs. Therefore we can apply Fatou’s
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lemma to the functions A´ grpφq to get

ż 2π

0

lim inf
rÑ1

pA´ grpφqq dφ ď lim inf
rÑ1

ż 2π

0

pA´ grpφqq dφ,

which implies that
ż 2π

0

lim sup
rÑ1

grpφq dφ ě lim sup
rÑ1

ż 2π

0

grpφq dφ.

So taking the lim sup as r Ñ 1 on both sides of equation (1) yields, since u is continuous on D,

upseiθq “ lim sup
rÑ1

uprseiθq “ lim sup
rÑ1

ż 2π

0

grpφq dφ ď

ż 2π

0

lim sup
rÑ1

grpφq dφ “

ż 2π

0

1´ s2

|eiφ ´ seiθ|2
lim sup
rÑ1

upreiφq dφ.

By hypothesis, the integral on the far right is an integral of a function which is ď 0 almost everywhere, so
we have upseiθq ď 0. This argument holds for any 0 ă s ă 1 and any θ P r0, 2πs, so we conclude that u ď 0
on D.
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16 Fall 2016

Problem 1. We consider the space L1pµq of integrable functions on a measure space pX,M, µq. For
f P L1pµq let

||g||1 “

ż

|gpxq|dµ

be the corresponding L1-norm. Suppose that f and fn for n P N are functions in L1pµq such that

(i) fnpxq Ñ fpxq for µ-almost every x P X and

(ii) ||fn||1 Ñ ||f ||1.

Show that then ||fn ´ f ||1 Ñ 0.

Solution. Note that the function |f | ` |fn| ´ |f ´ fn| is nonnegative for all n (this just follows from
the triangle inequality). Then we apply Fatou’s lemma to get

ż

lim inf
nÑ8

p|f | ` |fn| ´ |f ´ fn|q dµ ď lim inf
nÑ8

ż

p|f | ` |fn| ´ |f ´ fn|q dµ.

Since fn Ñ f pointwise almost everywhere, the left side of the above inequality reduces to

2

ż

|f | dµ.

Since ||fn||L1 Ñ ||f ||L1 as nÑ8, the right side reduces to

2

ż

|f | dµ´ lim sup
nÑ8

ż

|f ´ fn| dµ.

Together these imply that

lim sup
nÑ8

ż

|f ´ fn| dµ ď 0,

which implies that ||f ´ fn||L1 Ñ 0 as nÑ8.

Problem 2. Let µ be a finite positive Borel measure on R that is singular to the Lebesgue measure.
Show that

lim
rÑ0`

µprx´ r, x` rsq

2r
“ `8

for µ-almost every x P R.

Solution. Let λ be Lebesgue measure on R. It suffices to show that

lim
rÑ0`

λprx´ r, x` rsq

µprx´ r, x` rsq
“ 0

for µ-almost every x P R. Since λ and µ are singular, write R “ AY Ac where λpAq “ 0 and µpAcq “ 0. It
suffices to just look at x P A because µpAcq “ 0. Define

Ek “

"

x P A : lim sup
rÑ0`

λprx´ r, x` rsq

µprx´ r, x` rsq
ą

1

k

*

.

To prove the desired result it suffices to show that µpEkq “ 0 for each fixed k. Fix ε ą 0. By the regularity
of Lebesgue measure, let V be an open set with Ek Ď V and λpV q ă ε. By definition of Ek, for each x P Ek
there is an open interval Ipxq “ px´ rpxq, r ` rpxqq such that

λpIpxqq

µpIpxqq
ě

λprx´ rpxq, x` rpxqsq

µprx´ rpxq, x` rpxqsq
ą

1

k
,
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and rpxq may be chosen small enough so that Ipxq Ď V for each x. Then
Ť

xPEk
p1{5qIpxq is a covering of

Ek by open intervals, so by the Vitali covering lemma, we can pick a countable subcollection tp1{5qIpxnqu
which is pairwise disjoint and satisfies

Ek Ď
ď

xPEk

p1{5qIpxq Ď
8
ď

n“1

Ipxnq.

Therefore we have the estimate

µpEkq ď
8
ÿ

n“1

µpIpxnqq ď k
8
ÿ

n“1

λpIpxnqq “ kλ

˜

8
ď

n“1

Ipxnq

¸

ď kλpV q ă kε.

Since µpEkq is independent of ε, we may take εÑ 0 and conclude that µpEkq “ 0, so we are done.

Problem 3a. If X is a compact metric space, we denote by PpXq the set of all positive Borel mea-
sures µ on X with µpXq “ 1. Let φ : X Ñ r0,8s be lower semicontinuous function on X. Show that if µ
and µn are in PpXq and µn Ñ µ with respect to the weak-star topology on PpXq, then

ż

φdµ ď lim inf
nÑ8

ż

φdµn.

Solution. Since φ is lower semicontinuous, we can write it as a monotonically increasing limit of con-
tinuous functions, and since φ ě 0 we may also take these continuous functions to be nonnegative. So say
that 0 ď fk Õ φ as k Ñ 8. Then, by definition of weak-˚ convergence of measures and applying the
Monotone Convergence Theorem twice, we have

ż

φdµ “ lim
kÑ8

ż

fk dµ “ lim
kÑ8

lim
nÑ8

ż

fk dµn ď lim inf
nÑ8

lim
kÑ8

ż

fk dµn “ lim inf
nÑ8

ż

φdµn.

The interchange of the limits with the inequality is justified by the following statement:

Let tan,ku
8
n,k“1 be nonnegative numbers such that limnÑ8 an,k and limkÑ8 an,k both exist for each fixed

k and n respectively, limkÑ8 limnÑ8 an,k exists, and for each fixed n, an,k is increasing in k. Then
limkÑ8 limnÑ8 an,k ď lim infnÑ8 limkÑ8 an,k.

Proof: Define

bn :“ lim
kÑ8

an,k ck :“ lim
nÑ8

an,k L :“ lim
kÑ8

ck.

Fix ε ą 0. Let K be big enough so that cK ą L ´ ε. By the increasing condition, we have bn ě an,K for
each n. Therefore

lim inf
nÑ8

bn ě lim inf
nÑ8

an,K “ cK ą L´ ε.

Since lim infnÑ8 bn does not depend on ε, we conclude that lim infnÑ8 bn ě L.

Problem 3b. Let K Ď Rd be a compact set. For µ P PpKq, define

Epµq “

ż

K

ż

K

1

|x´ y|
dµpxq dµpyq.

Show that the function E : PpKq Ñ r0,8s attains its minimum on PpKq (which could possibly be infinity).

Solution. See Spring 2013 # 4

Problem 4. Let L1 “ L1pr0, 1sq be the space of integrable functions and L2 “ L2pr0, 1sq be the space

105



of square-integrable functions on r0, 1s. Then L2 Ă L1. Show that L2 is a meager subset of L1., i.e., L2 can
be written as a countable union of sets in L1 that are closed and have empty interior in L1.

Solution. Write

L2 “

8
ď

N“1

"

f P L1 :

ż 1

0

|f |2 ď N

*

“: EN .

To show that L2 is a meager subset of L1, it suffices to show that each EN is closed and nowhere dense with
respect to the L1 norm. To show EN is closed, let fk be a sequence in EN and suppose that fk Ñ f in the
L1 norm. This implies that a subsequence converges to f almost everywhere, so by relabeling if necessary
we may just assume that fk Ñ f almost everywhere, so also |fk|

2 Ñ |f |2 almost everywhere. Therefore by
Fatou’s lemma we have

ż 1

0

|f |2 “

ż 1

0

lim inf
kÑ8

|fk|
2 “ lim inf

kÑ8

ż 1

0

|fk|
2 ď N,

so f P EN . Thus EN is closed.

To show EN is nowhere dense, fix f P EN and ε ą 0. It suffices to find a function g such that g R EN
and ||g ´ f ||L1 ă ε. Define gpxq “ fpxq ` εx´1{2. It is clear that g R EN because if g were in L2, then x´1{2

would also be, which is a contradiction. It is also clear that

||g ´ f ||L1 “ ε

ż 1

0

x´1{2 dx “ 2ε,

so we are done.

Problem 5. Let X “ Cpr0, 1sq be the Banach space of real valued continuous functions on r0, 1s equipped
with the sup norm. Let A be the Borel σ-algebra on X. Show that A is the smallest σ-algebra on X that
contains all sets of the form

Spt, Bq “ tf P X : fptq P Bu

for t P r0, 1s and B a Borel subset of R.

Solution. First we show that each set of the form Spt, Bq is actually a Borel set in X. Note that for
each t, the evaluation map φt : X Ñ R given by f ÞÑ fptq is a bounded linear functional on X because
|fptq| ď ||f ||X . Therefore φt is a continuous function X Ñ R, and since Spt, Bq “ φ´1

t pBq where B is a
Borel set in R, we see that Spt, Bq must be a Borel set in X.

Let F denote the σ-algebra generated by the sets of the form Spt, Bq. To show that F “ A, it suffices
to show that every closed neighborhood in X is in F . So fix g P X and ε ą 0. We need to show that
E :“ tf P X : ||f ´ g||X ď εu is an element of F . For any q P Q X r0, 1s, define Bq :“ rgpqq ´ ε, gpqq ` εs.
It is clear that Bq is a Borel subset of R. Now we claim that

E “
č

qPQXr0,1s
Spq,Bqq.

Proving this is enough to conclude that E is an element of F , so this will finish the problem.

If f P E, then ||f ´ g||X ď ε, so in particular |fpqq ´ gpqq| ď ε for every q P Q X r0, 1s, which implies
that fpqq P Bq for every q, so f is an element of the set on the right side of the above equation. Con-
versely, let f be an element of the right side and suppose that f R E. Then we have |fpxq ´ gpxq| ą ε
for some x P r0, 1s, and since f and g are both continuous, we can find a rational number q near x such
that |fpqq ´ gpqq| ą ε, which contradicts the assumption that f P Spq,Bqq. Therefore we conclude that
E “

Ş

qPQXr0,1s Spq,Bqq P F , so we are done.
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Problem 6a. Consider the Banach space `1 consisting of all sequences u “ txiu in R with

||u||`1 “

8
ÿ

i“1

|xi| ă 8

and the Banach space `8 consisting of all sequences v “ tyiu in R with

||v||`8 “ sup
iPN
|yi| ă 8.

There is a well-defined dual pairing between `1 and `8 given by

xu, vy “
8
ÿ

i“1

xiyi

for u “ txiu P `
1 and v “ tyiu P `

8. With this dual pairing, `8 “ p`1q˚ is the dual space of `1.
Show that there exists no sequence tunu in `1 such that ||un||`1 ě 1 for all n and xun, vy Ñ 0 for each

v P `8.

Solution. Let tunu be a sequence in `1 satisfying ||un||`1 ě 1 for all n. We can assume by scaling that
||un||`1 “ 1 for each n because scaling the sequences down can only decrease xun, vy for any v P `8. Suppose
that xun, vy Ñ 0 as n Ñ 8 for all v P `8. We will get a contradiction by constructing a sequence v P `8

such that xun, vy is bounded away from zero infinitely often.

First note that by letting v be the sequence which has a 1 in the jth spot and 0 everywhere else, we
know that punqj Ñ 0 as n Ñ 8 for each fixed j. Also note that since ||un||`1 “ 1 for each n, necessarily
||un||`8 ď 1 for all n. Now, for any fixed ε P p0, 1{2q, we can do the following construction:

Pick J1 to be large enough so that
ÿ

jPr1,J1s

|pu1qj | ą 1´ ε.

Now, since we know that punqj tends to zero in each slot individually, pick N1 to be large enough so that

maxp|puN1q1|, . . . , |puN1qJ1 |q ă
ε

2J1
.

Then we see that
ÿ

jPr1,J1s

|puN1qj | ă ε{2,

so we may pick J2 such that
ÿ

jPrJ1`1,J2s

|puN1
qj | ą 1´ ε.

Now pick N2 to be large enough so that

maxp|puN2q1|, . . . , |puN2qJ2 |q ă
ε

2J2
.

We may repeat this process indefinitely, and so we obtain a sequence tNku and a sequence tJku such that
for each k

ÿ

jPrJk`1,Jk`1s

|puNkqj | ą 1´ ε.

Now, letting spxq denote the function which is 1 if x ě 0 and ´1 if x ă 0, define the sequence v P `8 by

pvqj “ sppuNkqjq when j P rJk ` 1, Jk`1s.
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Note that each pvqj is an entry of some un, so we have ||v||`8 ď 1. By construction, for each k we have

ÿ

jPrJk`1,Jk`1s

puNkqjpvqj “
ÿ

jPrJk`1,Jk`1s

|puNkqj | ą 1´ ε,

so

xuNk , vy “
ÿ

jPrJk`1,Jk`1s

puNkqjpvqj`
ÿ

jRrJk`1,Jk`1s

puNkqjpvqj ě 1´ε´||v||`8
ÿ

jRrJk`1,Jk`1s

|puNkqj | ą 1´2ε.

Therefore, picking (for example) ε “ 1{3, we see that xuNk , vy is bounded away from zero for every k, which
is our contradiction. (Note: I would really prefer a nicer, non-constructive solution)

Problem 6b. Show that every weakly convergent sequence tunu in `1 converges in the norm topology
of `1.

Solution. Suppose that un Ñ u weakly in `1. This means that φpunq Ñ φpuq for every bounded lin-
ear functional φ P p`1q˚, and by the given dual pairing this means that xun, vy Ñ xu, vy for every v P `8,
i.e. xun ´ u, vy Ñ 0 for every v P `8. Suppose that un did not converge to u in the norm topology on
`1. Then there is a subsequence unk and a δ ą 0 such that ||unk ´ u||`1 ě δ for all k. Replacing unk ´ u
with p1{δqpunk ´ uq if necessary, we may assume that ||unk ´ u||`1 ě 1 for all k. But we still must have
xunk ´ u, vy Ñ 0 for every v P `8, which contradicts part (a). Therefore we must have un Ñ u in the norm
topology on `1.

Problem 7a. Let H be the space of holomorphic functions f on D such that

ż

D
|fpzq|2 dApzq ă 8.

Here integration is with respect to Lebesgue measure A on D. The vector space H is a Hilbert space if
equipped with the inner product

xf, gy “

ż

D
fpzqgpzq dApzq

for f, g P H. Fix z0 P D and define Lz0pfq “ fpz0q for f P H.
Show that Lz0 : HÑ C is a bounded linear functional on H.

Solution. It’s obvious that Lz0 is a linear functional. For z0 fixed, let δ ą 0 be small enough so that
Bpz0, δq Ď D. Then for any f P H, we have by the mean value formula

|Lz0pfq| “ |fpz0q| “

∣∣∣∣∣ 1

πδ2

ż

Bpz0,δq

fpzq dApzq

∣∣∣∣∣ ď 1

πδ2

ż

Bpz0,δq

|fpzq| dApzq ď
1

πδ2

ż

D
|fpzq| dApzq

ď
1

πδ2

ˆ
ż

D
12 dApzq

˙1{2 ˆż

D
|fpzq|2 dApzq

˙1{2

by Cauchy-Schwarz

ď
1

?
πδ2

||f ||H ,

so Lz0 is a bounded linear functional.

Problem 7b. Find an explicit function gz0 P H such that

Lz0pfq “ fpz0q “ xf, gz0y

for all f P H.
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Solution. Note that such a gz0 exists for each z0 P D by the Riesz representation theorem. First we
claim that the set

#

enpzq :“

c

n` 1

π
zn

+

is an orthonormal basis for H. It’s easy to compute directly using polar coordinates that it’s an orthonormal
set. To show it’s a basis, it’s enough to show that xf, eny “ 0 for all n implies f “ 0. We compute

xf, eny “ Cpnq

ż

D
fpzqzn dApzq “ Cpnq

ż 1

0

ż 2π

0

fpreiθqrn`1e´inθ dθ dr.

The Cauchy integral formula gives

f pnqp0q “ Cpnq

ż 2π

0

fpreiθq

rn`1eipn`1qθ
reiθ dθ.

Combining these two we can observe that

xf, eny “ Cpnq

ż 1

0

r2n`1f pnqp0q dr “ Cpnqf pnqp0q.

(Cpnq is a constant in terms of n that is different from line to line). This implies that xf, eny “ 0 implies
f pnqp0q “ 0. Therefore because holomorphic functions have power series expansions, xf, eny “ 0 for all n
implies f “ 0. This shows that the en form an orthonormal basis for H.

Now we determine gz0 . For z P D we have

gz0pzq “ xgz0 , gzy “
8
ÿ

n“0

xgz0 , eny xgz, eny by Parseval

“

8
ÿ

n“0

xen, gz0y xen, gzy “
8
ÿ

n“0

enpz0qenpzq

“

8
ÿ

n“0

n` 1

π
pz0zq

n “
1

πp1´ z0zq2
.

Problem 8a. Let f be a continuous complex-valued function on D which is holomorphic on D and fp0q ‰ 0.
Show that if 0 ă r ă 1 and inf |z|“r |fpzq| ą 0, then

1

2π

ż 2π

0

log
∣∣fpreiθq∣∣ dθ ě log |fp0q| .

Solution. Let r be such that inf |z|“r |fpzq| ą 0. Since f is not identically zero, it has only finitely many
zeros inside the disc |z| ă r. Denote them by a1, . . . , an. Define the function

gpzq “

ˆ

rpz ´ a1q

r2 ´ a1z

˙

¨ ¨ ¨

ˆ

rpz ´ anq

r2 ´ anz

˙

.

We know that |gpzq| “ 1 for all |z| “ r and g has the same zeros as f and no poles in |z| ď r. Therefore
the function f{g is a nonvanishing holomorphic function on |z| ă r with |fpzq{gpzq| “ |fpzq| for |z| “ r.
Since it is nonvanishing we know that it has a holomorphic single-valued logarithm, so log |fpzq{gpzq| “
Replogpfpzq{gpzqqq is harmonic in |z| ă r. Therefore we can apply the mean value property to log |f{g| to
obtain

log

∣∣∣∣fp0qgp0q

∣∣∣∣ “ 1

2π

ż 2π

0

log

∣∣∣∣fpreiθqgpreiθq

∣∣∣∣ dθ “ 1

2π

ż 2π

0

log
∣∣fpreiθq∣∣ dθ.
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We compute

log

∣∣∣∣fp0qgp0q

∣∣∣∣ “ log |fp0q| ´
n
ÿ

j“1

log
∣∣∣aj
r

∣∣∣ .
Since each |aj | ă r, we have log |aj{r| ă 0 and therefore

log |fp0q| ď
1

2π

ż 2π

0

log
∣∣fpreiθq∣∣ dθ.

Problem 8b. Show that
∣∣tθ P r0, 2πs : fpeiθq “ 0u

∣∣ “ 0, where |E| denotes the Lebesgue measure of E.

Solution. Let E “ tθ P r0, 2πs : fpeiθq “ 0u. Suppose that |E| ą 0. Since D is compact, we know
that f is uniformly continuous on D. Fix ε ą 0. Then we know that there is some rε ą 0 such that
|fprεe

iθq| ă ε for every θ P E. We can also say |f | ďM on D. Now we have the following estimate:

ż 2π

0

log
∣∣fprεeiθq∣∣ dθ “ ż

E

log
∣∣fprεeiθq∣∣ dθ ` ż

Ec
log

∣∣fprεeiθq∣∣ dθ ď |E| logpεq ` 2π logpMq.

But since fp0q ‰ 0, we can pick ε ą 0 small enough so that the right side above is smaller than 2π log |fp0q|,

but part (a) says that we must have
ş2π

0
log

∣∣fpreiθq∣∣ dθ ě 2π log |fp0q| for any r ą 0, so this is a contradic-
tion.

Alternate Solution. Since f is continuous on the compact set D, we can say |f | ď M . Thus log |f |
takes values in r´8,M s. Let grpθq “ M ´ log |fpreiθq|. Then each gr for 0 ă r ă 1 takes values in r0,8s,
so we can apply Fatou’s lemma:

ż 2π

0

lim inf
rÑ1

grpθq dθ ď lim inf
rÑ1

ż 2π

0

grpθq dθ

2πM ´

ż 2π

0

lim sup
rÑ1

log |fpreiθq| dθ ď 2πM ´ lim sup
rÑ1

ż 2π

0

log |fpreiθq| dθ

ż 2π

0

log |fpeiθq| dθ ě lim sup
rÑ1

ż 2π

0

log |fpreiθq| dθ ě 2π log |fp0q| ą ´8

by part (a). But if E had positive measure, then the integral on the left side would be ´8, a contradiction.

Problem 9a. Let µ be a positive Borel measure on r0, 1s with µpr0, 1sq “ 1. Show that the function
f defined as

fpzq “

ż

r0,1s

eiztdµptq

for z P C is holomorphic on C.

Solution. For hk P C with |hk| Ñ 0 we have

1

h
pfpz ` hkq ´ fpzqq “

ż

r0,1s

eizt ¨
eihkt ´ 1

hk
dµptq

Notice that

lim
kÑ8

eihkt ´ 1

hk
“

ˆ

d

dz
eitz

˙

p0q “ it.

Thus for fixed z, the magnitude of the integrand is bounded by 2 suptPr0,1s |e
izt| ă 8 for k large enough. By

dominated convergence, we have

f 1pzq “

ż

r0,1s

iteiztdµptq.
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Note that all functions in question are continuous, and hence Borel measurable, so applying dominated
convergence was justified.

Alternate solution. We are motivated by the fact that if f is holomorphic it should have f 1pzq “
ş1

0
iteizt dµptq. We estimate, for a fixed z,∣∣∣∣ 1

h
pfpz ` hq ´ fpzqq ´

ż 1

0

iteizt dµptq

∣∣∣∣ “ ∣∣∣∣ 1

h

ż 1

0

peipz`hqt ´ eizt ´ ihteiztq dµptq

∣∣∣∣
ď

1

|h|

ż 1

0

∣∣eizt∣∣ ∣∣eiht ´ p1` ihtq∣∣ dµptq.
We can pick |h| to be small enough so that

∣∣eiht ´ p1` ihtq∣∣ ď C |iht|2 “ Ct2|h|2 for some absolute constant
C. Then we have∣∣∣∣ 1

h
pfpz ` hq ´ fpzqq ´

ż 1

0

iteizt dµptq

∣∣∣∣ ď 1

|h|
C|h|2

ż 1

0

pe|z|qtt2 dµptq ď Ce|z||h|

ż 1

0

dµptq “ Ce|z||h|,

which tends to 0 as |h|Ñ 0, so we conclude that f 1pzq “
ş1

0
iteizt dµptq.

Problem 9b. Suppose that there exists n P N such that

lim sup
|z|Ñ8

|fpzq|{|z|n ă 8

Show that then µ is equal to the Dirac measure δ0 at 0.

Solution. By the given condition, we have for large |z| that |fpzq| ă C|z|n for some constant C. Since f is
polynomially bounded and holomorphic, f must in fact be a polynomial.

For z real,

|fpzq| ď

ż

r0,1s

|eizt|dµptq ď 1.

But a polynomial which is bounded on the real line must be constant. Since fp0q “ 1, we have fpzq “ 1 for
all z.

For real z, we must therefore have equality in the rightmost inequality above. This occurs only if eizt is
real, outside a subset of r0, 1s with measure 0. However eizt is real only for t an integer multiple of πk{z. It
follows that the set of multiples Mz of πk{z has µ-measure 1 for all z. But Mz and M?

2z intersect only at
0, so we must have µpt0uq “ 1. (Is there a nicer way to finish off the problem?)

Alternate solution. Using the same argument from above, we know that f is a polynomial of degree

n and the derivatives of f are given by f pjqpzq “
ş1

0
pitqjeizt dµptq. Since it’s a polynomial of degree n, the

pn` 1qst derivative is identically zero, so

ż 1

0

tn`1eizt dµptq “ 0

for all z P C. If µ is not a point mass at 0, then µp0, 1s ą 0, so by continuity, µrδ, 1s ą 0 for some δ ą 0.
Then taking z “ ´i we have

0 “

ż 1

0

tn`1et dµptq ě

ż 1

δ

tn`1et dµptq ě δn`1eδµrδ, 1s ą 0,

a contradiction.

Problem 10 a. Consider the quadratic polynomial fpzq “ z2 ´ 1 on C. We are interested in the iter-
ates fn of f for n P N. Find an explicit constant M ą 0 such that the following dichotomy holds for each
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point z P C: either (i) |fnpzq| Ñ 8 as nÑ8 or (ii) |fnpzq| ďM for all n P N0.

Solution. We take M “ 2. For |z| ě 2, we have

|fpzq| “ |z2 ´ 1|

“

ˇ

ˇ

ˇ

ˇ

z ´
1

z

ˇ

ˇ

ˇ

ˇ

¨ |z|

ě

ˆ

|z| ´
1

|z|

˙

¨ |z|

ě
3

2
|z|.

Thus if |z| ě 2, we have fnpzq ą 2 ¨ p3{2qn. So if |fkpzq| is greater than 2 for some k, then |fnpzq| Ñ 8

as k Ñ 8. In particular if (i) does not hold, then (ii) must hold. It is clear that (i) and (ii) cannot hold
simultaneously.

Problem 10b. Let U be the set of all z P C for which the first alternative (i) holds and K be the set
of all z P C for which the second alternative (ii) holds. Show that U is an open set and K is a compact set
without “holes”, i.e., CzK has no bounded connected components.

Solution. For k P N, let Uk be the set of all z P C where |fkpzq| ą M. Then Uk is the preimage of
an open set, and hence open. By part (a) we have that U is the union of the sets Uk, so U is open.

It is immediate that K is closed, since K is the complement of U . Any element z in K must satisfy
|z| ďM, so K is compact.

Suppose that S was a bounded connected component of U . By part (a) we have that fkpxq ăM for all
x P K, and hence for all x P BS. But then the maximum principle implies that fkpxq is bounded by M for
all x in S. Thus (i) is not satisfied, and so x R U , which is a contradiction.

Problem 11 a. Suppose f : CÑ C is a holomorphic function such that the function z ÞÑ gpzq “ fpzqfp1{zq
is bounded on Czt0u. Show that if fp0q ‰ 0, then f is constant.

Solution. Let |gpzq| be bounded by M . Since fp0q ‰ 0, there is a constant m ą 0 such that |fpzq| ą m on
a δ-neighborhood of 0. For |z| ă δ, we then have

M ě fpzqfp1{zq ě mfp1{zq.

So fp1{zq ď M{m for |z| ă δ, and hence fpzq is bounded for |z| ą 1{δ. It follows that f is bounded and
therefore constant.

Problem 11 b. Show that if fp0q “ 0, then there exists n P N and a P C such that fpzq “ azn for
all z P C.

Solution. Let n be the order of f ’s zero at 0. Then we can write fpzq “ znhpzq where h is holomor-
phic and hp0q ‰ 0. Note that hpzqhp1{zq “ fpzqfp1{zq “ gpzq for z ‰ 0. By part (a) hpzq “ a identically for
some constant a, and then we have fpzq “ azn.

Problem 12a. Let U Ď C be an open set and K Ď U be a compact subset of U . Prove that there
exists a bounded open set V with K Ď V Ď V Ď U such that BV consists of finitely many closed line
segments.

Solution. Since K is compact and U c is closed, we have distpK,U cq “ δ ą 0. Tile the complex plane
with squares of side length δ{100. Let Q be the family of all squares Q such that distpQ,Kq ď δ{10. This
is a finite family because K is compact and therefore bounded. Then let V be the interior of

Ť

QPQQ. This

is clearly a bounded open set such that K Ď V Ď V Ď U , and BV just consists of finitely many edges of
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squares.

Problem 12b. Let f be a holomorphic function on U . Show that there exists a sequence tRnu of ra-
tional functions such that Rn Ñ f uniformly on K and none of the functions Rn has a pole in K.

Solution. Let the set V be as in the previous part. For any z P K, by the Cauchy integral formula
we can write

fpzq “
1

2πi

ż

BV

fpwq

w ´ z
dw “

1

2πi

N
ÿ

j“1

ż

γj

fpwq

w ´ z
dw

where each γj is a straight line and they all have the same length. We parametrize each of these integrals
and write

fpzq “
1

2πi

N
ÿ

j“1

ż 1

0

fpγjptqqγ
1
jptq

γjptq ´ z
dt

and we know that |γ1jptq| “ c for some constant c and all j.

We want to show that the above integral can be approximated uniformly in z P K by its Riemann sums.
Fix ε ą 0. By construction of the set V , we know that |γjptq ´ z| is bounded away from zero uniformly for
z P K and t P r0, 1s, and therefore, since everything involved is continuous, we know that there is a δ ą 0
such that |t1 ´ t2| ă δ implies ∣∣∣∣fpγjpt1qqγ1jpt1qγjpt1q ´ z

´
fpγjpt2qqγ

1
jpt2q

γjpt2q ´ z

∣∣∣∣ ă ε

for every z P K. So for each j, let t0 “ tj,0 ă tj,1 ă . . . ă tj,Mpjq “ 1u be a partition of r0, 1s with mesh size
less than δ. Then we have, for any z P K,∣∣∣∣∣∣fpzq ´

N
ÿ

j“1

Mpjq
ÿ

i“1

fpγjptj,iqqγ
1
jptj,iq

γjptj,iq ´ z
ptj,i ´ tj,i´1q

∣∣∣∣∣∣ “
∣∣∣∣∣∣
N
ÿ

j“1

1

2πi

ż 1

0

fpγjptqqγ
1
jptq

γjptq ´ z
dt´

Mpjq
ÿ

i“1

fpγjptj,iqqγ
1
jptj,iq

γjptj,iq ´ z
ptj,i ´ tj,i´1q

∣∣∣∣∣∣
“

∣∣∣∣∣∣
N
ÿ

j“1

Mpjq
ÿ

i“1

ż tj,i

tj,i´1

ˆ

fpγjptqqγ
1
jptq

γjptq ´ z
´
fpγjptj,iqqγ

1
jptj,iq

γjptj,iq ´ z

˙

dt

∣∣∣∣∣∣
ď

N
ÿ

j“1

Mpjq
ÿ

i“1

ż tj,i

tj,i´1

∣∣∣∣fpγjptqqγ1jptqγjptq ´ z
´
fpγjptj,iqqγ

1
jptj,iq

γjptj,iq ´ z

∣∣∣∣ dt ă N
ÿ

j“1

Mpjq
ÿ

i“1

εptj,i ´ tj,i´1q ă Nε.

Finally, notice that the big double sum in the first term is exactly a rational function in z which only has
poles on the lines γj , which are all outside of K, so this gives us the desired result.

113



17 Spring 2017

Problem 1. Let K Ď R be a compact set of positive measure and let f P L8pRq. Show that the function

F pxq “
1

|K|

ż

K

fpx` tq dt

is uniformly continuous on R. Here |K| denotes the Lebesgue measure of K.

Solution. We calculate

|F pxq ´ F pyq| “ 1

|K|

∣∣∣∣ż
K

fpx` tq dt´

ż

K

fpy ` tq dt

∣∣∣∣ “ 1

|K|

∣∣∣∣ż
K´x

fptq dt´

ż

K´y

fptq dt

∣∣∣∣
ď

1

|K|

ż

pK´xq∆pK´yq

|fptq| dt ď
||f ||L8

|K|
λppK ´ xq∆pK ´ yqq “

||f ||L8

|K|
λppK ´ px´ yqq∆Kq

where ∆ denotes the symmetric difference of two sets and λ is Lebesgue measure.

Fix ε ą 0. Let h “ x´y; we want to estimate the measure of pK´hq∆K. Since K is compact, there is a set
V which is a finite union of disjoint open intervals such that K Ď V and λpV zKq ă ε. Say V “ I1Y . . .Y In.
We have

pK ´ hq∆K “ ppK ´ hqzKq Y pKzpK ´ hqq

Ď ppV ´ hqzV q Y pV zKq Y pV zpV ´ hqq Y ppV ´ hqzpK ´ hqq

“ ppV ´ hq∆V q Y pV zKq Y ppV ´ hqzpK ´ hqq.

Since V is a finite union of disjoint open intervals, it is clear that

λppV ´ hq∆V q ď 2n|h|.

Therefore we have λppK ´ hq∆Kq ď 2ε` 2n|h|. So for any x, y P R satisfying |x´ y| ă ε
2n`2 , we have

|F pxq ´ F pyq| ă
||f ||L8

|K|
λppK ´ px´ yqq∆Kq ă

||f ||L8

|K|
ε.

Since n is a parameter depending only on ε and the set K, this shows that F is uniformly continuous on R.

Problem 2. Let fn : r0, 1s Ñ r0,8q be a sequence of functions, each of which is non-decreasing on
the interval r0, 1s. Suppose the sequence is uniformly bounded in L2pr0, 1sq. Show that there exists a subse-
quence that converges in L1pr0, 1sq.

Solution. Let M be a uniform upper bound for ||fn||L2 . Since each fn is nondecreasing, we get the
bound 0 ď fnptq ď

M?
1´t

for t P r0, 1s. In particular note that for fixed t, fnptq is restricted to a compact set.

Therefore the standard diagonalization argument allows us to construct a subsequence fnk which converges
on r0, 1s XQ.

We claim that fnk converges pointwise a.e. as k Ñ8. For a rational q, let aq be the limit of the sequence
fnkpqq. Note that aq ď aq1 for q ă q1, since each fnk is nondecreasing. For r P R let Lr “ supqăr aq and
Ur “ infq1ąr aq1 . Observe that the intervals pLr, Urq are all disjoint, so at most countably many of them are
nonempty. The interval is empty exactly when Lr “ Ur, so this equality holds for almost every r. But when
Lr “ Ur, the sequence fnkprq converges to this value. This establishes pointwise a.e. convergence.

Let f be a function on r0, 1s such that fnk Ñ f pointwise a.e. We have |fnkptq ´ fptq| ď
M?
1´t

for almost

every t. Since M?
1´t

lies in L1pr0, 1sq, Dominated Convergence implies that fn Ñ f in L1.

Note that there are no issues of measurability to worry about; an increasing function is continuous a.e.
(in fact everywhere except possibly on a countable set) and therefore measurable.
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Problem 3. Let Cpr0, 1sq denote the Banach space of continuous functions on the interval r0, 1s endowed
with the sup-norm. Let F be a σ-algebra on Cpr0, 1sq so that for all x P r0, 1s, the map defined via

Lxpfq “ fpxq

is F-measurable. Show that F contains all open sets.

Solution. Since Cpr0, 1sq is separable, every open set is a countable union of open balls, so it suffices
to show that F contains every open ball. And every open ball is a countable union of closed balls, so it
suffices to show F contains every closed ball. Fix g P Cpr0, 1sq, ε ą 0, and let

E “ tf P Cpr0, 1sq : ||f ´ g||L8 ď εu

be a closed ball. For each q P QX r0, 1s, let

Eq “ tf P Cpr0, 1sq : |fpqq ´ gpqq| ď εu.

Note that each Eq P F because Eq “ L´1
q pBpgpqq, εqq and Bpgpqq, εq is a Borel set in C. Now we claim that

E “
č

qPQ
Eq.

First, if f P E, then |fpxq ´ gpxq| ď ||f ´ g||L8 ď ε for all x P r0, 1s, so clearly f P Eq for every q, so
E Ď

Ş

qPQEq. Conversely, suppose f P Eq for every q. If we had f R E, then we would have |fpxq´gpxq| ą ε
for some x P r0, 1s, but since |f ´ g| is continuous and Q is dense, this would imply the existence of q P r0, 1s
with |fpqq ´ gpqq| ą ε, a contradiction. So E “

Ş

qPQEq, which expresses E as a countable intersection of
elements of F , so E P F .

Problem 4. For n ě 1, let an : r0, 1q Ñ t0, 1u denote the nth digit in the binary expansion of x, so
that

x “
ÿ

ně1

anpxq2
´n for all x P r0, 1q.

(We remove any ambiguity from this definition by requiring that lim inf anpxq “ 0 for all x P r0, 1q.) Let
Mpr0, 1qq denote the Banach space of finite complex Borel measures on r0, 1q and define linear functionals
Ln on Mpr0, 1qq via

Lnpµq “

ż 1

0

anpxq dµpxq.

Show that no subsequence of the sequence Ln converges in the weak-˚ topology on Mpr0, 1qq˚.

Solution. Let Lnk be any subsequence of the Ln. To show that Lnk is not weak-˚ convergent, it suf-
fices to find some µ PMpr0, 1qq such that tLnkpµqu

8
k“1 is not a convergent sequence in C. Let

b “
8
ÿ

k“1

pk mod 2q ¨ 2´nk ,

i.e. b is the number in r0, 1q whose nth digit in binary is equal to 1 if n “ nk for some odd k, and 0 otherwise.
Now let µ “ δb be the point mass measure at b. Clearly µ PMpr0, 1qq, and we have

Lnkpµq “

ż 1

0

ankpxq dµpxq “ ankpbq “ k mod 2.

So tLnkpµqu
8
k“1 is not a convergent sequence, so tLnku does not weak-˚ converge.

Problem 5. Let dµ be a finite complex Borel measure on r0, 1s such that

µ̂pnq “

ż 1

0

e2πinx dµpxq Ñ 0 as nÑ8.
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Let dν be a finite complex Borel measure on r0, 1s that is absolutely continuous with respect to dµ. Show
that

ν̂pnq Ñ 0 as nÑ8.

Solution. Since dν is absolutely continuous with respect to dµ, by the Radon-Nikodym theorem there
is a function f “ dν

dµ P L
1pdµq such that

ν̂pnq “

ż 1

0

e2πinx dνpxq “

ż 1

0

e2πinxfpxq dµpxq.

Fix ε ą 0. Since dµ is a finite Borel measure on a compact metric space, we know that the set of continuous
functions is dense in L1pdµq with respect to the L1 norm, so let g be a continuous function satisfying
||f ´ g||L1 ă ε. We also know that trigonometric polynomials are dense in the set of continuous functions
with respect to the sup norm, so let P be a trigonometric polynomial such that ||g ´ P ||L8 ă ε. Writing

P pxq “
řN
m“´N ane

2πimx, we calculate

lim
nÑ8

ż 1

0

e2πnxP pxq dµpxq “ lim
nÑ8

N
ÿ

m“´N

an

ż 1

0

e2πipn`mqx dµpxq “ 0

by hypothesis. Thus, as soon as n is big enough so that∣∣∣∣ż 1

0

e2πnxP pxq dµpxq

∣∣∣∣ ă ε,

we have

|ν̂pnq| “
∣∣∣∣ż 1

0

e2πinxfpxq dµpxq

∣∣∣∣
ď

∣∣∣∣ż 1

0

e2πinxpfpxq ´ gpxqq dµpxq

∣∣∣∣` ∣∣∣∣ż 1

0

e2πinxpgpxq ´ P pxqq dµpxq

∣∣∣∣` ∣∣∣∣ż 1

0

e2πinxP pxq dµpxq

∣∣∣∣
ď ε`

ż 1

0

|fpxq ´ gpxq| dµpxq `

ż 1

0

|gpxq ´ P pxq| dµpxq

ď ε` ε` εµr0, 1s,

which shows ν̂pnq Ñ 0 as nÑ8.

Problem 6. Let D be the closed unit disc in the complex plane, let tpnu be distinct points in D and
let rn ą 0 be such that the discs Dn “ tz : |z ´ pn| ď rnu satisfy

1. Dn Ď D;

2. Dn XDm “ H if n ‰ m; and

3.
ř

rn ă 8.

Prove X “ Dz
Ť

nDn has positive area.

Solution. Let fpx, yq “
ř8

i“1 χDipx, yq. Also let upxq “
ř8

i“1 χπpDiqpxq where π denotes projection onto
the real axis. We have

ż 1

´1

upxq dx “

8
ÿ

i“1

2ri ă 8

by hypothesis, so we conclude that upxq ă 8 for a.e. x P p´1, 1q. For a fixed x, upxq counts the number
of the Di that intersect the line Repzq “ x. Since the Di are closed disjoint discs, upxq ă 8 implies that
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the portion of the line Repzq “ x not contained in any of the Di has positive (one-dimensional) Lebesgue
measure. Let mpxq denote the one-dimensional measure of the portion of the line Repzq “ x not contained

in any of the Di. Then the area of X is given exactly by
ş1

´1
mpxq dx, and since m is a non-negative function

which has a positive value for a.e. x P p´1, 1q, this implies that
ş1

´1
mpxq dx ą 0.

Problem 7. Let fpzq be a one-to-one continuous mapping from the closed annulus

t1 ď |z| ď Ru

onto the closed annulus
t1 ď |z| ď Su

such that f is analytic on the open annulus t1 ă |z| ă Ru. Prove S “ R.

Solution. Let A “ tz : 1 ă |z| ă Ru and B “ tz : 1 ă |z| ă Su. We know that f maps BA to BB,
so by composing f with an inversion if necessary we may assume that f maps the unit circle to itself. Since
f is a nonvanishing analytic function in A, log |f | is harmonic in A and extends continuously to BA, and
satisfies log |fpzq| “ 0 on |z| “ 1 and log |fpzq| “ logpSq on |z| “ R. Since A is a region on which the Dirichlet

problem can be solved, log |f | is uniquely determined by its boundary values. Since z ÞÑ log |z| ¨ logpSq
logpRq is

another harmonic function on A with the same boundary values, we conclude that

log |fpzq| “ log |z| ¨
logpSq

logpRq

for all z P A. Therefore we have |fpzq| “ |zα| where α :“ logpSq{ logpRq. Since fpzq and zα are both analytic
functions in the slit annulus Ã :“ Azr´R,´1s, this implies that fpzq “ Czα for some |C| “ 1 (this is proven
by applying the maximum principle to fpzq{zα and zα{fpzq). But we know that f analytically continues to
all of A, so by uniqueness of analytic continuation, zα must also, which implies that α is a positive integer.
But if α ě 2, then zα is not one-to-one on A, so we must have α “ 1 and therefore logpRq “ logpSq, so
R “ S.

Problem 8. Let a1, . . . , an be n ě 1 points in the disc D (possibly with repetitions), so that the func-
tion

Bpzq “
n
ź

j“1

z ´ aj
1´ ajz

has n zeros in D. Prove that the derivative B1pzq has n´ 1 zeros in D.

Solution. First assume that Bp0q ‰ 0 ‰ B1p0q and that B has no repeated roots. One can calculate
that

B1pzq

Bpzq
“

n
ÿ

j“1

1´ |aj |
2

pz ´ ajqp1´ ajzq
“

řn
j“1

”

p1´ |aj |
2q
ś

i‰jpz ´ aiqp1´ aizq
ı

śn
j“1pz ´ ajqp1´ ajzq

.

Since we assume B has no repeated roots, the zeros of B1{B are precisely the zeros of B1. Note that B1{B
is a rational function with a numerator of degree 2pn ´ 1q, so it has 2pn ´ 1q total zeros. With a lot of
calculation, one can verify the identity

B1p1{zq

Bp1{zq
“ z2B

1pzq

Bpzq
.

This shows that for z ‰ 0, B1pzq “ 0 if and only if B1p1{zq “ 0. Since we assumed neither B nor B1 vanish
at 0, this implies that the zeros come in pairs tz, 1{zu. Exactly one member of each pair is inside D and the
other is outside D, so since there are 2pn´ 1q total zeros of B1, it must have n´ 1 zeros inside D.

For the general case, it is a theorem that if B is any function of the given form with n factors, then there
is a sequence Bk of functions of the given form, each with n factors, satisfying (a) Bk Ñ B uniformly on D,
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(b) Bkp0q ‰ 0 ‰ B1kp0q, and (c) Bk has no repeated roots. To see why this is true, note that z´α
1´αz converges

uniformly on D to z´β

1´βz
as α Ñ β. Therefore this is also true for products of functions of that form. Also

note that Bkp0q and B1kp0q are continuous functions of the roots a1, . . . , an. Therefore by just taking the
original function B and perturbing its roots by sufficiently small amounts, we can guarantee that the new
function has all of the desired properties and is still uniformly close to B.

So by the first part of this problem, we know that each Bk has exactly n ´ 1 roots in D. Since the
convergence is uniform on D, we also know that B1k Ñ B1 uniformly on D. Since each Bk has absolute value
1 on BD, we then have that B1k{Bk converges uniformly to B1{B on BD, so by the argument principle

# zeros of B in D “

ż

BD

B1

B
dz “ lim

kÑ8

ż

BD

B1k
Bk

dz “ lim
kÑ8

p# zeros of Bk in Dq “ n´ 1.

Problem 9a. Let fpzq be an analytic function in the entire complex plane C and assume fp0q ‰ 0.
Let tanu be the zeros of f , repeated according to their multiplicities. Let R ą 0 be such that |fpzq| ą 0 on
|z| “ R. Prove

1

2π

ż 2π

0

log
∣∣fpReiθq∣∣ dθ “ log |fp0q| `

ÿ

|an|ăR

log
R

|an|
.

Solution. Since f is not identically zero, there are only finitely many an satisfying |an| ă R. Define

gpzq “
ź

|an|ăR

Rpz ´ anq

R2 ´ anz
.

Note that in the disc |z| ă R, g has the same zeros as f , no poles, and |gpzq| “ 1 for |z| “ R. Therefore
f{g is a nonvanishing holomorphic function in |z| ă R, and |f{g| “ |f | on the boundary |z| “ R. Therefore
log |f{g| is a harmonic function in |z| ă R, so we apply the mean value formula to obtain

log

∣∣∣∣fp0qgp0q

∣∣∣∣ “ 1

2π

ż 2π

0

log

∣∣∣∣fpReiθqgpReiθq

∣∣∣∣ dθ “ 1

2π

ż 2π

0

log
∣∣fpReiθq∣∣ dθ.

We also have

log

∣∣∣∣fp0qgp0q

∣∣∣∣ “ log |fp0q| ´
ÿ

|an|ăR

log

∣∣∣∣Rp0´ anqR2 ´ 0

∣∣∣∣ “ log |fp0q| `
ÿ

|an|ăR

log

∣∣∣∣ Ran
∣∣∣∣ ,

so combining this with the above equation gives the desired result.

Problem 9b. Prove that if there are constants C and λ such that |fpzq| ď Ce|z|
λ

for all z, then

ÿ

ˆ

1

|an|

˙λ`ε

ă 8

for all ε ą 0.

Solution. Let NpRq “ #tn : |an| ă Ru. Applying part (a) with 2R in place of R we get

1

2π

ż 2π

0

log |fp2Reiθq| dθ “ log |fp0q|`
ÿ

|an|ă2R

log

ˆ

2R

|an|

˙

ď log |fp0q|`
ÿ

|an|ăR

log

ˆ

2R

|an|

˙

ď log |fp0q|`NpRq logp2q.

By the hypothesis on the growth rate of f , we also have

1

2π

ż 2π

0

log |fp2Reiθq| dθ ď p2Rqλ ` logpCq,
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so combining the two estimates gives p2Rqλ ` logpCq ě log |fp0q| `NpRq logp2q, which implies that

NpRq ď
p2Rqλ ´ logpCq ´ log |fp0q|

logp2q
ď Kp2Rqλ

for some constant K and R sufficiently large. Let M be big enough so that the above estimate holds whenever
R ě 2M´1. It suffices to show that

ÿ

|an|ě2M´1

ˆ

1

|an|

˙λ`ε

ă 8

for any ε ą 0. We estimate

ÿ

|an|ě2M´1

ˆ

1

|an|

˙λ`ε

“

8
ÿ

r“M

ÿ

2r´1ď|an|ă2r

ˆ

1

|an|

˙λ`ε

ď

8
ÿ

r“M

pNp2rq ´Np2r´1q

ˆ

1

2r´1

˙λ`ε

ď

8
ÿ

r“M

Np2rq

p2r´1qλ`ε
ď K

8
ÿ

r“M

p2r`1qλ

p2r´1qλ`ε
“ K ¨ 22λ`ε

8
ÿ

r“M

p2´εqr ă 8.

Problem 10. Let a1, . . . , an be n ě 1 distinct points in C and let Ω “ Czta1, . . . , anu. Let HpΩq be
the vector space of real-valued harmonic functions on Ω and let RpΩq Ď HpΩq be the space of real parts of

analytic functions on Ω. Prove the quotient space HpΩq
RpΩq has dimension n, find a basis for this space, and

prove it is a basis.

Solution. We claim that the functions fi “ log |z ´ ai| form a basis for this space. We will work with
a homology basis γ1, . . . , γn for Ω, consisting of small counterclockwise circles around each point. For a
function u P HpΩq be arbitrary, we let ˚du “ ´uydx ` uxdy denote the conjugate differential for u. Recall
that the periods of ˚du with respect our homology basis are defined to be the real numbers

ş

γi
u. (See section

6.1 in Ahlfors.)
The harmonic function apzq “ log |z| defined on Czt0u has conjugate differential dθ, and so the period of

˚da on a counterclockwise circle about the origin is 2π. Alternatively one can see this by setting f “ ax´ iay
(which is analytic) and then writing f dz “ da ` i ˚ da. The differential da is exact, and we can compute
that fpzq “ 1

z . Thus the integral of i ˚ dv around a counterclockwise circle is 2πi, and we again get a period
of 2π. Note that the period of ˚da around any cycle homologous to 0 is 0, since the integral of fdz around
such a cycle is 0. Therefore by translating, we see that the period of ˚dfi along γj is 2πδij .

If u P RpΩq then u has a harmonic conjugate v and ˚du “ dv, which is exact. Thus each period of u is
0. If

řn
i“1 aifi P RpΩq, then it must have period 0 about each cycle. By linearity of periods, this can only

happen if each ai is 0. So our fi’s are independent.
Let g P HpΩq be arbitrary, with ˚dg having periods pi on γi. Set

rg “ g ´
1

2π

n
ÿ

i“1

pifi,

so that ˚drg has period 0 on each γi. We claim that rg lies in RpΩq, which will imply that the fi’s span. Indeed
we have that ˚drg is exact and so we may integrate ˚drg to obtain a harmonic conjugate for rg. More precisely,
set fpzq “ rux ´ iruy. Then fdz “ du ` i ˚ du is exact on Ω and so f has an anti-derivative F “ U ` iV on
Ω. It’s easy to verify that U and u agree up to constants, so V is a harmonic conjugate for u.

Problem 11. Let 1 ď p ă 8 and let Upzq be a harmonic function on the complex plane C such that
ĳ

RˆR

|Upx` iyq|p dx dy ă 8.

Prove that Upzq “ 0 for all z “ x` iy P C.
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Solution. Let q be the conjugate exponent, so 1{p ` 1{q “ 1. Since U is harmonic on all of C, for
any r ą 0 and any z P C we have the mean value property

Upzq “
1

πr2

ĳ

Bpz,rq

Upx` iyq dx dy.

By Hölder’s inequality we have

|Upzq| ď
1

πr2

ĳ

Bpz,rq

|Upx` iyq| dx dy “
1

πr2

ˆ
ĳ

Bpz, rq|Upx` iyq|p dx dy

˙1{p

¨

˚

˝

ĳ

Bpz,rq

1 dx dy

˛

‹

‚

1{q

ď
pπr2q1{q

πr2

¨

˝

ĳ

RˆR

|Upx` iyq|p dx dy

˛

‚

1{p

ď Cr2p1{q´1q “ Cr´2{p

for some constant C ă 8. This holds for any r ą 0, so we can take r Ñ 8 and conclude that Upzq “ 0
(because ´2{p ă 0).

Problem 12. Let 0 ă α ă 1 and let fpzq be an analytic function on the unit disc D. Prove that if

|fpzq ´ fpwq| ď C|z ´ w|α

for all z, w P D and some constant C P R, then there is a constant A “ ApCq ă 8 such that

|f 1pzq| ď Ap1´ |z|qα´1.

Solution. Fix z P D. Then for any r ą 0 we have

ż

|w´z|“r

1

pw ´ zq2
dw “ 0,

so by the Cauchy integral formula we can write

f 1pzq “

ż

|w´z|“r

fpwq

pw ´ zq2
dw “

ż

|w´z|“r

fpwq ´ fpzq

pw ´ zq2
dw.

Therefore taking absolute values inside we get

|f 1pzq| ď 2πr ¨
1

r2
¨ sup
|w´z|“r

|fpzq ´ fpwq| ď
2π

r
Crα “ 2πCr1´α.

This is true for any r for which Bpz, rq Ď D, so pick r “ 1´|z|
2 , then we get

|f 1pzq| ď Ap1´ |z|qα´1.
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18 Fall 2017

Problem 1. Suppose f : RÑ R is non-decreasing. Show that if A Ď R is a Borel set, then so is fpAq.

Solution. Let F “ tA Ď R : fpAq is Borelu. It suffices to show that F is a σ-algebra containing all
closed intervals. It’s clear that H P F . Since f is non-decreasing, it is continuous except for at most
countably many jump discontinuities. Thus fpRq is a countable union of intervals, so it’s Borel, so R P F .
Suppose A P F . Note that fpAq and fpAcq have at most countably many elements in common and that
fpRq “ fpAq Y fpAcq, so we can write fpAcq “ fpRqzfpAq Y (countable set), so fpAcq is Borel and thus
Ac P F . Finally, if A1, A2, . . . P F , then we have f p

Ť

Anq “
Ť

fpAnq, so it’s Borel, so
Ť

An P F . Thus F
is a σ-algebra. If ra, bs is a closed interval, then by the same argument as above, since f is non-decreasing,
fpra, bsq is an at most countable union of intervals, so it’s Borel. Therefore F contains all closed intervals so
we’re done.

Problem 2. Let tfnu denote a bounded sequence in L2pr0, 1sq. Suppose the sequence also converges
almost everywhere. Show that then tfnu converges in the weak topology on L2pr0, 1sq.

Solution. Say that ||fn||L2 ď M for all n and that fn Ñ f almost everywhere. Then also |fn|
2 Ñ |f |2

almost everywhere, so by Fatou’s lemma we have

ż

|f |2 “

ż

lim inf
nÑ8

|fn|
2 ď lim inf

nÑ8

ż

|fn|
2 ď M2,

so also f P L2 and ||f ||L2 ď M . To show that fn Ñ f weakly in L2, we need to show that φpfnq Ñ φpfq
for every φ P pL2q˚, and by Lp-Lq duality, this is the same as showing that

ş

fng Ñ
ş

fg for every g P L2.
Fix g P L2 and ε ą 0. Since |g|2 is integrable, let δ ą 0 be such that λpEq ă δ implies

ş

E
|g|2 ă ε (here λ

denotes Lebesgue measure). By Egorov’s theorem, we can find a set E Ď r0, 1s such that fn Ñ f uniformly
on Ec and λpEq ă δ. Let n be big enough so that |fn ´ f | ă ε{ ||g||L2 on Ec. Then we have

ż

|fng ´ fg| “

ż

A

|fng ´ fg| `

ż

Ac
|fng ´ fg| “

ż

A

|g||fn ´ f | `

ż

Ac
|g||fn ´ f |

ď

ˆ
ż

A

|g|2
˙1{2 ˆż

A

|fn ´ f |
2

˙1{2

`

ˆ
ż

Ac
|g|2

˙1{2 ˆż

Ac
|fn ´ f |

2

˙1{2

ď ε1{2

˜

ż

r0,1s

4p|fn|
2 ` |f |2q

¸1{2

` ||g||L2

˜

ż

r0,1s

ε2{ ||g||
2
L2

¸1{2

ď ε1{2p8M2q1{2 ` ε.

This shows that
ş

|fng ´ fg| Ñ 0 as nÑ8, which implies the desired result.

Problem 3. Let tµnu denote a sequence of Borel probability measures on R. For n P N and x P R
we define

Fnpxq :“ µnpp´8, xsq.

Suppose the sequence tFnu converges uniformly on R. Show that then for every bounded continuous function
f : RÑ R, the numbers

ż

R
fpxq dµnpxq

converge as nÑ8.

Solution. Let F denote the set of linear combinations of characteristic functions of disjoint intervals of
the form pa, bs, where a may be ´8 and b may be 8. First we show the result holds for elements of F . Let
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g “
řN
k“1 αkχpak,bks. Then we have (with the convention that Fnp8q “ 1 and Fnp´8q “ 0)∣∣∣∣ż g dµn ´ ż

g dµm

∣∣∣∣ “
∣∣∣∣∣ Nÿ
k“1

αkpFnpbkq ´ Fnpakqq ´
N
ÿ

k“1

αkpFmpbkq ´ Fmpakqq

∣∣∣∣∣
ď

N
ÿ

k“1

|αk| p|Fnpbkq ´ Fmpbkq| ` |Fnpbkq ´ Fnpakq|q .

Fix ε ą 0. Since the sequence tFnu converges uniformly, pick n,m big enough so that ||Fn ´ Fm||L8 ă

ε{p2
ř

|αk|q. Then the above estimate implies that for all such n,m, we have
∣∣ş g dµn ´ ş

g dµm
∣∣ ă ε. So

the numbers t
ş

g dµnu form a Cauchy sequence in R and therefore converge. This establishes the result for
elements of F .

Now let f be any bounded continuous function R Ñ R. On any compact interval, f can be approxi-
mated in the L8 norm by functions in F . So just work on a compact interval that is big enough so that
almost all of the mass of the µn is inside that interval (this can be made precise using the fact that the Fn
converge uniformly on R, but I don’t have time to write it down right now). Fix ε ą 0 and pick g P F such
that ||f ´ g||L8 ă ε. Then for n,m big enough, we have∣∣∣∣ż f dµn ´ ż

f dµm

∣∣∣∣ ď ∣∣∣∣ż f dµn ´ ż

g dµn

∣∣∣∣` ∣∣∣∣ż g dµn ´ ż

g dµm

∣∣∣∣` ∣∣∣∣ż g dµm ´ ż

f dµm

∣∣∣∣
ď

ż

|f ´ g| dµn `

ż

|f ´ g| dµm ` ε

ď εµnpRq ` εµmpRq ` ε “ 3ε,

which establishes the desired result.

Problem 4. Consider the Banach space V “ Cpr´1, 1sq of all real-valued continuous functions on r´1, 1s
equipped with the supremum norm. Let B “ tf P V : ||f ||L8 ď 1u be the closed unit ball in V . Show that
there exists a bounded linear functional Λ : V Ñ R such that ΛpBq is an open subset of R.

Solution. Define Λ : V Ñ R by

Λpfq “ ´

ż 0

´1

fpxq dx`

ż 1

0

fpxq dx.

It is clear that |Λpfq| ď 2 ||f ||L8 for all f P V , so Λ is a bounded linear functional. Since Λ is continuous
and B is a connected set, ΛpBq is a connected subset of R and is therefore an interval. We claim that ΛpBq
is the open interval p´2, 2q.

Let fn be the function which is equal to ´1 for x P r´1,´1{ns, equal to 1 for x P r1{n, 1s, and linear
on r´1{n, 1{ns. Note that each fn P B, and we calculate Λpfnq “ 2 ´ 1{n. Since ΛpBq is an interval in R,
this implies that p´2, 2q Ď ΛpBq. We now just need to check that Λ never achieves the values ˘2. But note

that we have |Λpfq| ď
ş1

´1
|fpxq| dx ď 2. But the second inequality is strict for all f which are not identically

˘1. Since Λp˘1q “ 0, this shows that in fact the strict inequality |Λpfq| ă 2 holds for all f P B, so we
conclude that ΛpBq “ p´2, 2q.

Problem 5. Suppose f : R Ñ R is a bounded and measurable function satisfying fpx ` 1q “ fpxq
and fp2xq “ fpxq for almost every x P R. Show that then there exists a constant c P R such that fpxq “ c
for almost every x P R.

Solution. Let Z be the measure zero set of bad points for which the given property doesn’t hold. Let
rZ be the set of all points in R which are reachable from a point in Z by a finite sequence of the operations
x ÞÑ x` 1, x ÞÑ x´ 1, x ÞÑ 2x, or x ÞÑ x{2. Then rZ is just a countable union of translates and dilates of Z,
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so rZ also has measure zero. We will show that f is constant on the complement of rZ. By construction of
rZ, for any x R rZ we have 2´np2nx` 1` 2nmq “ x`m` 2´n R rZ for all integers n,m. Let Q be the set of
numbers of the form m` 2´n for n,m P Z.

Let x0, y0 R rZ and fix ε ą 0. Since f is bounded, it is locally integrable. Therefore by the Lebesgue
differentiation theorem we can pick r ą 0 such that∣∣∣∣fpx0q ´

1

2r

ż x0`r

x0´r

fptq dt

∣∣∣∣ ă ε,

∣∣∣∣fpy0q ´
1

2r

ż y0`r

y0´r

fptq dt

∣∣∣∣ ă ε.

Also, since f is bounded we can find δ ą 0 such that for any set A Ď R, λpAq ă δ implies
ş

A
|fptq| dt ă εr

(here λ denotes Lebesgue measure). We can pick a number q P Q such that |px0 ` qq ´ y0| ă δ{2. Then,

since fpt` qq “ fptq for all t R rZ, which is almost every t, we have the estimate∣∣∣∣ 1

2r

ż x0`r

x0´r

fptq dt´
1

2r

ż y0`r

y0´r

fptq dt

∣∣∣∣ “ 1

2r

∣∣∣∣ż x0`q`r

x0`q´r

fptq dt´

ż y0`r

y0´r

fptq dt

∣∣∣∣
“

1

2r

∣∣∣∣∣
ż

rx0`q´r,x0`q`rs∆ry0´r,y0`rs

fptq dt

∣∣∣∣∣ ă ε{2.

So combining the above three inequalities with the triangle inequality gives |fpx0q´ fpy0q| ă p2`1{2qε, and

taking εÑ 0 shows that fpx0q “ fpy0q, so f is constant on the complement of rZ.

Alternative Solution. Let E be the measure zero set on which fpxq ‰ fp2xq. Then fpxq “ fp2xq
for all x P Ec, and so fp2kxq “ fpxq for all x P Ec and k P N. Since we are only trying to show that f
is constant almost everywhere, we can discard E. So, we can suppose fp2kxq “ fpxq for all x. Moreover,
fpx ` 1q “ fpxq for almost all x means f can be considered as a function on S1 “ R{Z “ r0, 1q. As a

bounded measurable function on S1, f is in L1pS1q, and so has Fourier coefficients f̂pkq for all k P Z. An
elementary theorem says that L1pS1q functions are determined by their Fourier coefficients. Therefore, to
show f is constant, it is enough to show that every nonzero Fourier coefficient of f vanishes (since then f

will have the same Fourier coefficients as the constant function x ÞÑ f̂p0q).

Now, for any k P N, and any n P Z,

f̂pnq “

ż 1

0

fpxqe´2πnix dx

“

ż 1

0

fp2kxqe´2πnix dx

“ 2´k
ż 2k

0

fpyqe´2πin2´ky dy

“ 2´k
2k´1
ÿ

j“0

ż 1

0

fpyqe´2πin2´kpy`jq dy

“ ck,n ¨ 2
´k

ż 1

0

fpyqe´2πin2´ky dy,

where ck,n is the constant

ck,n “
2k´1
ÿ

j“0

e´2πin2´kj .

But, if n2´k is not an integer, then

ck,n “
pe´2πin2´kq2

k

´ 1

e´2πin2´k ´ 1
“

e´2πin ´ 1

e´2πin2´k ´ 1
“ 0,
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and so f̂pnq “ 0 in this case. But if n ‰ 0, then of course there is some k P N with n2´k R Z. Consequently

f̂pnq “ 0 if n ‰ 0, which completes the proof.

Problem 6. Let f P L2pCq. For z P C we define

gpzq “

ż

twPC:|w´z|ď1u

|fpwq|

|z ´ w|
dApwq

where dA denotes integrations with respect to Lebesgue measure on C. Show that then |gpzq| ă 8 for almost
every z P C and that g P L2pCq.

Solution. Let C “
ş

|u|ď1
1
|u| dApuq ă 8. We have

|gpzq|2 “

˜

ż

|w´z|ď1

|fpwq|

|w ´ z|
dApwq

¸2

ď

˜

ż

|w´z|ď1

|fpwq|2

|w ´ z|
dApwq

¸˜

ż

|w´z|ď1

1

|w ´ z|
dApwq

¸

by Cauchy-Schwarz

ď C ¨

ż

|w´z|ď1

|fpwq|2

|w ´ z|
dApwq.

Therefore we can estimate
ż

C
|gpzq|2 dApzq ď C

ż

C

ż

|w´z|ď1

|fpwq|2

|w ´ z|
dApwq dApzq

ď C

ż

C
|fpwq|2

ż

|z´w|ď1

1

|z ´ w|
dApzq dApwq by Tonelli

ď C2 ||f ||
2
L2pCq ă 8.

This shows both that |gpzq| ă 8 for almost every z P C and g P L2pCq.

Problem 7. Prove that there exists a meromorphic function f on C with the following properties.

1. fpzq “ 0 if and only if z P Z.

2. fpzq “ 8 if and only if z ´ 1{3 P Z.

3. |fpx` iyq| ď 1 for all x P R and all y P R with |y| ě 1.

Solution. Let fpzq “ 1
2

sinpπzq
sinpπpz´1{3qq . It’s clear that f is meromorphic with fpzq “ 0 if and only if z P Z and

fpzq “ 8 if and only if z ´ 1{3 P Z. Now we just estimate

2|fpx` iyq| “

∣∣∣∣ exppiπzq ´ expp´iπzq

exppiπpz ´ 1{3qq ´ expp´iπpz ´ 1{3qq

∣∣∣∣ ď | exppiπzq| ` | expp´iπzq|

|| exppiπpz ´ 1{3qq| ´ | expp´iπpz ´ 1{3qq||

“
expp´πyq ` exppπyq

|expp´πyq ´ exppπyq|
ď 2 when |y| ě 1.

Problem 8. Show that a harmonic function u : DÑ R is uniformly continuous if and only if it admits the
representation

upzq “
1

2π

ż 2π

0

Re

ˆ

eiθ ` z

eiθ ´ z

˙

fpeiθq dθ, z P D,

with f : BDÑ R continuous.
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Solution. It is a standard fact that u is uniformly continuous on D if and only if it admits a continu-
ous extension to BD. First suppose that u admits a continuous extension to BD. Then the Poisson integral
formula is exactly the representation

upzq “
1

2π

ż 2π

0

Re

ˆ

eiθ ` z

eiθ ´ z

˙

upeiθq dθ

(To prove the Poisson integral formula, you simply apply the regular mean value formula to u composed
with the conformal map w ÞÑ w`z

1`zw and simplify the change of variables. Not sure if proving that would be
required for this problem or not).

Conversely, suppose u has the above representation. We just need to show that the continuous function
f : BD Ñ R continuously extends u. Fix eiθ0 P BD. We need to show that upzq Ñ fpeiθ0q as z Ñ eiθ0 in D.
Fix ε ą 0. Pick δ1 such that |θ ´ θ0| ă δ1 implies |fpeiθq ´ fpeiθ0q| ă ε (by continuity of f). Also, since BD
is compact, let M “ maxθPr0,2πs |fpe

iθq|. Now we can pick δ ą 0 to be small enough so that

|z ´ eiθ0 | ă δ and |θ ´ θ0| ě δ1 imply
1´ |z|2

|eiθ ´ z|2
“ Re

ˆ

eiθ ` z

eiθ ´ z

˙

ă
ε

2M
.

Then for all |z ´ eiθ0 | ă δ, we have the estimate (using the fact that
ş2π

0
1´|z|2

|eiθ´z|2
dθ “ 2π for any z P D)

|upzq ´ fpeiθ0q| “
1

2π

∣∣∣∣ż 2π

0

1´ |z|2

|eiθ ´ z|2
fpeiθq dθ ´

ż 2π

0

1´ |z|2

|eiθ ´ z|2
fpeiθ0q dθ

∣∣∣∣
ď

1

2π

ż 2π

0

1´ |z|2

|eiθ ´ z|2
|fpeiθq ´ fpeiθ0q| dθ

ď
1

2π

˜

ż

|θ´θ0|ăδ1

1´ |z|2

|eiθ ´ z|2
ε dθ `

ż

|θ´θ0|ěδ1

ε

2M
2M dθ

¸

ď
ε

2π
p2π ` 2πq “ 2ε.

This shows that upzq Ñ fpeiθ0q as z Ñ eiθ0 so f is a continuous extension of u to BD and we are done.

Problem 9. Consider a map F : Cˆ CÑ C with the following properties.

1. For each fixed z P C the map w ÞÑ F pz, wq is injective.

2. For each fixed w P C the map z ÞÑ F pz, wq is holomorphic.

3. F p0, wq “ w for w P C.

Show that then
F pz, wq “ apzqw ` bpzq

for z, w P C, where a and b are entire functions with ap0q “ 1, bp0q “ 0, and apzq ‰ 0 for z P C.

Solution. Define Gpz, wq “ F pz,wq´F pz,0q
F pz,1q´F pz,0q . We claim that Gpz, wq “ w for all z, w. Then we can just

take apzq “ F pz, 1q ´ F pz, 0q and bpzq “ F pz, 0q and we will be done. By the injectivity condition, the
denominator of Gpz, wq is never 0, so for each fixed w, z ÞÑ Gpz, wq is an entire function. Also note that
Gp0, wq “ w and that Gpz, 0q “ 0 for all z and Gpz, 1q “ 1 for all z. So the desired condition is verified
for w “ 0, 1. Fix w ‰ 1. Then by the injectivity condition, if Gpz, wq “ 1 for any z, then w “ 1, and if
Gpz, wq “ 0 for any z, then w “ 0. So z ÞÑ Gpz, wq is an entire function that misses both 0 and 1, so by
Picard’s little theorem, z ÞÑ Gpz, wq is constant. Then the fact that Gp0, wq “ w implies that Gpz, wq “ w
for all z, so we are done.

Problem 10. Let tfnu be a sequence of holomorphic functions on D with the property that

F pzq :“
8
ÿ

n“1

|fnpzq|
2 ď 1
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for all z P D. Show that the series defining F pzq converges uniformly on compact subsets of D and that F
is subharmonic.

Solution. Since fn is holomorphic, |fn|
2 is subharmonic. Therefore each gN :“

řN
n“1 |fn|

2 is also sub-
harmonic, and we have that gN increases monotonically to F pointwise. Notice that if subharmonic were
replaced by harmonic, we would be done automatically by Harnack’s Principle. The following argument is
just a modification of the proof of Harnack to work for subharmonic functions, where we rely heavily on the
fact that F is bounded and that the gN are partial sums rather than general subharmonic functions (it’s
not true in general that an increasing limit of subharmonic functions converges locally uniformly to another
subharmonic function).

First, suppose we knew that gN Ñ F locally uniformly on D. Then since each gN is continuous, F also
is, and for any disc Bpz0, rq Ď D, we have

F pz0q “ lim
NÑ8

gN pz0q ď lim
NÑ8

1

2π

ż 2π

0

gN pz0 ` re
iθq dθ “

1

2π

ż 2π

0

F pz0 ` re
iθq dθ

by the monotone convergence theorem (or by uniform convergence on compact sets). So F is continuous and
satisfies the sub mean value property, so it is subharmonic.

Now we show local uniform convergence. Fix a compact set K Ď D and ε ą 0. By compactness, there
is a radius r ą 0 such that Bpz, rq Ď D for any z P K. Also by compactness, we can cover K with finitely
many balls Bpw1, r{2q Y . . .YBpwk, r{2q. For any z P K,

lim
NÑ8

1

2π

ż 2π

0

´

F
´

z `
r

2
eiθ

¯

´ gN

´

z `
r

2
eiθ

¯¯

dθ “ 0

again by the monotone convergence theorem (this is where we need the fact that F is bounded). So let N
be large enough so that

max
1ďjďk

1

2π

ż 2π

0

´

F
´

zj `
r

2
eiθ

¯

´ gN

´

zj `
r

2
eiθ

¯¯

dθ ă ε.

Now for any M ą N , gM ´ gN “
řM
n“N`1 |fn|

2 is still a positive subharmonic function (this is where we
need the fact that the gN are partial sums). Therefore it satisfies the “sub Poisson integral formula” (regular
Poisson integral formula but with a ď instead of “). For any z P K, we have z P Bpzj , r{2q for some j, so
we apply the sub Poisson formula on Bpzj , rq to obtain

gM pzq ´ gN pzq ď
1

2π

ż 2π

0

r2 ´ |z ´ zj |
2

|pzj ` reiθq ´ z|2
`

gM pzj ` re
iθq ´ gN pzj ` re

iθq
˘

dθ

ď
r ` |z ´ zj |

r ´ |z ´ zj |

1

2π

ż 2π

0

pgM ´ gN qpzj ` re
iθq dθ

ď
r ` r{2

r ´ r{2
¨

1

2π

ż 2π

0

pF ´ gN qpzj ` re
iθq dθ ă 3ε.

This shows that the sequence gN is uniformly Cauchy on K and therefore converges uniformly to F on K,
so gN Ñ F locally uniformly on D and we are done.

Problem 11. Let f : D Ñ C be an injective and holomorphic function with fp0q “ 0 and f 1p0q “ 1.
Show that then

inft|w| : w R fpDqu ď 1

with equality if and only if fpzq “ z for all z P D.

Solution. We analyze the situation when inft|w| : w R fpDqu ě 1. Then D Ď fpDq, and since f is
injective, it has a holomorphic inverse g : D Ñ D on the disk. It’s clear that gp0q “ 0 and g1p0q “ 1, so
by the Schwarz lemma (and the fact that g1p0q “ 1) we must have gpzq “ z. Thus fpzq “ z as well. The

126



original statement follows.

Problem 12. Let f, g, and h be complex-valued functions on C with

f “ g ˝ h.

Show that if h is continuous, and both f and g are holomorphic, then h is holomorphic as well.

Solution. Let B (for bad) be the set of points z for which g1phpzqq “ 0. For z P CzB, we can find an
analytic local inverse g´1

U for g on a neighborhood of U of hpzq. Thus on U , we can write h “ g´1
U ˝ f, which

implies that h is analytic at z. So h is analytic on CzB.
Since g is non-constant, we must have g1pzq “ 0 only on a discrete set. Furthermore, h is continuous, so

in fact B is discrete. But h is continuous so by Riemann’s theorem on removable singularities, h must be
analytic.

Remark. It’s not true in general that the preimage of a discrete set under a continuous function is also
discrete (a constant function is a counterexample), so that step takes a bit more work. Let Z denote the
zeros of g1 and suppose that h´1pZq has a limit point. Take a convergent sequence zn with thpznqu Ď Z, so
it’s discrete. The set thpznqu can’t be infinite, because its also discrete, so the limit would have to be infinity,
but zn converges to a non-infinite limit z8, which is impossible by the continuity of h. So thpznqu is a finite
set, meaning that there is some subsequence tznku converging to z8 on which h is constant. But then f is
also constant on tznku, and since f is holomorphic this implies f is a constant, which is a contradiction.

19 Spring 2018

Problem 1. Suppose f P L1pRq satisfies

lim sup
hÑ0

ż

R

∣∣∣∣fpx` hq ´ fpxqh

∣∣∣∣ dx “ 0.

Show that f “ 0 almost everywhere.

Solution. Let F pxq “
şx

´8
|fptq| dt. We then consider the difference quotient∣∣∣∣F px` hq ´ F pxqh

∣∣∣∣ “ 1

|h|

∣∣∣∣ż x
´8

|fpt` hq|´ |fptq| dt
∣∣∣∣

ď

ż x

´8

∣∣∣∣fpt` hq ´ fptqh

∣∣∣∣
ď

ż

R

∣∣∣∣fpt` hq ´ fptqh

∣∣∣∣ dx.
By hypothesis, this last quantity tends to 0 as hÑ 0. So F is differentiable with derivative 0, and is therefore
constant. It follows (by continuity from below) that

ş

R |fptq| dt “ 0, and so f “ 0 a.e.

Alternate solution. Let F pxq “
şx

´8
fptq dt. Since f is integrable, by the Lebesgue differentiation theorem

we have that for a.e. x P R,

fpxq “ lim
hÑ0

1

h

ż x`h

x

fptq dt “ lim
hÑ0

F px` hq ´ F pxq

h
.
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So for any two Lebesgue points x ą y, we have

|fpxq ´ fpyq| “ lim
hÑ0

∣∣∣∣F px` hq ´ F pxqh
´
F py ` hq ´ F pyq

h

∣∣∣∣ “ lim
hÑ0

∣∣∣∣∣
ż x`h

y`h

fptq

h
dt´

ż x

y

fptq

h
dt

∣∣∣∣∣
“ lim

hÑ0

∣∣∣∣ż x
y

fpt` hq ´ fptq

h
dt

∣∣∣∣ ď lim sup
hÑ0

ż

R

∣∣∣∣fpt` hq ´ fptqh
dt

∣∣∣∣ “ 0.

So f is constant a.e., and since f is also integrable we must have f “ 0 a.e.

Problem 2. Given f P L2pRq and h ą 0 we define

Qpf, hq “

ż

R

2fpxq ´ fpx` hq ´ fpx´ hq

h2
fpxq dx.

(a) Show that
Qpf, hq ě 0 for all f P L2pRq and all h ą 0.

(b) Show that the set
E “ tf P L2pRq : lim sup

hÑ0
Qpf, hq ď 1u

is closed in L2pRq.

Solution.

(a) It suffices to show that

ż

R
2fpxq2dx ě

ż

R
fpxqpfpx` hq ´ fpx´ hqqdx.

Indeed by Cauchy-Schwarz
ż

R
fpxqpfpx` hq ´ fpx´ hqqdx ď ||f ||2 ¨ ||fpx` hq ´ fpx´ hq||2

ď ||f ||2 ¨ p||fpx` hq||2 ` ||fpx´ hq||2q

“ ||f ||2 p||f ||2 ` ||f ||2q

“ 2 ||f ||
2
2 ,

as desired.

(b) Let gpxq “ 2fpxq ´ fpx ` hq ´ fpx ´ hq. Note g P L2. Using the form of Plancherel that says

xf, gy “
A

pf, pg
E

, we can rewrite

Qpf, hq “

ż

R

2 pfpuq ´ eihu pfpuq ´ e´ihu pfpuq

h2
pfpuq du “

ż

R

2´ 2 cosphuq

h2

∣∣∣ pfpuq∣∣∣2 du.
Now let fn be a sequence in E with fn Ñ f in L2. By passing to a subsequence if necessary, we may

also assume that fn Ñ f almost everywhere. By Plancherel, we also have xfn Ñ pf in L2, and by passing

to a further subsequence if necessary we can also assume xfn Ñ pf almost everywhere. Then by Fatou’s
lemma, since 1´ cosphuq ě 0 for all h, u, for each n we have

1 ě lim sup
hÑ0

ż

R

2´ 2 cosphuq

h2

∣∣∣xfnpuq∣∣∣2 du ě lim inf
hÑ0

ż

R

2´ 2 cosphuq

h2

∣∣∣xfnpuq∣∣∣2 du
ě

ż

R
lim inf
hÑ0

2´ 2 cosphuq

h2

∣∣∣xfnpuq∣∣∣2 du “

ż

R
u2

∣∣∣xfnpuq∣∣∣2 du.
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Then by applying Fatou’s lemma again, this time in n, we have
ż

R
u2

∣∣∣ pfpuq∣∣∣2 du “

ż

R
lim inf
nÑ8

u2
∣∣∣xfnpuq∣∣∣2 du ď lim inf

nÑ8

ż

R
u2

∣∣∣xfnpuq∣∣∣2 du ď 1,

so u ÞÑ u2
∣∣∣ pfpuq∣∣∣2 is integrable. Note we have the estimate

2´ 2 cosphuq

h2
“ u2 2´ 2 cosphuq

phuq2
ď 5u2

for all h, u P R because t ÞÑ 2´2 cosptq
t2 is bounded by 5 for all real t. Therefore we have

2´ 2 cosphuq

h2

∣∣∣ pfpuq∣∣∣2 du ď 5u2
∣∣∣ pfpuq∣∣∣2 du

for all h, u P R, where the function on the right is integrable, so by the dominated convergence theorem
we have

1 ě

ż

R
u2

∣∣∣ pfpuq∣∣∣2 du “ ż

R
lim
hÑ0

2´ 2 cosphuq

h2

∣∣∣ pfpuq∣∣∣2 du “ lim
hÑ0

ż

R

2´ 2 cosphuq

h2

∣∣∣ pfpuq∣∣∣2 du “ lim
hÑ0

Qpf, hq,

so f P E and thus E is closed in L2.

Problem 3. Suppose f P L1pRq satisfies

lim sup
εÑ0

ż

R

ż

R

|fpxqfpyq|

|x´ y|2 ` ε2
dx dy ă 8.

Show that f “ 0 almost everywhere.

Solution. By applying monotone convergence to the limit (after using Tonelli’s theorem to convert the
double integral into an integral over R2), we have

ż

R

ż

R

|fpxqfpyq|
|x´ y|2

dx dy ă 8.

If f is not zero almost everywhere, then f has a Lebesgue point a with |fpaq| ą 0. We have

ż a`r

a´r

ż a`r

a´r

|fpxqfpyq|
|x´ y|2

dx dy ě

ż a`r

a´r

ż a`r

a´r

|fpxqfpyq|
p2rq2

dx dy “

ˆ

1

2r

ż a`r

a´r

|fpxq| dx
˙2

.

By the Lebesgue differentiation theorem, the right side tends to fpaq2 as r Ñ 0`. On the other hand, the
left-most integral must tend to 0, since the integrand is in L1 (in fact L1

loc is enough). This is a contradiction,
so we must have f “ 0 a.e.

Problem 4.

(a) Fix 1 ă p ă 8. Show that

f ÞÑ rMf spx, yq “ sup
rą0,ρą0

1

4rρ

ż r

´r

ż ρ

´ρ

fpx` h, y ` `q dh d`

is bounded on LppR2q.

(b) Show that

rArf spx, yq “
1

4r3

ż r

´r

ż r2

´r2
fpx` h, y ` `q dh d`

converges to f a.e. in the plane as r Ñ 0.
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Solution.

(a) For g : RÑ R, let

Mgpxq :“ sup
rą0

1

2r

ż r

´r

|gpx` hq| dh

be the usual maximal operator. For x P R, define fxpyq :“ fpx, yq. Since f P LppR2q, fx P L
ppRq for

a.e. x P R (this is proved by Tonelli’s theorem). Therefore by the usual Hardy-Littlewood maximal
theorem, we have

ż

|Mfxpyq|
p dy À

ż

|fxpyq|
p dy

for a.e. x P R. Now, for each y P R, define gypxq :“Mfxpyq. Tonelli’s theorem and the above inequality
show that gy P L

ppRq for a.e. y P R:
ż
ˆ
ż

|gypxq|
p dx

˙

dy “

ĳ

|Mfxpyq|
p dy dx

À

ĳ

|fxpyq|
p dy dx “ ||f ||

p
LppR2q

ă 8.

Therefore using Hardy-Littlewood again we have
ż

|Mgypxq|
p dx À

ż

|gypxq|
p dx

for a.e. y P R. Now note that we have

rMf spx, yq ď sup
rą0

1

2r

ż r

´r

sup
ρą0

1

2ρ

ż ρ

´ρ

|fpx` h, y ` `q| d` dh by Tonelli

“ sup
rą0

1

2r

ż r

´r

Mfx`hpyq dh

“ Mgypxq.

So by the above work we conclude that
ĳ

|rMf spx, yq|p dx dy ď

ĳ

|Mgypxq|
p dx dy À

ĳ

|gypxq|
p dx dy À ||f ||

p
LppR2q

.

(b) We mimic the proof of the Lebesgue differentiation theorem. Define

Trfpx, yq :“
1

4r3

ż r

´r

ż r2

´r2
|fpx, yq ´ fpx` h, y ` `q| dh d`, Tfpx, yq :“ lim sup

rÑ0
Trfpx, yq.

It suffices to show that Tf “ 0 a.e., and for that it suffices to show that for any fixed α ą 0,
λtpx, yq : Tfpx, yq ě αu “ 0 (where λ denotes 2-dimensional Lebesgue measure). Fix α ą 0 and ε ą 0.
Note that the desired result is obviously true for continuous functions. Since continuous functions are
dense in Lp, write f “ g ` u where g is continuous and ||u||Lp ă ε. The operator Tr is subadditive, so
Trf ď Trg ` Tru, and taking r Ñ 0 gives that Tf ď Tu.

We now estimate the quantity λtpx, yq : Tupx, yq ě αu. Notice that

Trupx, yq ď
1

4r3

ż r

´r

ż r2

´r2
p|upx, yq| ` |upx` h, y ` `q|q dh d` ď |upx, yq| ` rMuspx, yq.

So tpx, yq : Tupx, yq ě αu Ď tpx, yq : |upx, yq| ě α{2u Y tpx, yq : Mupx, yq ě α{2u, which implies that

λtpx, yq : Tupx, yq ě αu ď λtpx, yq : |upx, yq| ě α{2u ` λtpx, yq : Mupx, yq ě α{2u

ď
||u||

p
Lp

pα{2qp
`
||Mu||

p
Lp

pα{2qp
by Chebyshev’s inequality

ď
εp2p

αp
`
Cpεp2p

αp
where C is the constant from part (a) on the boundedness of f ÞÑ rMf s.
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Since Tf ď Tu, we also have λtpx, yq : Tfpx, yq ě αu ď εp2p

αp ` Cpεp2p

αp . Now the left side does not
depend on ε, so we can take εÑ 0 and conclude that λtpx, yq : Tfpx, yq ě αu “ 0.

Problem 5. Let µ be a real-valued Borel measure on r0, 1s such that

ż 1

0

1

x` t
dµptq “ 0

for all x ą 1. Show that µ “ 0.

Solution. Let S denote the real span of the functions of the form 1
x`t for x ą 1 in Cpr0, 1sq. We ap-

ply Stone-Weirstrass to show that S is dense in Cpr0, 1sq. For x0 ‰ x1 ą 1, we have

1

x0 ` t
¨

1

x1 ` t
“

1

x1 ´ x0

ˆ

1

x0 ` t
´

1

x1 ` t

˙

,

which lies in S. We also have that
1

x` t
¨

1

x` t` ε
Ñ

1

px` tq2

uniformly on r0, 1s as ε Ñ 0`. Thus 1
px`tq2 lies in S for t ą 1. Therefore the product of any two elements

in S lies in S. This implies that S is closed under multiplication. Indeed if f and g lie in S then we have
sequences fi Ñ f and gi Ñ g uniformly with fi, gi P S. Since f and g are bounded on r0, 1s, we have that
figi Ñ fg uniformly, and so fg P S.

Hence S is an algebra. It’s clear that S separates points, and that there is no point x0 such every function
in S vanishes at x0. Thus S “ Cpr0, 1sq.

So we have that
ş1

0
fptqdµptq “ 0 for all f in S, and by density for all f in Cpr0, 1sq. Note that µ is a

finite measure, otherwise
ş1

0
1

2`t would be either 8 or ´8. By the Riesz representation theorem, we must
have µ “ 0.

Remark. We used a slighly non-standard (although well-known) version of Stone-Weirstrass here. It’s
easy to avoid this, and instead show that the constant function 1 lies in S. For instance, the functions x

x`t
converge uniformly to 1 on r0, 1s as xÑ8.

Alternate Solution. Let ak “
ş1

0
tkdµptq. For x P p0, 1q we have

0 “

ż 1

0

1

1{x` t
dµptq “

ż 1

0

x

1` tx
dµptq “

ż 1

0

˜

8
ÿ

k“0

p´1qktkxk`1

¸

dµptq “
8
ÿ

k“0

p´1qkakx
k`1,

where swapping the order of summation and integration can be justified by Fubini-Tonelli, after noting that
µ is finite (to prove Fubini-Tonelli for signed measures, one looks at a Jordan decomposition and applies
Fubini separately to each piece). This latter sum is a power a series in x which is identically 0 for x P p0, 1q,
so each ak must equal 0. By taking linear combinations of the ak, we see that

ş

ppxqdµptq “ 0 for any
polynomial p. But polynomials are dense in Cpr0, 1sq, and so µ “ 0 by the Riesz representation theorem.

Problem 6. Let T denote the unit circle in the complex plane and let PpTq denote the space of Borel
probability measures on T and PpT ˆ Tq denote the space of Borel probability measures on T ˆ T. Fix
µ, ν P PpTq and define

M “

$

&

%

γ P PpTˆ Tq :

ĳ

TˆT

fpxqgpyq dγpx, yq “

ż

T
fpxq dµpxq ¨

ż

T
gpyq dνpyq for all f, g P CpTq

,

.

-

.

Show that F : MÑ R defined by

F pγq “

ĳ

TˆT

sin2

ˆ

θ ´ φ

2

˙

dγpeiθ, eiφq
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achieves its minimum on M.

Solution (trick). Note that sin2
´

θ´φ
2

¯

“ 1
2 p1 ´ cos θ cosφ ` sin θ sinφq, which is just a sum of three

functions of the form fpθqgpφq where each f, g P CpTq. So by definition of M, F pγq is actually independent
of γ, so F is constant on M and therefore obviously achieves its minimum.

Alternate solution (idea generalizes to other similar problems). Let I “ infγPM F pγq. Let γn
be a sequence of measures in M such that F pγnq Ñ I as n Ñ 8. Since T ˆ T is compact, one version of
the Riesz representation theorem says that the space of complex Borel measures on Tˆ T is isomorphic to
CpT ˆ Tq˚, and the operator norm of a measure is its total variation. Therefore PpT ˆ Tq is a subset of
the unit ball in CpT ˆ Tq˚. By the Banach-Alaoglu theorem, this unit ball is weak-˚ compact, and since
CpT ˆ Tq is separable, it is actually sequentially compact. Thus there is a subsequence tγnku that weak-˚
converges to some complex Borel measure γ in the unit ball of CpTˆ Tq˚.

We claim that γ is the minimizer of F . We need to verify that γ PM and that F pγq “ I. Note that γ
is a probability measure because

γpTˆ Tq “
ĳ

TˆT

1 dγ “ lim
nÑ8

ĳ

TˆT

1 dγn “ 1

by weak-˚ convergence because 1 is continuous. To show that γ P M, let f, g P CpTq be fixed. Then the
function px, yq ÞÑ fpxqgpyq is in CpTˆ Tq, so by weak-˚ convergence we have

ĳ

TˆT

fpxqgpyq dγpx, yq “ lim
nÑ8

ĳ

TˆT

fpxqgpyq dγnpx, yq “

ż

T
fpxq dµpxq ¨

ż

T
gpyq dνpyq.

Thus γ P M. To show that F pγq “ I, just note that sin2
´

θ´φ
2

¯

is also continuous on T ˆ T, so weak-˚

convergence implies F pγq “ limnÑ8 F pγnq.

Problem 7. Let F : C ˆ C Ñ C be jointly continuous and holomorphic in each variable separately.
Show that z ÞÑ F pz, zq is holomorphic.

Solution. Let pa, bq P C2. Since z ÞÑ F pz, bq is holomorphic, by the Cauchy Integral Formula

F pa, bq “
1

2πi

ż

|z´a|“r1

F pz, bq

z ´ a
dz.

Similarly, for each z, the function w ÞÑ F pz, wq is holormophic, so

F pz, bq “
1

2πi

ż

|w´b|“r2

F pz, wq

w ´ b
dw.

Therefore,

F pa, bq “
1

p2πiq2

ż

|z´a|“r1

1

pz ´ aq

«

ż

|w´b|“r2

F pz, wq

pw ´ bq
dw

ff

dz.

Now, because F is continuous on C2, Fubini’s theorem allows us to rewrite this iterated integral as a
multiple integral:

F pa, bq “
1

p2πiq2

ż

T1ˆT2

F pz, wq

pz ´ aqpw ´ bq
dw dz,

where T1 “ t|z ´ a| “ r1u, T2 “ t|w ´ b| “ r2u. Thus,

fpzq “ F pz, zq “
1

p2πiq2

ż

T1ˆT2

F pζ, ξq

pζ ´ zqpξ ´ zq
dζ dξ,
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Since F is continuous on the compact set T1 ˆ T2, we can now simply differentiate under the integral sign
to see that f is holomorphic. (Note: this proof actually shows that F is holomorphic on C2, i.e. has a
convergent power series in two variables.)

Problem 8. Determine the supremum of ∣∣∣∣BuBx p0, 0q
∣∣∣∣

among all harmonic functions u : DÑ r0, 1s.

Solution. The answer is 2{π. Since D is simply connected, any such u is the real part of an analytic
function f “ u` iv : DÑ S :“ tz P C : 0 ď Repzq ď 1u. Adding a pure imaginary constant doesn’t change
anything, so we can assume fp0q is real. We have f 1 “ ux ` ivy, so we want to bound Repf 1p0qq. Since we
can pre-compose f with a rotation without changing the absolute value of f 1 or changing the codomain of
f , this is the same as bounding |f 1p0q|. This shows that the desired supremum is the same as the supremum
of |f 1p0q| over all f : D Ñ S holomorphic with fp0q P R. Let f be such a function. Let T : S Ñ D be the
conformal map given by

T pzq “
exppiπzq ´ i

exppiπzq ` i
.

Let α “ T pfp0qq and let ψpzq “ z´α
1´αz be the automorphism of D that sends α to 0. Then g “ ψ ˝ T ˝ f is a

holomorphic function DÑ D with gp0q “ 0. So by the Schwarz lemma we have |g1p0q| ď 1. Now we compute

|g1p0q| “ |ψ1pαq||T 1pfp0qq||f 1p0q| “
1

1´ |α|2
|T 1pfp0qq||f 1p0q| ě |T 1pfp0qq||f 1p0q|

ě 2π

∣∣∣∣ exppiπfp0qq

pexppiπfp0qq ` iq2

∣∣∣∣ “ ∣∣∣∣ 2π

2i` 2i Impexppiπfp0qqq

∣∣∣∣ ě π

2

because exppiπfp0qq lies on the top half of the unit circle because fp0q P r0, 1s. Therefore we conclude

1 ě |g1p0q| ě
π

2
|f 1p0q|,

which shows that 2{π is an upper bound for the desired quantity. Now taking

fpzq “ T´1pzq “
1

iπ
log

ˆ

i` iz

1´ z

˙

,

where the log here is well-defined because i`iz
1´z P H for all z P D, it’s easy to calculate that |f 1p0q| “ 2{π, so

it must be the supremum and it’s actually attained.

Problem 9. Consider the formal product

8
ź

n“1

ˆ

1`
1

n

˙z
´

1´
z

n

¯

.

(a) Show that the product converges for any z P p´8, 0q.

(b) Show that the resulting function extends from this interval to an entire function of z P C.

Solution.

(a) For z P p0,8q we have

1´
z

n
“ 1`

´z

n
ď

ˆ

1`
1

n

˙´z

by Bernoulli’s inequality (or simply by looking at the generalized binomial expansion of the term on
the right). Thus each term in the product lies in p0, 1s. So the partial products form a decreasing
sequence of positive real numbers and therefore the product converges.
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(b) MISSING

Problem 10. Let C˚ “ C Y t8u be the Riemann sphere and let Ω “ C˚zt0, 1u. Let f : Ω Ñ Ω be a
holomorphic function.

(a) Prove that if f is injective then fpΩq “ Ω.

(b) Make a list of all such injective functions f .

Solution. Part (a) follows from part (b) by just examining the list of all possible functions and observing
that each of them is surjective. For part (b) we first consider the same problem on a modified region
rΩ :“ C˚zt0,8u. Let g : rΩ Ñ rΩ be injective and holomorphic. First we show that the injectivity implies
that when considered as a function on all of C˚, g has at worst simple poles at 0 and 8 (i.e. g has either a
removable singularity or a simple pole at 0 and 8). Essential singularities are impossible by the big Picard
theorem. To show that higher order poles are impossible, suppose g has a pole of order ě 2 at 0 (the
argument for 8 is the same). Then 1{g has a zero of order ě 2 at 0. Let γ be a small circle around the
origin; then the argument principle says that p1{gqpγq winds twice around 0. Thus there is a neighborhood
U of 0 such that p1{gqpγq winds at least twice around every point of U , and by the argument principle again,
this means that g achieves every value in U at least twice inside of γ. This contradicts g being injective
unless it happens to be the case that every value in U is achieved by g at one point with multiplicity 2. But
this is impossible because if gpz0q “ w0 with multiplicity 2, then g1 vanishes at z0. So if the above situation
happened, then g1 would be identically zero on pg1q´1pUq, which is an open set, so by uniqueness of analytic
continuation this would imply that g1 is identically zero, which is also a contradiction. Thus we conclude
that g has at worst simple poles at 0 and 8.

Therefore we have the representation gpzq “ a{z`b`cz for some a, b, c P C. But note that by hypothesis,

gpzq is never 0 for z P rΩ. The equation a{z`b`cz “ 0 always has a nonzero, non-infinite solution if a ‰ 0 ‰ c,
so we must have a “ 0 or c “ 0. And in either case, we must then also have b “ 0 to avoid achieving 0. So
the only possible functions g are gpzq “ az and gpzq “ a{z with a ‰ 0.

Now let f : Ω Ñ Ω be injective and holomorphic. This induces an injective holomorphic function
g “ T´1fT : rΩ Ñ rΩ where T pzq “ z{pz`1q is an automorphism of C˚ sending 0 to 0 and 8 to 1. Therefore
by the above we have

gpzq “
fpz{pz ` 1qq

fpz{pz ` 1qq ´ 1
“ az or

a

z
.

After simplifying everything and changing variables w “ z{pz ` 1q we find that the only possibilities for f
are

fpwq “ 1`
w ´ 1

pa´ 1qw ` 1
, fpwq “ 1`

w

pa´ 1qw ´ a
for some a ‰ 0.

Since az and a{z are both surjective as maps rΩ Ñ rΩ, and we got the possibilities for f by composing with
conformal maps, it’s clear that both of these possibilities are surjective as maps from Ω Ñ Ω.

Comment Instead of using the big Picard theorem as above, we can cite the much simpler Casorati-
Weierstrass theorem.

Problem 11. For R ą 1 let AR be the annulus t1 ă |z| ă Ru. Assume there is a conformal mapping
F from AR1

onto AR2
. Prove that R1 “ R2.

Solution. See Spring 2017 #7.

Problem 12. Let fpzq be bounded and holomorphic on the unit disc D. Prove that for any w P D we
have

fpwq “
1

π

ż

D

fpzq

p1´ zwq2
dApzq,
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where dApzq means integration with respect to Lebesgue measure.

Solution. Consider f as an element of the Bergman spaceA2pDq :“
 

f : DÑ C holomorphic :
ş

D |fpzq|
2 dApzq ă 8

(

.
This is a Hilbert space with inner product

xf, gy “

ż

D
fpzqgpzq dApzq

and orthonormal basis
!

z ÞÑ
b

n`1
π zn

)8

n“0
(It’s easy to check that these are actually an inner product and

orthonormal basis). For each fixed w P D, we first show the map f ÞÑ fpwq is a bounded linear functional
on A2. We have

|fpwq| “

∣∣∣∣∣∣∣
1

π
´

1´|w|
2

¯2

ż

Bpw,p1´|w|q{2q

fpzq dApzq

∣∣∣∣∣∣∣ À
˜

ż

Bpw,p1´|w|q{2q

|fpzq|2 dApzq

¸1{2

ď ||f ||A2

where the equality is by the mean value property of holomorphic functions and the first inequality is by
Cauchy-Schwarz. Thus f ÞÑ fpwq is bounded, and it’s clearly linear.

Thus by the Riesz representation theorem, for each w P D there is a function gw P A
2 such that

fpwq “ xf, gwy “

ż

D
fpzqgwpzq dApzq

for all f P A2. So we just need to show that gwpzq “
1

πp1´wzq2 . By definition of the functions gw, for any z

we have

gwpzq “ xgw, gzy “
8
ÿ

n“0

xgw, eny xgz, eny by Parseval (where tenu is the orthnormal basis mentioned above)

“

8
ÿ

n“0

xen, gwy xen, gzy “
8
ÿ

n“0

enpwqenpzq “
8
ÿ

n“0

1

π
pn` 1qpwzqn “

1

πp1´ wzq2
.

Alternative Solution

If w “ 0 this is the mean value property for analytic functions, so assume w ‰ 0. Let

dz “ dx` idy, dz “ dx´ idy;

then
dz ^ dz “ 2idx^ dy.

Also let
Bg

Bz
“

1

2

ˆ

Bg

Bx
´ i
Bg

By

˙

,

Bg

Bz
“

1

2

ˆ

Bg

Bx
` i
Bg

By

˙

,

for any function g. Then

dg “
Bg

Bx
dx`

Bg

By
dy “

Bg

Bz
dz `

Bg

Bz
dz.

Now, since f is analytic, we have
B

Bz

"

fpzq

1´ wz

*

“
wfpzq

p1´ wzq2
.
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Thus, the 2-form in the integrand equals

fpzqdx^ dy

p1´ wzq2
“

1

2i
dF,

where F is the 1-form

F “
fpzqdz

wp1´ wzq
.

Therefore, by Stokes’ theorem,

1

π

ż

D

fpzqdx^ dy

p1´ wzq2
“

1

2πi

ż

D
dF “

1

2πi

ż

BD
F “

1

2πiw

ż

BD

fpzqdz

1´ wz

“
1

2πiw

ż

BD

zfpzq

z ´ w
dz “

1

w
wfpwq “ fpwq,

by the Cauchy integral formula.

In general, if f : D Ñ C is analytic and bounded, let frpzq “ fpzq for 0 ă r ă 1. Then fr is analytic
on the larger disc Dp0, 1{rq and hence by the above

frpwq “
1

π

ż

D

frpzq

p1´ wzq2
dApzq.

By continuity, frpwq Ñ fpwq as r Ñ 1. Moreover, fr Ñ f pointwise on D, and since f, fr are bounded, the
dominated convergence theorem implies

fpwq “ lim
rÑ1

frpwq “ lim
rÑ1

1

π

ż

D

frpzq

p1´ wzq2
dApzq “

1

π

ż

D

fpzq

p1´ wzq2
dApzq.
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20 Fall 2018

Problem 1. Let tfnu be a sequence of real-valued Lebesgue measurable functions on R, and let f be another
such function. Assume that
(a) fn Ñ f Lebesgue almost everywhere
(b)

ş

|x||fnpxq| dx ď 100 for all n, and
(c)

ş

|fnpxq|
2 dx ď 100 for all n.

Prove that fn P L
1 for all n, that f P L1, and that ||fn ´ f ||L1 Ñ 0. Also show that neither assumption (b)

nor assumption (c) can be omitted while making these deductions.

Solution. To show that fn P L
1, note that

ż

R
|fn| “

ż

|x|ď1

|fn| `

ż

|x|ą1

|fn| ď

˜

ż

|x|ď1

|fn|
2

¸1{2

21{2 `

ż

|x|ą1

|x||fnpxq| ď C ă 8

for some constant C independent of n by hypotheses (b) and (c). Now to show that f P L1, note that by
Fatou’s lemma we have

ż

|f | “

ż

lim inf
nÑ8

|fn| ď lim inf
nÑ8

ż

|fn| ď C ă 8.

Now we show fn Ñ f in L1. First we need two “uniformity” estimates:

ż

|x|ąR

|fn| ď

ż

|x|ąR

|x|

R
|fn| À

1

R
ż

E

|fn| ď mpEq1{2
ˆ
ż

E

|fn|
2

˙1{2

À mpEq1{2.

where the implied constant is independent of n in both. By the same Fatou’s lemma argument, the above
estimates also hold for f . Let ε ą 0. Let R be big enough so that

ş

|x|ąR
|fn| ă ε for all n and

ş

|x|ąR
|f | ă ε.

By Egorov’s theorem, there is a set E Ď t|x| ď Ru on which fn Ñ f uniformly, and by the second estimate
above we may pick mpEcq to be small enough so that

ş

Ec
|fn|,

ş

Ec
|fn| ă ε. Then we have

ż

|fn ´ f | “

ż

|x|ąR

|fn ´ f | `

ż

E

|fn ´ f | `

ż

Ec
|fn ´ f |

ď

ż

|x|ąR

|fn| `

ż

|x|ąR

|f | `

ż

E

|fn ´ f | `

ż

Ec
|fn| `

ż

Ec
|f |

ă 4ε`

ż

E

|fn ´ f |.

Taking nÑ8, since we have uniform convergence on E, gives

lim sup
nÑ8

|fn ´ f | ă 4ε.

This holds for any ε ą 0, so the result follows.

Problem 2. Let pX, ρq be a compact metric space which has at least two points, and let CpXq be the
space of continuous functions X Ñ R with the uniform norm. Let D be a dense subset of X and for each
y P D define fy P CpXq by fypxq “ ρpx, yq. Let A be the subalgebra of CpXq generated by the collection
tfy : y P Du.
(a) Prove that A is dense in CpXq under the uniform norm.
(b) Prove that CpXq is separable.

Solution. (a) By one version of the Stone-Weierstrass theorem, it’s enough to check that A separates
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points (for all x ‰ y P X there exists f P A with fpxq ‰ fpyq) and is nonvanishing (for all x P X there exists
f P A with fpxq ‰ 0). Both of these are easily verified because X has at least two points by hypothesis. For
separating points, given x ‰ y let f “ fy. For nonvanishing, given x let f “ fy for any y ‰ x.

(b)

Problem 3. Let pX, ρq be a compact metric space and let P pXq be the set of all Borel probability measures
on X. Assume µn Ñ µ in the weak-˚ topology on P pXq. Prove that µnpEq Ñ µpEq whenever E is a Borel
susbet of X such that µpEq “ µpE˝q, where E is the closure and E˝ is the interior.

Solution. Applying the portmanteau theorem twice, since E˝ is open and E is closed, we have

µpE˝q ď lim inf
nÑ8

µnpE
˝q ď lim inf

nÑ8
µnpEq ď lim sup

nÑ8
µnpEq ď lim sup

nÑ8
µnpEq ď µpEq

But by hypothesis, µpE˝q “ µpEq, so every inequality in the chain is actually an equality. Since µpEq also
necessarily fits somewhere in between µpE˝q and µpEq, which are equal, we conclude

lim inf
nÑ8

µnpEq “ lim sup
nÑ8

µnpEq “ µpEq.

Problem 4. Let T be the unit circle in the complex plane and for each α P T define the rotation map
Rα : T Ñ T by Rαpzq “ αz. A Borel probability measure µ on T is called α-invariant if µpRαpEqq “ µpEq
for all Borel sets E Ď T.
(a) Let m be Lebesgue measure on T. Show that for every α P T, m is α-invariant.
(b) Prove that if α is not a root of unity, then the set of powers tαn : n P Zu is dense in T.
(c) Prove that if α is not a root of unity, then m is the only α-invariant Borel probability measure on T.

Solution. Throughout, we identify T with the interval r0, 1q in the natural way, so “α is not a root of
unity” is replaced by “α is irrational”.

(a) When viewed as a map on r0, 1q, Rαpxq “ x`α pmod 1q. We know that Lebesgue measure is translation
invariant, so Rα is measure preserving when considered as a map r0, 1q Ñ R. But in the case where E Ď r0, 1q
has RαpEqX r1,8q ‰ H, RαpEq may be reassembled as a subset of r0, 1q by just translating RαpEqX r1,8q
to the left by 1, which still preserves Lebesgue measure. Thus Rα preserves m.

(b) Method 1. It’s enough to show tnα : n ě 0u is dense in T. Since α is irrational, the orbit con-
tains infinitely many distinct points. Therefore by the pigeonhole principle, for every ε ą 0 there exist some
n ă m such that ||nα´mα||T ă ε (||¨||T denotes “mod 1” distance). Therefore the rotation x ÞÑ pm´ nqα
is a rotation by less than ε, so tjpm ´ nqα : j ě 0u is a subset of the orbit such that every point of T is at
most ε away from some jpm´ nqα. Such subsets exist for any ε ą 0, so the orbit is dense.

(b) Method 2. It’s enough to show tnα : n ě 0u is dense in T. In fact we show a stronger result
which is the equidistribution theorem, i.e. for any 0 ď a ă b ď 1,

lim
NÑ8

#tn : a ď nα ď bu

N
“ b´ a.

For any f P L1pTq, set

ANf :“
1

N

N´1
ÿ

n“0

fpnαq, Ipfq :“

ż

T
f dm.

The first step is to show that for f P CpTq, ANf Ñ Ipfq as N Ñ 8. It’s easy to see that this property is
linear and behaves well under L8 approximation, so since trig polynomials are dense in CpTq, it’s enough
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to show that this result holds for fpxq “ expp2πikxq for any k P Z. We calculate directly

ANf “
1

N

N´1
ÿ

n“0

expp2πikαqn “
1

N

#

N k “ 0
1´expp2πiNkαq
1´expp2πikαq k ‰ 0

“

#

1 k “ 0

Okp1{Nq k ‰ 0

because expp2πikαq ‰ 1 for all k ‰ 0 because α is irrational. Thus

lim
NÑ8

ANf “

#

1 k “ 0

0 k ‰ 0
“ Ipfq.

To finish the proof, we want to apply this convergence to the characteristic function χra,bs, but it’s not
continuous, so we have to approximate. Take sequences fk, gk of continuous functions satisfying 0 ď gk ď
χra,bs ď fk ď 1 with fk and gk both converging Lebesgue almost everywhere to χra,bs. Then we have

ANgk ď ANχra,bs ď ANfk, Ipgkq ď Ipχra,bsq ď Ipfkq.

Taking N Ñ8 then gives

Ipgkq ď lim inf
NÑ8

ANχra,bs ď lim sup
NÑ8

ANχra,bs ď Ipfkq,

and by the Dominated Convergence Theorem taking k Ñ8 gives

Ipχra,bsq ď lim inf
NÑ8

ANχra,bs ď lim sup
NÑ8

ANχra,bs ď Ipχra,bsq,

so they are all equal, as desired. This finishes the proof because limNÑ8ANχra,bs is exactly the expression
on the left side and Ipχra,bsq is exactly the expression on the right side of the desired equation.

(c) Method 1. It’s enough to show that
ş

f dµ “
ş

f dm for all f P CpTq. Write

ż

fpxq dµpxq ´

ż

fpzq dmpzq “

ż ż

pfpxq ´ fpzqq dmpzq dµpxq “

ż ż

pfpxq ´ fpx` zqq dmpzq dµpxq

“

ż ż

pfpxq ´ fpx` zqq dµpxq dmpzq

where the last equality is by Fubini and the second to last equality is by the translation invariance of m.
So it suffices to show that

ş

pfpxq ´ fpx ` zqq dµpxq “ 0 for each fixed z P T. By the density from part
(b), there is a subsequence njα Ñ z as j Ñ 8. Thus since f is continuous and T is compact, we have
fpx ` njαq Ñ fpx ` zq uniformly over x P T as j Ñ 8. Therefore, since we are assuming µ is invariant
under rotations by α, we have
ż

pfpxq ´ fpx` zqq dµpxq “

ż

fpxq dµpxq ´

ż

fpx` zq dµpxq “

ż

fpx` njαq dµpxq ´

ż

fpx` zq dµpxq

for every j, and taking j Ñ 8 makes the right side equal to 0 because the convergence is uniform and f is
continuous.

(c) Method 2 (motivated by ergodic theory). Suppose α is irrational. Then if f is a trig polyno-
mial, the same direct calculation from part (b) shows that

ANfpxq :“
1

N

N´1
ÿ

n“0

fpx` nαq Ñ

ż

T
f dm

as N Ñ8 for any fixed x P T. Let µ be any Rα-invariant measure. Then since trig polynomials are bounded,
the Dominated Convergence Theorem gives

ż

ANf dµÑ

ż
ˆ
ż

f dm

˙

dµ “

ż

f dm.
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But since µ is Rα-invariant, the left side is equal to
ş

f dµ for all N . Thus
ş

f dµ “
ş

f dm for all trig poly-
nomials f , and by density they are equal for all f P CpTq, so by the Riesz representation theorem µ “ m.

Problem 5. Let tfnu be a sequence of continuous real-valued functions on r0, 1s and suppose fnpxq con-
verges to another real valued function fpxq at every x P r0, 1s.
(a) Prove that for every ε ą 0 there is a dense subset Dε Ď r0, 1s such that if x P Dε then there are an open
interval I Q x and a positive integer Nx such that for all n ą Nx, supyPI |fnpyq ´ fpyq| ď ε.
(b) Prove that f cannot be the characteristic function χQXr0,1s.

Solution.

Problem 6. Let f P L2pRq and assume the Fourier transform satisfies
∣∣∣ pfpξq∣∣∣ ą 0 for Lebesgue almost

every ξ P R. Prove the set of finite linear combinations of the translates fypxq “ fpx´ yq is norm dense in
L2pRq.

Solution. See Spring 2012 # 6.

Problem 7. Let fpzq be an analytic function on the entire complex plane C such that the function
Upzq “ log |fpzq| is Lebesgue area integrable. Prove f is constant.

Solution. See Spring 2013 # 7.

Problem 8. Let D be the space of analytic function fpzq on the unit disc D such that fp0q “ 0 and
ş

D |f
1pzq|2 dx dy ă 8.

(a) Prove D is complete in the norm

||f || “

ˆ
ż

D
|f 1pzq|2 dx dy

˙1{2

.

(b) Give a necessary and sufficient condition on the coefficients an for the function fpzq “
ř

ně1 anz
n to

belong to D.

Solution. (a) Let fn be a Cauchy sequence in D. Then by definition, f 1k is a Cauchy sequence in L2pDq.
Since L2 is known to be complete, there is some g with f 1k Ñ g in L2pDq. We need to show that g is
holomorphic, and for this we use the standard trick. Fix 0 ă r ă 1, then for any |z| ď r and any f P D we
have

|f 1pzq| “

∣∣∣∣∣
ż

Bpz,p1´rq{2q

f 1pwq dApwq

∣∣∣∣∣ ď
ż

Bpz,p1´rq{2q

|f 1pwq| dApwq Àr

˜

ż

Bpz,p1´rq{2q

|f 1pwq|2 dApwq

¸1{2

ď ||f ||D ,

so ||f 1||
L8pBp0,rqq

Àr ||f ||D. Thus, since fn is a Cauchy sequence in D, f 1n is a uniformly Cauchy sequence

on Bp0, rq. Since L8
´

Bp0, rq
¯

is complete, we see that f 1n converges uniformly to some limit function on

Bp0, rq. This holds for any r ă 1, so f 1n has a locally uniform limit on D. But since f 1n Ñ g in L2pDq, it
has a subsequence converging pointwise to g, so in fact f 1n Ñ g locally uniformly on D, which implies g is
holomorphic. Let G be the unique primitive of g with Gp0q “ 0. Then ||fn ´G||D “ ||f

1
n ´ g||L2pDq Ñ 0, so

D is complete.

(b) We have f 1pzq “
ř

ně1 nanz
n´1. Write this as f 1preiθq “

ř

ně1 nanr
n´1eipn´1qθ and then we have∣∣f 1preiθq∣∣2 “

ÿ

n,kě1

nkanakr
n`k´2eipn´kqθ,
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so

ż

D
|f 1pzq|2 dx dy “

ż 1

0

ż 2π

0

ÿ

n,kě1

nkanakr
n`k´2eipn´kqθ r dθ dr

“

ż 1

0

ÿ

n,kě1

nkanakr
n`k´1

ż 2π

0

eipn´kqθ because the series converges uniformly on compact sets

“

ż 1

0

ÿ

ně1

n2 |an|2 r2n´1 dr by orthonormality

“
ÿ

ně1

n2 |an|2
ż 1

0

r2n´1 dr by the Monotone Convergence Theorem

“
1

2

ÿ

ně1

n |an|2 .

Thus a necessary and sufficient condition is that
ř

ně1 n |an|
2
ă 8.

Problem 9. Consider the meromorphic function gpzq “ ´πz cotpπzq on the entire plane C.
(a) Find all poles of g and determine the residue of g at each pole.
(b) In the Taylor series representation

ř8

k“0 akz
k of gpzq about z “ 0, show that for each k ě 1

a2k “
ÿ

ně1

2

n2k
.

Solution. See Spring 2013 # 11.

Problem 10. For ´1 ă β ă 1 evaluate
ż 8

0

xβ

1` x2
dx.

Solution. See Spring 2014 # 11.

Problem 11. An analytic Jordan curve is a set of the form Γ “ fpt|z| “ 1uq where f is analytic
and one to one on an annulus tr ă |z| ă 1{ru, 0 ă r ă 1. Let C˚ “ C Y t8u be the Riemann sphere, let
N ă 8, and let Ω Ď C˚ be a domain for which BΩ has N connected components, none of which are single
points. Prove there is a conformal mapping from Ω onto a domain bounded by N pairwise disjoint analytic
Jordan curves.

Solution.

Problem 12. If α P C satisfies 0 ă |α| ă 1 and if n ě 1, show that the equation ezpz ´ 1qn “ α has
exactly n simple roots in the half plane tRepzq ą 0u.

Solution.
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