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1 Spring 2009
Problem 1. Let f and g be real-valued integrable functions on a measure space (X, B, i) and define
Fi = {zeX:f(x)>t}, G = {zeX:gx)>t}

Prove

[ir=slan = | T (BAG) O (GARY).

—00

Solution. First assume that X is o-finite. Then we have

o0 o0
J p((F\Gy) v (G\Fy)) = J L X{we X min(f(z),g(x))<t<max(f(z),g(z))} () du(x) dt
—00

—0

a0

= LJ X {ze X min(f (2),9(x)) <t<max(f(2).g(2))} (€) dE dpu(z) by Tonelli
—

= | 1#@) = gt duta),

which is the desired result. Now drop the assumption that X is o-finite. Let Y = {z € X : |f(x) — g(x)| # 0}
and let v = ply. Note that Y = J*_ {z € X : |f(z) — g(z)| > 1/n}, and since f and g are both integrable,
each of those sets must have finite measure. Thus (Y, v) is a o-finite measure space. Thus by the work above
we have -

Y —
But note that §, |f —gldu = §, [f — gldu + §y. |f — gldu = §y |f — gl dv by definition of ¥ and v. Also
note that F{\Gy, G\F; € Y for every ¢, 50 (F; nY\G; nY) U (G nY\F; nY) = (F\Gt) U (Gi\F}y), and
v ((F\Gy) v (G\FY)) = p((F\Gt) v (Gi\F})). Substituting all of this into the above equation gives the
desired result. [

Problem 2. Let H be an infinite dimensional real Hilbert space.

(a) Prove the unit sphere S = {z € H : ||z|| = 1} is weakly dense in the unit ball B = {z € H : ||z|| < 1}.
(b) Prove there is a sequence T,, of bounded linear operators from H to H such that ||T,|| = 1 for all n but
lim,, o0 Ty (x) = 0 for all z € H.

Solution. (a) Fix x € B. We may assume ||z|| < 1 because if € S the result is obvious. Using a
standard Zorn’s Lemma/Gram-Schmidt argument, together with the fact that H is infinite-dimensional, we

can construct an orthonormal set {z/||z||,e1,e€2,...}. Let @, = z + 4/1 — ||z|[*en. By the Pythagorean
theorem we have ||z,,||* = ||z]|* + (1 —||z]*) ||en||* = 1, s0 ,, € S. Now we claim that {z,} converges weakly
to x. For y € H fixed, we have
2
(@n —z,y) = /1= |[z]|"{en, )

This goes to 0 as n — o because since {e,} is an orthonormal set, Bessel’s inequality gives Zle [<en, y>|2 <

||ly||” and the terms of a convergent series must go to 0. [

(b) Fix an infinite orthonormal set {e1,es,...}. Define T, (z) := (x,e,ye,. It’s clear that T}, is a linear
operator H — H. We have ||T,(z)|| = |{z,en)||len]] < ||z|| by Cauchy-Schwarz, so ||T,|| < 1. Also it’s clear
that T, (en) = en, so ||T,,|| = 1. Finally, for any x € H we have lim,,_,o ||T,(2)|| = lim, o [{z, €,)] = 0 by
the same Bessel’s inequality argument in part (a). O

Problem 3. Let X be a Banach space. Prove that if X* is separable then X is separable.

Solution. See Fall 2014 # 6.



Problem 4. Let f(z) be a non-decreasing function on [0, 1].
(a) Prove that §y f(z) da < f(1) — £(0).
(b) Let {f,} be a sequence of non-decreasing functions on [0, 1] such that the series F(z) = > fn(2)

converges for all z € [0,1]. Prove that F’(x) = >, f/(z) almost everywhere.

Solution. (a) First we extend the definition of f by setting f(z) = f(1) for z > 1. Note that f is
differentiable almost everywhere because it is non-decreasing. So for almost every x, the representation

iy o fleth) = f2)
=) = hll»rg+ h

is valid. Since f is non-decreasing, the difference quotient is non-negative for every x and every h. Thus by
Fatou’s lemma we have

e fae = f@) )~ )
Lf(x)dx = j lim Y dr <1 fjo dz

o h—0*t h—0*t h

1+h h
liminf%J f(a:)dx—%L f@)de < £(1) = £(0)

h—0+ 1

where we used the fact that f is non-decreasing again in the last inequality. [

(b) First note that since each f, is non-decreasing, F' also is, so F' is differentiable almost everywhere.
Let ry(z) = Yo noq fo(z) and write F(z) = 27]:;1 fn(x) + rn(x). Since ry is also non-decreasing, we can
write F'(z) = ZnN:1 Il (x) + 77y (z) for all x at which all three of those functions are differentiable, which
is still almost everywhere. Thus to show the desired result it’s enough to show that 7% (z) — 0 almost
everywhere as N — co. First note that for almost every z, riy(z) — 'y, (x) = (ry —7n+1) () = fy(x) =0
because fy is non-decreasing so its derivative is non-negative wherever it exists. So {rf ()} is monotonically
decreasing in N for almost every z. So the limit limy_,o 7y (2) exists almost everywhere and is non-negative
(as a limit of non-negative terms). Thus by the monotone convergence theorem we have

1 1
J lim ry(z)dz = lim [ 7y(z)dz < lim ry(1) —ry(0) = 0

0 N—w© N—owo Jg N—>oo

where the second to last inequality uses part (a) because each ry is non-decreasing and the last equality is
by the hypothesis that the series defining F' converges everywhere. Thus limy_,o 7y () is a non-negative
function which integrates to 0, so it must be zero almost everywhere. [

Problem 5. Let Iy = [0,1] and for n > 0,0 < j < 2" —1, let
L; = [j27",(j+1)27"].

For f € L'([0,1]) define E, f = Z?igl A
[0,1].

f) dt) X1, ;- Prove that E,f — f almost everywhere on

I,

Solution. For a fixed = € [0,1], E, f(x) is simply the average value of f over the interval I, j(, ) that
lies in. It’s clear that the family of intervals {In7j(n7z)}f=1 shrinks nicely to z, so it’s a direct consequence
of the Lebesgue differentation theorem that E, f(x) — f(x) for all Lebesgue points of f, which is almost
everywhere. [J

Problem 6. For I, ; as in Problem 5, define the Haar function A, ; = on/2 (X1n+1,2j — X1n+1,2j+1)'
(a) Draw Io; and graph hg .
(b) Prove that if f € L?([0,1]) and S(l) f(t)dt =0, then

2

1 1
j @) de = f F ()b (1) dt
0 0

n=0,0<j<2" -1



c) Prove that if f € an t = 0, then almost everywhere on
P hat if f € L'([0,1]) and 0 t)d 0, th 1 h 0,1],

n

_ ni g@ < L F ) dt) o5 ().

Solution. (a)

(b) Let M = {f e L%([0,1]) So } First note that M is a closed subspace of L?: if f, € M and

fn — f in L?, then by Cauchy-Schwarz we also have f, — f in L', so in particular § f, — { f, so Sf =0
as well. Thus we can consider M as a Hilbert space. Next note that {h, ;}, ; form an orthonormal set
in M: It’s clear that Shi ; = 1 for each n,j. Now consider § hnjhum k- Suppose without loss of generality
that m > n. There are only two possibilities, either h, ; and h,, ; have disjoint supports, in which case
the integral is clearly zero, or the support of h,, j is contained in a set on which h,, ; is constant, in which
case the integral is just a constant multiple of Shm,lm which is 0. Thus they form an orthonormal set. We
want to show they form an orthonormal basis for M. If we show this, then the desired conclusion is just the
statement of Parseval’s identity and we will be done. Let f € M and suppose that { fh, ; = 0 for all n, j.

It’s enough to show this implies f = 0. First note that we have S(l) = 81/2 f+ Si/2 f = 0. We also have

by assumption § fhoo = SI/Q 1/2

1/2 _ 1/4

f- S1/2 = 0. Combining these two yields {,'” f = Si/z f = 0. Continuing,

1/2 1/2

we have 0 = { f+ 81/4, and by assumption, 0 = { fh1 o = Sl/4f - Sl/4 f, and combining these

gives So f= S}ﬁ = 0. Continuing in this way inductively shows that Sln’j f =0 for all n,j. Any closed

interval can be written as a countable disjoint union of the I,, ;, so the integral of f over any closed interval
vanishes, which implies f =0. O

(c) Let

S/ iZ(ff P dt) (o)

n=0 j=0

In light of problem 5 above, it’s enough to show that Sy f(x) = En41f(x) for almost every . We show this
holds for any « which is not an endpoint of any I,, ;. Fix such an x. Define j(n) to be the unique j such
that x € I,, ; and define j(n) to be the unique j # j(n) such that I,, ;i) U I, jm)e = In—1,(n—1)- Then we

have
(J S(@hn i) (t )df>h () (@)

S )
n+1J(ﬂ+1) 77+1J(77+1)C

( J;n+1,j(n+1) J‘n ,d(n) >
2n+1 J _on f f
I .

HMZ ||M2 HMZ HMZ

Sn f(z)

I, J(n+1) n,j(n)
= gV f p-|
Inti v fo.0
_ 2N+1f f = Expf(@). O
I

N+1,j(N+1)

Problem 7. Let p be a finite positive Borel measure on C.



(a) Prove that F(z) = {.
compact K < C.

(b) Prove that for almost every horizontal line L and all compact K < L, §,. |F(z + iy)| dz < o0.
(c) Prove that for almost all open squares S with sides parallel to the axes,

dp(w) exists for almost all z € C and that {,. |F(z)|dzdy < oo for every

Z—w

Solution. (a) The second half of the assertion implies the first half, so we focus on the second. It’s
enough to show that S\z|<R |F(2)| dA(z) < oo for each R. We estimate

LgR |F(2)|dA(2) < flKRLEC |Z_w| dp(w) dA(z) LECJ' . |Z_1w| dA(z) du(w) by Tonelli
N Jw<2Rﬁ <n m dA(2) dp(w) + L»mj o m dA(2) dp(w)
< J <2RJZ w|<3R |z—w| Jw|>2RJ |<R§dA dp(w)

< J Crdp(w) + J mRdu(w) where Cg is some constant depending on R
lw|<2R |w|>2R

< O

because p is a finite measure. O

(b) As in part (a), it’s enough to prove the assertion with any compact set K replaced by any interval
of the form [—R, R]. Fix some R and an integer m. Then by part (a) and Tonelli’s theorem, we know

SmH Sg |F(z + iy)| de dy < oo. This implies that there is a set Y,, g of full measure in [m,m + 1] such that

Sg |F(x+iy)| dz < oo for each y € Yy, . By setting V,,, = ﬂolgzl Yo, r, we see that Y still has full measure in

[m, m+1] and now for any y € Y,,, Sg |F'(z+1iy)| dx < oo for every R. Thus we have shown that almost every

horizontal line with y-intercept in [m,m + 1] satisfies the desired property. Now setting Y = | 7~ Y., we

m=—0o0

see that Y is an almost everywhere subset of R with the property that y € Y implies SR |F(x + iy)|dz < o

for every R, which is the desired conclusion. In fact, by examining the proof of part (a) it’s clear that we
. . . . . . 1

actually proved something a bit stronger, which is that y € Y implies SK Sw eC eTiy=u] dp(w) dz < oo for all

compact sets K (we’ll need this version in part (¢)). O

(¢) The same argument as in part (b) shows that the analogous result to part (b) for vertical lines also
holds. Let S be the collection of squares S in C such that all four sides of S lie on lines for which the
conclusion of part (b) holds. It’s clear that S is almost every square in C. Thus for S € S, we have

LSF(Z)dz = Lsfcz_lwdu(w)dz = LLSZ_lwdzdp(w)

- f@ omixs(w) du(w) = 2mip(S),

which is the desired result. We just need to justify switching the order of integration in the first line. Note

that by definition of S,
1
J J du(w) dz
as Je |z —wl

is simply a sum of four integrals along horizontal or vertical lines which are known to be finite by the com-
ment at the end of part (b). Thus Fubini-Tonelli applies, so the switch is justified. O

Problem 8. Let f be an entire non-constant function that satisfies the functional equation

fl=2) = 1-71(2)



for all z € C. Show that f(C) = C.

Solution. The functional equation implies that w € Im(f) if and only if 1 — w € Im(f). Thus suppose
that there were some w ¢ Im(f), then 1 —w ¢ Im(f) either, so f misses two points (if w # 1/2). But Picard’s
little theorem says that an entire function that misses two points is constant, a contradiction. Thus f hits
everything except possibly 1/2. But putting z = 1/2 into the functional equation gives f(1/2) = 1 — f(1/2),
so f(1/2) = 1/2. Thus f is surjective. [

Problem 9. Let f(z) be an analytic function on the entire complex plane C and assume f(0) # 0. Let {a,}
be the zeros of f, counted with multiplicity.
(a) Let R > 0 be such that |f(z)] > 0 on |z| = R. Prove

I i6 "
%L log |f(Re®)| d0 = log|f(0)|+ )] 10g<an>'

lan|<R

(b) Assume |f(z)] < Cel*I" for positive constants C and \. Prove that

RS

n

for all € > 0.
Solution. See Spring 2017 # 9.

Problem 10. Let u be Lebesgue measure on D. Let H be the subspace of L?(ID, i) consisting of holo-
morphic functions. Show that H is complete.

Solution. See Fall 2014 #10 (not exactly the same problem, but a similar idea).

Problem 11. Suppose that f : D — C is holomorphic and injective in some annulus {z : r < |z| < 1}. Show
that f is injective in D.

Solution. Suppose there are z1,20 € D with f(z1) = f(22) = w. Then there is a circle C of radius
s € (r,1) containing both z; and 29 in its interior. Then the function f — w has at least two zeros inside C,
so the argument principle tells us that the curve f(C) has winding number at least 2 around zero. But a
curve of winding number at least 2 has to intersect itself, meaning that there are two different points on the
curve C' at which f — w takes the same value. But since S lies in the annulus r < |z| < 1, this contradicts
the fact that f is injective on the annulus. [

Problem 12. Let @ be the closed unit square in C and let R be the closed rectangle in C with ver-
tices {0,2,4,2 +i}. Prove there does not exists a surjective homeomorphism f : Q — R that is conformal on
the interior of () and maps corners to corners.

Solution. Suppose f : Q — R satisfies the given conditions. By continuity, it must preserve the order
of the vertices, so by precomposing with rotations and flips if necessary, we may assume that f fixes the
vertical line segment [0,%]. By the Schwarz reflection principle, applied iteratively and reflecting over the
vertical lines, we can extend f to a map from the strip 0 < Im(z) < 1 to itself. We can then reflect over
the two horizontal lines to extend f to a map from the strip —1 < Im(z) < 2 to itself. This strip is simply
connected and so is conformally equivalent to D. So f has been extended to a conformal automorphism of
a region conformally equivalent to D, and f has two fixed points, which implies f is the identity, a contra-
diction. [



2 Fall 2009

Problem 1. Find a non-empty closed set in the Hilbert space L?([0,1]) that does not contain an element
of smallest norm.

Solution. Let f,, = n - X[0,1/n2+1/n3]- We claim {f,}_, is such a set. First note that

1 1 1
2 _ 2 _
f'fn' (n+ns)” =+

so we see that the set has no element of smallest norm. To show it’s closed, suppose g € L? is a limit point.
Then there is a subsequence f,, converging to g in L?. But this implies there is a further subsequence fnkg
converging almost everywhere to g. But it’s clear that f,, — 0 almost everywhere, so g = 0. But 0 is clearly
not a limit point of {f,} because || f,||;> > 1 for each n. Thus {f,} has no limit points so it’s closed. O

Problem 2. Let v be a trigonometric polynomial in two variables, i.e.

o(@y) = Y e

n,mezZ
with only finitely many nonzero a, m. If u = v — Av where A = 02 + 85 is the Laplacian, prove that

<

Hv||L°O([O,1]2) C”“”L?([O,I]?)

for some constant C' independent of v.

Solution. A straightforward computation shows that

u(l‘a y) = Z an,m(l + 4772(712 + m2))627ri(nz+my)-

n,m

Thus, using orthonormality and the fact that only finitely many coefficients are nonzero, we have

1 p1 1 p1
J f |’U,(£IT7 y)|2 dx dy = J J Z an,mm(l + 47T2(n2 + m2>)(1 + 47‘(2(]{2 + £2))e2ﬂi(nw+my)e—27ri(k;c+€y) dr dy
0 Jo 0 Jo

n,m,k,¢

1
e27ri(n7k)w de e27ri(m7€)y dy

1
D1 anmrg(l+ 4% (n® + m?))(1 + 47 (k* + 62))J
0

n,m,k,¢ 0

= D anml” (1 + 472 (n? + m?))%.

n,m

Now we simply estimate v using the triangle inequality and Cauchy-Schwarz:

9 2
1
lo(z,y)|* < (T;n|an,m|> = (Z |@n,m|(1 + 47 (n® + m?)) - 1+ 4n2(n? + m2))>

n,m

< (2 | |? (1 + 472 (n? +m2))2> (

n,m

1
Z (1+4n2(n? + mz))2>

n,m

2
=C- \|U||L2([o,1]2)

because 3, . W converges. Thus we have established |\v||im([071]2) < C’\|u||2L2([071]2) which

implies the desired result. [

Problem 3. Let f: [0,1] — R be continuous with

i = 0.
oo f(x)



Assume that for all 0 < a < b < 1 we have

(a) Prove that for all A = 0,
o f@) > A+ 11 < 5l @) > Al

(b) Prove that for all 1 < ¢ < 2,

Solution. (a) Fix A > 0. Since f is continuous, {z : f(z) > A} is open, and thus it can be written as
a countable union of disjoint open intervals (a;,b;) (the set is only open relative to [0, 1], so it’s possible
that one of the intervals is closed on the left at 0 and another is closed on the right at 1, but that doesn’t
change any of the following work, so we ignore it). Also by continuity, we must have minyc(,, 5,1 f (y) = A
for each j. Thus using the hypothesis on f, for each j we have

1 b b,

i(bj —aj) = f (f(x) =N dz = L f(z)dz — X(bj — a;).

aj

Summing both sides from j = 1 to o gives

(3+) Ho: 160 = 2 > J ., s

We also have

J f(z)dx = J f(x)dm—&-f f(z)dx
{f>X2} {f>X+1} {A<f<A+1}

A+ Dz fl) > A+ 1+ A{z: f(z) > A+ 1}]\{x: f(x) > A}
At Dl f@) > A+ D+ A : £2) > Al — o< () > A+ 1))
= Hx: flx) >+ 1}+A|{z: f(zx) > A}].

\Y

Combining this with the above inequality and rearranging gives the desired result. [

(b) Fix 1 < ¢ < 2. We can write
w .
j @ dy = ¢ |{f—0}|+2f O dr < 16 I G < F i) < 103 ST F > ).
{i<f<j+1} j=0 j=0

We know that [{z: f(x) > 0}| < 1, so by inductively applying the conclusion of part (a) we see that
{x : f(z) > j}| <279. Thus we have

1 0 0
o , 21c¢ 100
HOP P GJtlo=i = 1 9 = 14— = <

JOC x +;) +cj§(c/) +1—c/2 7 ¢ 7 ¢

where the geometric series converges because ¢ < 2. O

Problem 4. Prove the following variant of the Lebesgue differentiation theorem: Let p be a finite Borel
measure on R, singular with respect to Lebesgue measure. Then for Lebesgue almost every = € R,
iz — ez +¢)

e



Solution. See Fall 2016 #2.

Problem 5. Construct a Borel subset E of the real line R such that for all intervals [a, b] we have
0 < m(Enad]) <b—a

where m denotes Lebesgue measure.

Solution.

Problem 6. The Poisson kernel for 0 < p < 1 is the 2m-periodic function on R defined by

1+ pe'?
1— pew :

P,(6) = Re(

For functions h continuous on and harmonic inside the closed disc of radius R about the origin one has

. 1 (% ,
h(re') = — R (1 —H)h(Rew)dQ.
271_ 0
Assume that h is harmonic and positive on D. Prove that there exists a positive Borel measure p on [0, 27]
such that for all 7e*” € D one has

) 21
h(re) = L Pr(1 — 0) du(6).

Solution. For each 0 < R < 1, define the measure ug by dur(f) = h(Re?®)df. By scaling we may
assume h(0) = 1. Since h is positive and continuous, each pg is a positive Borel measure on [0,27]. By
the Riesz representation theorem, we may view each pugr as a bounded linear functional on the Banach space
C([0,27]). Note that by the special case of the given formula with » = 0 (i.e. the mean value property), we

have
27

lunll = n(f0.27]) = o | h(Re®)ds = h()
T Jo

Thus each pp is in the unit ball of the dual space C([0, 27])*. By Banach-Alaoglu and the fact that C([0, 27])
is separable, this implies that we have a subsequence of Rs converging to 1 and some measure p in the unit
ball of C([0,27]) with ugr — p in the weak-* topology. A standard approximation argument shows that
must also be a positive measure since each ur is. We claim that p is the desired measure. Fix re® € D.
Note that each P, is continuous on [0, 27] and P,/gr — P, uniformly on [0,27] as R — 1. For each R < 1
the given formula tells us

) 27
Hre) = | Pyl = 0) dun(0)

Taking the limit as R — 1 on both sides gives the desired result, where we have assumed the following
lemma: if f,, are continuous and f, — f uniformly on [0, 27| and i, — g in weak-x, then § f, du, — § f du.
The proof of this just follows by writing

’ffndﬂn_ffdﬂ’ < Ufndun—andu’+Ufndu—ffdu’

and noting that the first term goes to 0 by weak-# convergence and the second term goes to zero by uniform
convergence. [

Problem 7. (a) Define unitary operator on a complex Hilbert space.
(b) Let S be a unitary operator on a complex Hilbert space. Prove that for every complex number |A| < 1



the operator S — A is invertible.
(c) For a fixed vector v in the Hilbert space and all |A| < 1, define

h(A) = {(S+A)(S =) v,v).
Show Re(h) is a positive harmonic function (you may not use the spectral theorem).
Solution. (a) S: H — H is unitary if (Sz, Sy) = (z,y) for all x,y € H.
(b) Suppose (S — AI)z = 0 but « # 0. Then we have

0 = ((S=Mz,(S—AD)z) = (Sz—Az,S5z — Az) = [|Sz||” + [A?||#]]> — 2Re(A (z, Sz))
= (1+ AP [Jz]/* = 2Re(\ (z, Sz)).

Thus we have
L+ AP [zl = 2Re(Mx,Sz)) < 2[A[[ <z, Szy| < 2\ [|z]] [[Sz]| = 2/Al[.

Since we are assuming z # 0 this implies (1 + |A|?) < 2|A|, which is impossible for [A| < 1. Thus S — A is
injective and therefore invertible.  [J

()

Problem 8. Let £ be an open convex region in the complex plane. Assume f is a holomorphic func-
tion on © and the Re(f’(z)) > 0 for all z € Q.

(a) Prove that f is one-to-one.

(b) Show by example that the word “convex’

)

cannot be replaced by “connected and simply connected”.

Solution. (a) Let a # b € Q. Let v be a straight line from a to b, parameterized by v(¢t) = (1 — ¢)b + ta.
By convexity, v lies in . So we can write Sw f'(z)dz = f(b)— f(a). Write f = u + iv, then f' = u, + iv,.
Examining the integral above, we have

1 1
0= 1) = [ Fd = [ @) +inaO)e-ad = b= | @)+ iae)d

¥
Note that the integral on the right side has nonzero real part because u, is always positive. Thus the whole
right side is just some nonzero complex number since b — a is a nonzero constant, so f(b) # f(a). O

Problem 9. Let f be a non-constant meromorphic function on C that obeys
f(2) = fF(z+V2) = fz+iV2).

Assume f has at most one pole in the closed unit disc D.
(a) Prove that f has exactly one pole in D.
(b) Prove that this is not a simple pole.

Solution. (a) We just need to show f has at least one pole in D. Let A = [0,4/2] x [0,iv/2] be a
fundamental domain for f and let M be the discrete lattice generated by +/2 and iv/2. Simple geometry
shows that every point of A is at most 1 away from one of the vertices. Thus every point of A is equivalent
mod M to some point of D. Since f is non-constant and doubly periodic, it must have a pole somewhere
(otherwise it would be holomorphic and bounded and therefore constant), so it must have a pole in A, and
thus must have a pole in D.

(b) The work in part (a) shows that every point of C is equivalent mod M to some point of D, so the

fact that f has exactly one pole in D implies that f has exactly one distinct pole mod M. The desired result
now follows from the general fact that a doubly periodic function can’t have only a single simple pole (mod

10



M), a proof of which is reproduced here (see e.g. Ahlfors Complex Analysis). Since the zeros and poles of
f are discrete, we can find a fundamental domain A of M such that f has no zeros or poles on dA. Thus
by double periodicity, it is clear that Sa A f(2) dz = 0 because the integrals over opposite sides of A going in
opposite directions cancel each other out. So by the residue theorem, the sums of residues of all the poles
inside A is 0, implying there can’t only be one simple pole. [
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3 Spring 2010

Problem 1. (a) Let 1 < p < oo. Show that if a sequence of real-valued functions {f,} converges in L?(R),
then it contains a subsequence that converges almost everywhere.

(b) Give an example of a sequence of functions converging to 0 in L?(R) that does not converge almost
everywhere.

Solution.

Problem 2. Let pi,...,p, be distinct points in C and let U be the domain C\{pi,...,pn}. Let A be
the vector space of real harmonic functions on U and let B € A be the subspace of real parts of complex
analytic functions on U. Find the dimension of the quotient space A/B and give a basis.

Solution. See Spring 2017 #10.

Problem 3. For f : R — R in L*(R), let M f be the (centered) Hardy-Littlewood maximal function.
Prove there is a constant A such that for any A > 0,

A
m{zeR: Mf(z) > A} < If]lL
where m is Lebesgue measure. If you use a covering lemma, you should prove it.
Solution. See Fall 2011 #5.

Problem 4. Let f(z) be a continuous function on D such that f is analytic on D and f(0) # 0.
(a) Prove that if 0 < < 1 and if inf|,_, [f(2)| > 0, then

1 27 .
2—f log | f(re®)| do = log|f(0)].
T Jo
(b) Prove that m{f € [0,27] : f(e?) = 0} = 0 where m is Lebesgue measure.
Solution. See Fall 2016 #8.
Problem 5. (a) For f € L*(R) and a sequence {z,,} R which converges to zero, define f,(z) := f(z+xy).
Show that {f,} converges to f in L2.
(b) Let W < R be a Lebesgue measurable set of positive Lebesgue measure. Show that the set of differences
W —W ={x—y:x,ye W} contains an open neighborhood of the origin.
Solution. (a) See Fall 2011 #3.
(b) Let f(z) = xw(x) and fy(z) = xw(z +y). We calculate
17 =2l = [Oov(@) = (o + ) do
= JXW(CL')Q +xw iz + )% = 2xw (@)xw(z +y) dx
= 2m(W) —2 JXW(JC)XW(JC +y)dz.
By part (a), this quantity goes to 0 as y — 0. Thus for all y sufficiently small,
1
fXW(@XW(ﬂC +y)dx > §m(W) > 0.

In particular, there is at least one x such that yw (x)xw(x+y) =1,ie. ze Wand z+ye W,soye W—-W.
Thus W — W contains all sufficiently small y, as desired. [
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Problem 6. Let p be a finite, positive, regular Borel measure supported on a compact subset of C and
define the Newtonian potential
Uulz) = f
C

(a) Prove that U, exists at Lebesgue almost all z € C and that

Lf Uu(z)dxdy < o©

1

Z—w

o)

for every compact K < C.

(b) Prove that for almost every horizontal or vertical line L = C, u(L) = 0 and §, U, (z)ds < oo for every
compact subset K € L, where ds denotes Lebesgue linear measure on L.

(¢c) Define the Cauchy potential of y to be

| = dutw)

Let R be a rectangle in C whose four sides are contained in lines L having the conclusions of (b). Prove that

1

o aRSu(Z)dZ = u(R).

Solution. See Spring 2009 #7.

Problem 7. Let H be a Hilbert space and let E be a closed convex subset of H. Prove that there
exists a unique element x € FE such that
Il = [l
yeE

Solution. See Fall 2012 #3

Problem 8. Let F'(z) be a non-constant meromorphic function on the complex plane C such that F(z+1) =
F(z) = F(z +1) for all z. Let Q be a square with vertices z, z + 1, z + i, and z + 1 + i such that F' has
no zeros and no poles on 0Q). Prove that inside @ the function F' has the same number of zeros as poles
(counting multiplicities).

Solution.

Problem 9. Let
A= {zel?: Z nlz,)? < 1}.

n=1

(a) Show that A is compact in the £2 topology.
(b) Show that the mapping from A to R defined by

27
ol df
inf
T — L E Tne -

n=1

achieves its maximum on A.

Solution.
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Problem 10. Let Q2 < C be a connected open set, let zg € €2, and let & be the set of positive har-
monic functions U on € such that U(zp) = 1. Prove that for every compact set K < Q there is a finite
constant M such that

supsupU(z) < M.
Uel zeK

Solution.

Problem 11. Let ¢ : R — R be a continuous function with compact support.
(a) Prove there is a constant A such that

[1f*ol|l. < Allfll, foralll<p<g<ow andall felLPl.

If you use Young’s convolution inequality you should prove it.
(b) Show by example that such a general inequality cannot hold for p > q.

Solution. (a) Define « to be the number > 1 so that 1/a = 1/¢ — 1/p+ 1 (if ¢ = o0 and p = 1 then
a = ). Then 1/¢+ 1= 1/p+ 1/a, so by Young’s convolution inequality we have

[1F5 @l < NMfllee l19llpe < suplo(@)]- 1]l

as desired. Now we prove Young’s convolution inequality: the statement is that if 1/p +1/¢ = 1/r + 1, and
f e LP and g € L9, then ||f = g||, < ||f||.» l9]| «- Proof: note that the condition on p,q,r implies that
1/p,1/q = 1/r. We have

1 1 1 <1 1> <1 1> 1 r—p r—q 1
l==-+==-==(===)+[==-=)+=- = + + =
p q T p T q T r r qr T

By Holder using the three conjugate exponents above, we have

(Fra)@] < [176 - o] dy
< 11t = D™D g - ) o) dy
< (J |z —y)P dy) e U lg(y)|? dy) o (J |f(z —y)Pg(y)?| dy> "
= WA 1l ([ 156 = wrotoy |dy)w.
Thus
1 eallie = 1o @F do < UL ol [ [ 1£6— 0)7000)7]dy ds

A1 gl f f (@ — y)Pg(y)?| dedy by Tonell

IF1ze llgllze - B

(b) Fix p > ¢q. Let ¢ be equal to 1 on [0, 1], have support contained in [—1,2], and have 0 < ¢ < 1
everywhere. Fix 1/a € (q,p) and let f(y) = 1/y* for y € [10,00) and 0 otherwise. Note that f € LP but
f ¢ L1. We have, for all x > 100,

- [ 1= vowy > Llf v [ way = [ Say s

Thus f = ¢ ¢ L9, so the inequality fails. [
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Problem 12. Let F be a function from I to D such that whenever zi,z9, 23 are distinct points of D
there exists an analytic function f., ., ., from D into D such that F(z;) = f., ., .,(2;). Prove that F' is
analytic at every point of D.

Solution.

Problem 13. Let X and Y be Banach spaces. A bounded linear transformation A : X — Y is com-
pact if for every bounded sequence {z,} € X, the sequence {Az,} has a convergent subsequence in Y.
Suppose X is reflexive (X** = X) and X* is separable. Show that A : X — Y is compact if and only
if for every bounded sequence {z,} S X, there exists a subsequence {z,,} and a vector ¢ € X such that

Tp, = ¢+ 1y, and Ar,;, > 0inY.

Solution.
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4 Fall 2010

Problem 1. Consider just Lebesgue measurable functiions f : [0,1] — R together with Lebesgue measure.
(a) State Fatou’s lemma,

(b) State and prove the Dominated Convergence Theorem.

(c) Give an example where f,(z) — 0 a.e. but § f,(z)dz — 1.

Solution. (a) If f,, are non-negative, then {liminf,_,, f, <liminf, . § f,.

(b) If f,, — f almost everywhere and |f,| < g for some integrable function g and all f,, then {|f — f,| — 0.
Proof: Since |f,| < ¢g and f, — f almost everywhere, we also have |f| < ¢ almost everywhere, so the
functions 2g — | f — fn| are non-negative. Thus we can apply Fatou’s lemma to get

flimiang —|f = fal < Hminfj(?g —|f = fal)-

The left side simplifies to {2g and the right side simplifies to {2g —limsup,,_, ., {|f — f»|. Thus by canceling
and rearranging we get limsup § |f — f,,| <0, and since it’s a limsup of non-negative quantities this implies
the limit exists and equals 0. [

(c) Let fn =mn-X[0,1/n]- fn — 0 almost everywhere but § fn =1for all n.

Problem 2. Prove the following form of Jensen’s inequality: if f : [0,1] — R is continuous, then

1 1
f eF@ dr > exp (J f(z) dx).
0 0

Moreover, if equality occurs then f is a constant function.

Solution. Let u = Sé f(z)dx. Let L be the tangent line to the graph of y = e at & = u. Say L has
the equation y = ax + b. Since exp is convex, we know that au +b = e* and at + b < e’ for all t # u. So we
have

1 1 1
au+b = af flx)de+b = J(af(x)—l—b)dx < f ef @) dy
0 0 0

by definition of the line y = ax + b. Furthermore, if equality holds in the last step, we must have f(z) = u
for all z. This is because f is continuous, so if f(x) # u somewhere, then f # u on some open interval, and
for all x in that interval we would have af(x) + b < ef (*) leading to a strict inequality above. [

Problem 3. Consider the following sequence of functions:
fa:[0,1] > R by fu(z) = exp(sin(2mnz)).

(a) Prove that f,, converges weakly in L'([0, 1]).
(b) Prove that f,, converges weak-* in L*([0,1]), viewed as the dual of L!([0,1]).

Solution. (a) This requires showing the existence of some f € L! with §f,g — (fg for all g € L*®.
Since L*([0,1]) < L'([0,1]), this conclusion is implied by part (b) below.

(b) We need to find some f € L® such that §f,g — §fg for all g € L'. First note that each f, is
1/n-periodic, so we have

J: fo(x)de = Jl exp(sin(2rnz)) dr = nfl/nexp(sin(%m:v)) = fl exp(sin(2ru)) du = JOI f1(u) du.

0 0 0

Thus the quantity Sé fn(z) dx is independent of n. By viewing this as the dual pairing with the constant

function 1, we see that if the weak limit f exists it must be equal to the constant C := Sé exp(sin(27u)) du.
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So we need to show that Sé fng — C Sé g for any g € L'. We do this with a standard density argument.
Suppose we knew the desired conclusion for all ¢ in some family F dense in L'. Then for any g € L', let ¢y,
be a sequence in F converging to g, then we have

Ufng—CJg' < Ufng—jfnm +Ufn¢k—fc¢k

because each f, is bounded uniformly by e. For a fixed k, take n — oo and the second term on the right
goes to zero by assumption on the ¢;. Then take £ — o0 and the first term also goes to zero by construction,
so the desired result follows. Now we just need to prove the desired result for a dense family F. We take
F to be the set of linear combinations of characteristic functions of closed intervals. Since the desired
property is linear, it’s enough to verify for the characteristic function g = x[q,;)- We need to show that

< eollg=aull +|[ fuon - [con

SZ exp(sin(2mnz)) dz — C(b— a) as n — . Let a, be the least number of the form ¢/n > a and b,, be the
greatest number of the form ¢/n < b. Then we write, using the periodicity,

Jb exp(sin(2rnz))dx = (La" + Li +(|(b—a)n] —2) fanﬂ/n) exp(sin(27nz)) dz

a An
1/n

= e(ap, —a)+e(b—">by) + (|(b—a)n|— Q)L exp(sin(2mnx)) dz

=e(an—a)+elb—"b,) + WC’

which tends to (b — a)C as n — o0, so we're done.  [J

Problem 4. Let T be a linear transformation on C.(R) (continuous functions with compact support)
that has the following two properties:

A1
A

ITfllLe < [Ifllp= and mizeR:[Tf(z)]> A} <

where m denotes Lebesgue measure. Prove that

i@ < ¢ [17@Pd
for all f € C.(R) and some fixed number C.

Solution. We mimic the proof of the Hardy-Littlewood maximal theorem, with a few annoying things
changed because T is only defined for C. functions. First we will establish the result when f is a real-valued,
non-negative function, and extend it at the end. We use the identity

J|Tf|2 = 2JwA.m{x:Tf(x)|>A}dA.
0

For each fixed A, we have the decomposition f = g+ h where h := min(f,A\/2) and g := f—h=01if f < \/2
and f — A/2 if f > A\/2. Note that both g and h are continuous and non-negative with compact support.
Then we have T'f = T'g + Th, so |Tf| < |Tg| + |Th|, which implies that

{z|Tf(z)| > A} < {z:|Tg(x)| > N2} u{z:|Th(z)| > N2}

But we have ||Th||;» <||h||;« < A/2 by construction, so the second set has measure zero and we just have
(up to measure zero sets)
{x:|Tf(x)] > A} < {a:|Tg(x)] > \/2}.
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Thus we have

0
J|Tf|2 < 2f N-mix: |[Tg(x)] > N\/2} dX
0
“ 219l .
< J A—— 3 d)\ by the weak-type hypothesis
< f f|g ) dzdh — f f () — \/2) dzd < f f F(@) dz d
{: f(r)>/\/2} {w:f(2)>)/2}
2/ f ()|
- f ()] J d\dz by Tonelli
R 0
< [ 1f@P d.
R

This establishes the result for positive real-valued f. For general real-valued f, write f = f, — f_. Then we
have

Jirs? = [rs =1 p = (s TP sy
< f|Tf+|2+f\Tf_|2 < el 1l = (I

where the last equality is valid by the Pythagorean theorem because since fy(x)f_(z) = 0 for all z, f.
and f_ are orthogonal. This establishes the result for general real-valued f. For complex-valued f, write
f =Re(f) +iIm(f), then we have

J|Tf|2 = J\TRe(f)—i—iTIm(f J|TRe HE+|TIm(f)* < J|Re )2+ | Im(f) Jm?
so we're done. [

Problem 5. Let R/Z denote the torus (whose elements we write as cosets) and fix an irrational o > 0.
(a) Show that

Now N

N—
hm—z flna+17) fo+Z

for all continuous functions f : R/Z — R.
(b) Show that the conclusion is also true when f is the characteristic function of a closed interval.

Solution. (a) Define Ax(f) = %Zg;ol f(na + Z) and I(f So 2 + Z)dz. First we show the con-
clusion when f is a trig polynomial. By linearity, it’s enough to assume f(x ) = e?™k for some k € Z. If
k = 0 then both sides are clearly equal to 1 so assume k # 0. Then we have

1 N— 2 " 11— e27rikaN
_ L a _
An(f) = —N Ez = N1 e 0 as N -

27rikwdx = 0.

1(f) =

%

So the result is verified for trig polynomials. Now for general f € C(R/Z), fix e > 0 and let P be a trig
polynomial with ||f — P||, . <e. Then we have

[An(f) = I(f)l < |An(f) = An(P)| + [An(P) = I(P)| + [1(P) — I(f)|
< 2+ |Ayn(P) - I(P)].

First take N — oo, then we see that |limy_, An(f) — I(f)| < 2¢, and since this holds for arbitrary e, the
desired result follows. [

18



(b) Let f = X[a,5]- Let gr and hy be sequences of continuous functions satisfying 0 < gr. < f < hy < 1 for
all k, and g and hy both converge almost everywhere to f as k — oo (it’s clear that such sequences exist
by just taking the graph of f and smoothing it out a bit). Then for each N and k we have

An(gr) < ANn(f) < An(he), I(gr) < I(f) < I(hx).

For k fixed, take N — o0. Since g, and hy are continuous, this implies that

I(gr) < lij\rfnianN(f) < limsup An(f) < I(hg).
—0

N—>w

Since everything is dominated by 1 and we have pointwise convergence almost everywhere, by the dominated
convergence theorem we can take kK — oo and get

I(f) < lminf An(f) < limsup An(f) < I(f),

N—oo N—0o0

which implies the desired result. [J

Problem 6. Consider the complex Hilbert space
[oe] 0]
. 2 ry
H {f D—C:f(z 2 2 with  ||f])° == Z(1+k2)|f(k)|2<oo}.
k=0 k=0

(a) Prove that the linear function L : f — f(1) is bounded.
(b) Find the element g € H representing L.
(c) Show that f +— Re L(f) achieves its maximal value on the set

= {feH:lfll<1 and f(0) =0},

that this maximum occurs at a unique point, and determine this maximal value.

Solution. (a) We have

MS

0 0 1/2 /s o 1/2
0l < - B0V E s < <2|A<k>|2<1+k2>) (2 Hlk) - clifl

0
where C% = Y7 ﬁ < .

k

O

(b) We are implicitly assuming the inner product in H is given by

(9 = Zf GR) (1 + ).

If g represents L then we must have

0

{f,9) = Z IE)(1+ kY = f(1 Z

It’s clear that if (k) = 135z then this would be satisfied. So we can just define

The series converges uniformly on D so this definition actually makes sense (and in fact is holomorphic, but
that’s not necessary). O
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(c) First we note that the maximum value of Re(L(f)) on B must happen when ||f|| = 1, otherwise
we could normalize f and increase the value of Re(L(f)). The condition that f(0) = 0 corresponds to
having f(O) = 0. So the problem is reduced to maximizing Y., Re(f( )) subject to the condition that
S (1 + k)| f ( )|? = 1. Note that the constraint only depends on |f ( )|. Thus we can always increase
Re(f(1)) while keeping the norm constant if we assume that each 7 (k) is real and positive. So without loss
of generality we can assume each f (k) = 0. Using the same Cauchy-Schwarz argument from part (a), we

have
o vz o ) 1/2 © ) 1/2
i < (Zoreen) (Sm) - (Eow)

and equality holds if and only if f (k)\/l + k2=
B is achieved at a unique point, i.e.

ﬁ for some o € R. This shows that that maximum on

0
z_:+k2'

Also, this « is determined by the condition that f has norm 1:

Zl+k2|f Z

- 1\ 2 . . .
S0 o = (Z he1 W) . Thus the maximum value achieved is
1/2
© /
Z 1+ k2 -
k=1

Problem 7. Suppopse that f : C — C is continuous and holomorphic on C\R. Prove that f is en-
tire.

i a
k=11+k:2

Solution. By Morera’s theorem it’s enough to show that the integral around any rectangle with sides
parallel to the axes is zero. Let R be any rectangle. If R doesn’t intersect the real axis, the integral is
obviously zero by hypothesis. If R does intersect the real axis, break up R into two pieces, one in the upper
half plane and one in the lower, and by continuity the integral over R is equal to limit of the integrals as the
two pieces approach the real axis, so you still get zero (this is a really standard argument). O

Problem 8. Let A(D) be the C-vector space of all holomorphic functions on D and suppose that L :
A(D) — C is a multiplicative linear functional. If L is not identically zero, show that there is a zp € D so

that L(f) = f(zo) for all f e A(D).

Solution. Note that if this were true, then we would have to have L(z) = zp. So define zy := L(z)
and we want to show that L(f) = f(z¢) for any f € A(D). Since we are assuming that L is not identically
zero, let f be such that L(f) # 0. Then because L is multiplicative we can write L(f) = L(f-1) = L(f)L(1),
so L(1) = 1. This, combined with the linear and multiplicative hypotheses again, imply that L(P) = P(z)
for any polynomial P. Now let f be any element of A(D). We can write f(z) — f(z0) = (2 — 20)g(2) for some
other g € A(D). Therefore we have

L(f) = f(20) = L((z —20)9(z)) = (L(z) —20)L(g) = 0,

which establishes the desired result. The only thing left to check is that we actually have zg € D. If not,
then 1/(z — zp) would be in A(D), and so we would have

L(1/(z = 20)) = 1/L(z=z2) = 1/(20 = 20);
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a contradiction. [

Problem 9. Let o
f(z) = Z an 2"
n=0
be a holomorphic function in . Show that if

o0

2 lanl < laaf

n=2

with a7 # 0 then f is injective.

Solution. We have f'(z) = >, na,z""!. Thus for any fixed 2 € D we have

0 [ee] 00]
Z nanzn—l
n=1

> |a1| — Zn\an||z|” > |ay| — Za|an| = 0,

n=2 n=2

1F'(2)] =

so f’ is nonvanishing in D.

Problem 10. Prove that the punctured disc {z : 0 < |z| < 1} and the annulus {z : 1 < |z| < 2} are
not conformally equivalent.

Solution. Let P be the punctured disc and A be the annulus. Suppose f : P — A is conformal. Then,
since A is bounded, the singularity of f at 0 must be removable. So we extend f to a holomorphic function
f:D — A If we knew that f were still conformal, this would be a contradiction because D is simply
connected but A is not. We already know f is holomorphic and surjective, so to show f is conformal we just
need to show that f is still injective when we extend it to be defined at 0. Suppose f(0) = f(z) with z € P
(this is the only possibility because f is injective on P). Let U and V be disjoint open balls around 0 and z
respectively. By the open mapping theorem, f(U) and f(V') are open. They interset at f(0) = f(2), so their
intersection is open and non-empty, and therefore in particular there is some other point w € f(U) n f(V).
So we have z; € U, z2 € V with f(z1) = f(22). But z; # 0 because w # f(0), so this contradicts the fact
that f is injective on P. [

Problem 11. Let Q < C be a non-empty open connected set. If f : & — C is harmonic and f? is

also harmonic, show that either f or f is holomorphic on 2.

Solution. Recall the Wirtinger derivates 0, = (1/2)(0, — idy) and 0z = (1/2)(0, + id,). A straightfor-
ward computation verifies the identity A = 40,05. By hypothesis, f? is harmonic, so Af? = 0. Putting this
into the above identity and using the chain and product rules and the hypothesis that f is also harmonic,
this reduces to (0, f)(ézf) = 0. Suppose f is not holomorphic. Then there is a point in { at which 0, f # 0.
By continuity, 0, f is nonzero on an open ball, so dzf = 0 on an open ball. Since f is harmonic, ¢z also
is (because 0, and 0, both are). But then we have a harmonic function on all of  which vanishes on an
open ball. In particular it has a local maximum on that open ball, so the maximum principle implies oz f is
constant and therefore identically zero, so f is holomorphic. [

Problem 12. Let F be the family of functions f holomorphic on D with

|f(z +iy)Pdedy < 1.
z2+y2<1

Prove that for each compact subset K < D there is a constant A so that |f(z)| < Aforall ze K and all f € F.

Solution. See e.g. the first half of Fall 2014 #10.
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5 Spring 2011
Problem 1.
(a) Define what it means to say that f, — f weakly in L*([0, 1]).

(b) Suppose f,, € L*([0,1]) converge weakly to f € L?([0,1]) and define ‘primitive’ functions

F,( andtandF Jf

Show that F,,, F' € C([0,1]) and that F;, — F uniformly on [0, 1].

Solution.

(a) For every g € L?([0,1]), lim, . Sé falz)g(2) dx = So (z) de.

(b) First, we know that weakly convergent sequences are bounded, so we can say ||fn||;2 < M for all n.
To show that F,, and F' are continuous, note that

z+h c+h Y2 s th 1/2
|Fn<x+h>—Fn<x>|<f |fn<t>|dt<(J |fn<t>2dt> <f 1dt> < M.

x x x

Note that the above estimate for |F,,(z + h) — F,(z)| is independent of both n and z, so we have actu-
ally shown that {F),} is an equicontinuous family of functions. A similar estimate shows |F(x + h) — F(z)| <
| £]1,2 [h|Y/2, so F is also continuous. Now we show F;, — F uniformly. First note that

1/2

x)| < J:|fn(t)|dt < (Lx|fn(t)|2dt> 22 < M,

so F, is also a uniformly bounded family. To show that F,, — F uniformly, it’s enough to show
that any subsequence of F, has a further subsequence converging uniformly to F. Let F;,, be any
subsequence. We have shown it is a uniformly bounded and equicontinuous family, so by Arzela-Ascoli
it has a further subsequence converging uniformly to some function g. But note that for each =z,

T 1
lim, Fy(@) = lim, [ (0t = Jim | fu 000 - f FO)xpo (¢ f ft)ydt = Fa)
0

n—o0 n—0o0 n—0o0
by weak convergence because X[o,2] € LQ([O7 1]). Thus, since F,, converges pointwise to F', and F,,, has

a subsequence converging uniformly to some g, we must in fact have g = F. Thus every subsequence
F,, has a further subsequence converging uniformly to F', so F,, — F uniformly. [

Problem 2. Let f € L*(R) and ¢(x) = sin(mz) - x{_1,17(2). Show that

fule) i= n [ S~ y)s(y)dy — 0
Lebesgue almost everywhere.
Solution. Let ¢, (7) = nd(nx). Let g(x) = —p(x)x[—1,0] be the negative part of ¢ and let h(z) = ¢(x)x0,1]

be the positive part. Also define g,, and h, snnllarly to ¢,. Note that ¢, = h, — g, so to show that
f # ¢n — 0 a.e. it’s enough to show that f = g, f * hy, — (7/2)f a.e. We show it for h,, and the argument
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for g, is exactly the same. First note that {h, (z)dz = So sin(nmzx) dx = 2/m. We have

1/n 1/n
flxz —y)nsin(nry) dy — . f(@)nsin(nmy) dy

(f *ha)(@) = 5 £ (@)

0

1/n
<n£}|ﬂx—@—f@ﬂ@ﬂmwﬂ@

1/n
<nj F(z—y) — £(2)] dy,

0

which goes to 0 almost everywhere by the Lebesgue differentiation theorem (f € L}, because f e L?). O

Problem 3. Let p be a Borel probability measure on R and define f(t) = Se”w du(x). Suppose that
f(0) = f(#)

fiy S - o
Show that p is supported at 0.
Solution. Rewrite the limit condition as
1— eztz
li d =0
150 12 (@)

Just looking at the real part of the above gives

lim 1 — cos(tx) d
t—0 t2

Since the integrand is positive for all ¢, z, by Fatou’s lemma we have

0 = limjl_cti(;s(m)du(x) > fliml_cios(m)du(x) = J%xQdu(m),

t—0 12

and since the last term on the right is also non-negative, we have {z?du(z) = 0. This immediately
implies that p is supported at 0 because if p gave nonzero measure to R\{0}, it would have to give
positive measure to some set of the form (—oo,—d] n [4,00) for some § > 0, and then we would have
S22 du(z) > 6%p((—o0, —0] N [§,0)) > 0, a contradiction. [

Problem 4. Let f, : [0,1] — [0,00) be Borel functions with

supJ;1 fu(x)log(2 + fu(x))de < M < oo.

Suppose f, — f Lebesgue almost everywhere. Show that f € L' and f,, — f in L.

Solution. By Fatou’s lemma (since everything is positive) we have

n—0o0

1
M > liminfj fn(x)log(2 + fr(x) f f(x)log(2 + f(z))dx = log(Q)J f(z)dz
0
so f € L'. Now to show f, — f in L', we first want to establish the following claim: for all € > 0 there is
d > 0 such that for any n and any F < [0, 1], m(E) < § implies SE x) dx < €. Suppose this were not true,

then there would be a sequence of sets Ej, and functions f,, with m(Ek) < 1/k and SEk fn, = €. Then by
Jensen’s inequality, since ¢ — tlog(2 + t) is convex, we would have

1 1 1 1
(m(Ek) JEk fnk) log (2 * m(FEx) JEk fnk) < m(Ey) Jg, Tui108(2 + fa) < m(Ek)M
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Cancelling terms on both sides and using the fact that ¢ — tlog(2 + ¢) is also increasing, we get
M = elog(2 + ke),

which is a contradiction for k large enough. Thus the claim is established. Now to finish the problem, fix
€ > 0. By the previous claim we can pick § > 0 so that m(E) < ¢ implies §,, f, < e for alln and {, f <e.
By Egorov’s theorem, we can find a set E < [0, 1] with f,, — f uniformly on E° and m(E) < §. Then

Jita=tr < | st | il 150 < | U= s

First take n — o0, then take ¢ — 0, and we get the desired result. [

Problem 5. (a) Show that £*(Z) contains continuum many functions z, : Z — R obeying ||z4||, = 1 and
l[za — 25][, = 1 whenever a # f3.

(b) Deduce (assuming the axiom of choice) that the Banach space dual of £*°(Z) cannot contain a countable
dense subset.

(c) Deduce that ¢!(Z) is not reflexive.

Solution. (a) For each subset o < Z, let z4(j) = 1 if j € o and 0 otherwise. Then each ||za|[ = 1
and for any two distinct subsets o # 3, there is a point at which z, and xg disagree, so ||zq — 23|, = 1.
It’s standard that there are continuum many subsets of Z. [

(b) Part (a) shows that the dual of £* is not separable. So it just follows from the general fact that if
X is a Banach space and X* is separable, then X is also separable (see Fall 2014 #6). O

(c) Recall that the dual of ¢! is ¢*. If ¢! is separable, then (¢})** = (¢*)* = (' which is separable,
so by part (b) ¢% is also separable, a contradiction. [

Problem 6. Suppose p and v are finite positive (regular) Borel measures on R™. Prove the existence
and uniqueness of the Lebesgue decomposition: there are a unique pair of positive Borel measures u, and
s such that

W= Pat s, fa <V, ps Ll

Solution. First we show uniqueness. Suppose that p = p, + ps = pl, + p)y are two decompositions. It’s
enough to show that ps = p.. Write R” = X Y = X' 0Y’ where v(Y) = v(Y’) = 0 and pus(X) = p},(X’)0.
By the absolute continuity of p, and ), we see that us(A) = p.(A) for any A satisfying v(A) = 0. For a
general set E, write

E=EnXnX)U(EAYnX)U(EnXAY)U(EnYAY') = (EnXnX)UE.

Note that since v(E) = 0 and E n X n X' is contained in both X and X’ we have

~

us(E) = ps(En X nX') 4+ ps(E) = ph(BEnX nX')+uy(B) = u(E).

Thus the decomposition is unique. Now we show existence. Let A\ = p + v and note that since all of the
measures involved are positive, v is clearly absolutely continuous with respect to A. Let f = % be the Radon-
Nikodym derivative, and note that f > 0 because the measures are positive. Define X = {z : f(x) # 0} and
Y = {z: f(x) = 0}. We define ps(E) := u(EnY) and po(E) := p(E n X). It’s clear that ps + pg = p.
We need to show that ug is singular to v and pu, is absolutely continuous with respect to v. For the singular
part, note that XY are disjoint, R = X UY, us(X) = 0 by definition, and

y(Y) = JyfdA =0
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by definition of X. This shows us L v. For absolute continuity, suppose v(E) = 0. Then we have

because ps vanishes on X. But since f is strictly positive on E n X, the fact that SEHX fdpe = 0 implies
that pe(E n X) = 0, which is the same as saying u,(E) = 0 by definition. Thus p, « v. O

Problem 7. Prove Goursat’s theorem: if f : C — C is complex differentiable, then for every triangle
TcC

%f(z)dz = 0.
orT

Solution.

Problem 10. Evaluate
sup {Re f'(i/2) : f : H — D is holomorphic} .

Solution. We can freely post-compose f with a rotation, so it’s equivalent to find |f’(i/2)| instead of
the real part. Let f be any holmorphic function H — D. Let ¢ : D — D be an automorphism sending f(i/2)

to 0. Concretely, ¥(z) = % An easy calculation shows that

1

V(f(i/2) = TGP

Let ¢ : D — H be a conformal map sending 0 to i/2. Concretely we can take ¢(z) = % . %ﬁl) Another
easy calculation shows that ¢'(0) = i. Now ¢ o f o ¢ is a holomorphic function D to D sending 0 to 0, so by

the Schwartz lemma we have

1 . ;
1> |(Wofog)(0)] = | (f(6(0)))f (¢(0)¢'(0)| = WUM(Z/QH = |f'(i/2)].
Thus the supremum in question is at most 1. Finally note that taking f(z) = ¢~ 1(z) = 3;2, a calculation
shows that f’(i/2) = —i. So 1 is achieved and therefore is the desired supremum. O
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6 Fall 2011

Problem 1. Prove Egorov’s theorem, that is:

Consider a sequence of measurable functions f, : [0,1] — R that converges Lebesgue almost everywhere to
a measurable function f : [0,1] — R. Then for any € > 0 there exists a measurable set E < [0,1] with
measure A(F) < e such that f, converges uniformly on [0, 1]\ E.

Solution. Let Z be the measure zero set of x for which f,(z) + f(z) and set I = [0,1]\Z. Define
En(k) == {zel:|fj(z)— f(z)] <1/k for all j = n}.

Fix € > 0. First we show a lemma: For each k there is an N}, such that A(Ey, (k)) > 1 — €27%. To see this,
fix a k and note that by definition of pointwise convergence, we have Ufil E, (k) = I. So by continuity of
measure from below we can pick N, large enough so that A(Ey, (k)) > A(I) —e27% = 1 — ¢27%. This proves
the lemma.

Now we upgrade to the full result. Define E := | J,—_, En, (k)¢. We have

0

ME) < i)\(ENk(k:)c) < Yt -
k=1 k=1

We claim that f, — f uniformly on E°. Fix o > 0. Pick k big enough so that 1/k < a. Then for any
x € E°, we have x € Ey, (k), so n = Ny implies that |f,(x) — f(z)| < 1/k < « for all x € E¢. Thus f, — f
uniformly on E¢. O

Problem 2.

(a) Let do denote surface measure on the unit sphere S? < R3. Note {do(z) = 4. For £ € R3, compute

J e do (),
S2
where - denotes the usual inner product on R3.

(b) Using this, or otherwise, show that the mapping
oo || e+ ) do@ydoty
52 Jg?

extends uniquely from the space of all C® functions on R3 with compact support to a bounded linear
functional on L?(R3).

Solution.

(a) It is clear that the integral in question depends only on |£] (a simple proof could be given if necessary,
using an orthogonal transformation and the change of variables formula). Therefore, given the mag-
nitude ¢ = || of &, we are free to choose ¢ so that the integral is as easy as possible to evaluate. We
choose £ = (0,0, ¢). Then

f e do(x) = J cos(cxs) do(x) + ZJ sin(cxs) do(z) = f cos(cxs) do(z),

52 52 52 52

since sin is odd and S? is symmetric about the origin. Using spherical coordinates, the last integral
equals

2T o
f cos(cxs) do(x) J J cos(ccos @) - sin ¢ dep df
52 o Jo

2 T
i) sin(c cos @)
c 0

4msinc

c
47 sin €|

€l
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(b) For f e C*(R3), define
L) = || 1) o) dot).

Since C*(R3) is dense in L?(R?), to show that L extends uniquely to a bounded linear functional on
L?(R3) it will be enough to prove a bound of the form |L(f)| < C||f]|2 for all f € CP(R?) (where

C' is independent of f). Since f is smooth with compact support, it lies in the Schwartz space, and
therefore Fourier inversion applies and gives

fla) = | e fiede— | o? | e dote)ar

for all z € R®. (Note that since f is in the Schwartz space as well, ||f\|Lm(Tsz) decays faster than
any power of r, so the integral on the right is convergent.) Therefore, by Fubini’s theorem and the
calculation in (a),

= L2 f (@ +y)do(a) do(y)
L L2 foo a Lz e2ﬂir(x+y)-§f(rg) do(§) dr do(z) do(y)

f(re) J 2T o (x )J ™Y do(y) do (&) dr

S2

[ 1
f <Sln27rr)2 do(€) dr

81n27r§|) p
o (™"

-,
-,
|, #

. . ; 2
Now, by the Plancherel theorem, f € L?(R3) and ||f|l2 = ||f||o. Moreover, h(¢) = (%@) is

in L?(R3) as well, since h(£)? is bounded near zero and decays like |£|™* near infinity. Therefore,
Cauchy-Schwarz implies

LI < Ifllz IRl = ClIf 112,

as required. [

Problem 3. Let 1 < p,q < oo with 1/p+1/q = 1. Let f € LP(R?) and g € L9(R3). Show (a) that f g is
continuous on R? and (b) that (f = g)(x) — 0 as |z| — oo.

Solution. (a) Fix z € R3. We estimate

[(f + 9)(x) = (f * g) (= + h)|

[ @ = gt = s+ 1= ity

N

fm@mﬂx+h—w—fu—yn@

N

|ﬂhq(ﬁfu+h_yy_ﬂm_wwﬁovp
= ll9ll1a (J|f(y+h) —f(y)lpdy>1/p.

So it suffices to show that (§|f(y + h) — f(y)|? dy) Y2 0 as |h] — 0. This is just the L continuity of the
translation operator, a proof of which is reproduced below.
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For f € L? define 7,f(y) = f(y + h). We want to show that ||7,f — f||,, — 0 as |h| — 0. First sup-
pose that ¢ € C.(R3). Let S = {z € R3 : dist(z,supp(¢)) < 1} and let M = \3(S) < o0. By uniform
continuity of ¢, let |h| < 1 be small enough so that |m,¢(z) — ¢(z)| < € for all x € R®. Then
Imn¢ = ¢llL, < "M,

so the result is true for C.(R?) functions. For general f € LP(R3), a standard density argument works: fix
€ > 0 and pick ¢ € C.(R?) with ||f — ¢||;, <e. Then

rnf = Flle < limd =7l + 10 = bllgo + 16— Fllpo < 26+ limad —
Take |h| — 0 and then € — 0 and the result follows. O

(b) Note that if f,g have compact support then f * g also does. Pick sequences f,, gr with f, — f in
LP, g, — gin LY || fall e < I flles N9kl e <1l9l| .0, and each f,, gr has compact support (e.g. just cut off
f and g at bigger and bigger balls). Fix € > 0 and pick n, k big enough so that ||f, — fl|,.,|lgx — 9l|» <€
Then for any x € R? we have

[(fxg) @) < |(fa* ge) @)+ |((f = fn) * ge)(@)| + |(f + (9 — gr)) ()]
< Un#gi) (@] + 1 = fn) # grll Lo + (1% (9 = gl 0
< (= g1) (@) + €llgll Lo + €l fl] L -

(

Take 2| — o0 and conclude lim| g (f *g)(x) < €(||f|[» +1lgl|L.), then take e — 0 to get the desired result.
O

Problem 4. Let f € C*([0,0) x [0,1]) such that

w pl
J f 00f (t, 2) [P (1 + %) dw dt < 0.
o Jo
Prove that there exists a function g € L?([0,1]) such that f(t,-) converges to g(-) in L?([0,1]) as t — oo.

Solution. (There may be ways to make this proof more efficient, but it seems correct as far as I can
tell.) For each t, f(-,t) is in L?([0, 1]), so by Parseval’s theorem there exist complex numbers a,,(¢) such that

f(x,t) _ 2 an(t)e%rinw
neZ

in L%([0,1]), where Y. |an(t)]? = ||f(-,t)||]2 < o0. By Parseval again it is enough to prove the existence of a
sequence {b, }nez € 1?(Z) such that
Z |an(t) — bn|2 —0

nez

as t — oo; the function g(z) ~ Y, b,e?™™* will then be the desired limit in L?([0,1]). By completeness of
I2(Z), this is the same as showing that {a,(t)} is Cauchy in [?(Z) as t — c0. In other words, given € > 0, we
want to be able to find T' > 0 so that s,t > T implies

D lan(t) = an(s)]* <.

nez
Assume for the moment that the coefficients a,,(¢) are continuously differentiable with respect to ¢ and that
Ouf(,t) = ) al,(t)e”™n
neL

in L2([0,1]) for each t. Then by assumption, we have

fo fo (1 2) 21 + ¢ )th:L (Z o (0)| ) (1+ ) dt

nez

_ ZF !, (2(1 + £2) dt < oo (1)
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(using the monotone convergence theorem to interchange the sum and integral). Since each a,(t) is C!, we
have

an () — an(t) L " (7).

Consequently, by Cauchy-Schwarz

S fan(s) — an(®? = ]

nez nez

<ZJ

nez vt

< Zf (P21 + 72) dr.

nez vt

J;S ay (t)dr

® © dr
72|al, (1)]? drf = (assuming s > t)
t

But by (1) above, this sum goes to 0 as t — c0. Hence, {a,(t)}, is Cauchy in [*(Z) as t — oo, and so
f(,t) = g(-) in L*([0,1]) as t — 0.

Now we just have to justify the continuous differentiability of the coefficients a,,(t) and the fact that o f (z, t)
equals Y. al, (t)e* ™ in L2([0,1]). For any t, let h > 0; then by smoothness of f on [0, 0) x [0, 1],

n - n

- atf(xvt)

flx,t+h)— f(z,t) Z an(t+ h) — ay(t) J2mina
h B h
neZ

as h — 0, uniformly on [0, 1], and hence also in L?([0,1]). But d;f(x,t) is also in L?([0,1]), and hence has
an L2-Fourier series ‘

Ouf(zt) = D) an(t)e®™ .

neZ

Thus, by Parseval’s theorem,
2

an(t+ h) — an(t) 0

h

2

nez

— ap(t)

. . . an(t+h)—an(t
as h — 0, which implies %

al, (t) = a(t), and

n

— ay,(t) for each n. Thus, a,(t) is differentiable with derivative

duf(x,t) = ) a, (D)

neZ

in L?([0,1]), as desired. The same argument applied to >} al, (t)e*™™* shows that the a/,(t) are themselves
differentiable, and hence continuous; so the a,(t) are continuously differentiable, as required. [

Problem 5. For f € L'(R), recall the Hardy-Littlewood maximal function

1 z+h

Mf(z) = s o | If(y)| dy.

Prove there is a constant A such that for any o > 0,
A
MzeR: Mf(x)>a} < EHfHLl'
If you use a covering lemma, you should prove it.

Solution. Fix @ > 0 and let E = {z € R : M f(x) > a}. For each z € E, by definition of M f there
is a radius r; such that
T+Te
J lf| > 2ar,.

T—Ty
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Note the above implies we must have r, < ||f||.. /(2¢) for each € E. Set I, = (x — ry,x + ;). Since
the radii are uniformly bounded, we may apply the Vitali covering lemma to {I,},cr to obtain a countable
disjoint subcollection I; = (z; —rj,x; + ;) with E C U;)»Czl 5I;. Thus we have

0

ME) € Y AGL) = 522y < 20 [ < Sl
=1

j=1 j=1 Tj=Tj

zj+

because the intervals I; are pairwise disjoint. All that remains is to prove the Vitali covering lemma.

Let {I,} be a collection of open balls with uniformly bounded radius. Let R = sup,rad(l,). Let Fj
be the collection of all balls I, with radii in (R/2, R]. Let B; be a maximal pairwise disjoint subcollection
of F1 (a standard Zorn’s lemma argument shows that this exists). Now let F5 be the subcollection of all
balls I, which are disjoint from every element of By and have radii in (R/4, R/2], and let B2 be a maximal
pairwise disjoint subcollection of Fy (same deal with Zorn’s lemma). Inductively, we may construct JF,
to be the collection of all balls I, which do not intersect any ball in By u ... U B,_1 and have radii in
(R/2", R/2" ], and let B,, be a maximal disjoint subcollection of F,,. Let B = (J_, B,. It’s clear that
B is a pairwise disjoint (and therefore countable) subcollection of the I,. Consider some I, ¢ B. We have
rad(Ia) € (R/2™, R/2""!] for some n. By the maximality of B,,, it must be the case that I, intersects some
Ige Biu...B,. Sorad(lg) > R/2"™ > (1/2)rad(l,). Thus B has the property that any I, ¢ B intersects
some Ig € B with rad(Iz) > R/2"™ > (1/2)rad(I,). Thus a simple triangle inequality shows that I, < 51,

so Uy, la € Upepdl. O

Problem 6. Let (X,d) be a compact metric space. Let u, be a sequence of positive Borel measures
on X that converge in the weak-* topology to a finite positive Borel measure y, that is

J fdu, — J fdu forall feC(X).
b's X

Show that
w(K) = limsup p,(K) for all compact sets K < X.

n—o0

Solution. Fix K compact. First we show that the characteristic function x g is upper semicontinuous.
We need to show

Xk (o) = limsup xx ()

r—x(

for any xg € X. If g € K, then the inequality obviously holds because xx(zo) is equal to the maximum
value xi can take. If xg ¢ K, then since K¢ is open there is a neighborhood around zg on which yx = 0,
s0 Xk (x0) = 0 = lim, ., xx (). Thus xx is upper semicontinuous.

Now we prove the inequality

ffd,u > limsup f dun,

n—o0

for all upper semicontinuous f : X — R. This finishes the problem by taking f = xg. It’s equivalent to
show

ffd,u < liminf fdu,
n—o0

whenever f is lower semicontinuous (by just taking the negative). Fix such an f. Since X is compact, f
achieves a minimum on X (this is a property of lower semicontinuous functions). By an equivalent definition
of lower semicontinuous, we have a sequence ¢ of continuous functions with ¢ < ¢ry1 and ¢ — f
pointwise. By replacing ¢ by max (¢, min(f)) if necessary, we may assume that all of the ¢, are uniformly

bounded from below. We have
J Pk d,un < f fd,un
X X
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for any k,n. Taking the liminf as n — o0, since ¢y, is continuous we get

J drdp < limian fdun
X n—0o0 X

for every k. Finally, since the right side is independent of k, apply the Monotone Convergence theorem to
get the desired conclusion. [

Problem 7. Compute % dx.

Solution. Let f(z) = ﬁ Integrate f around a semicircle of radius R in the upper half plane. It’s

easy to show the contribution from the curved part of the contour vanishes as R — o0. The real part of the
integral over the straight part is twice the desired integral because the original function is even. f has a
double pole at z = i. Take the residue

Res(f,) = lim - [(z /()] = o

Z—1 A 276'
Set the two things equal to each other using the residue theorem and solve. The answer is w/2e. O
Problem 8. Determine the number of solutions to

z—2—¢e*=0

with z in the right half-plane H = {z € C : Rez > 0}.

Solution. Any such z satisfies z = 2 + e~ 7%, and therefore |z| = |2 + e *| < 2+ |e"#| < 3, since Rez > 0.
Hence, we can restrict z to the half-disc U = H n {|z|] < 3}. Consider the functions f(z) = z — 2 and
g(z) = —e 7% on OU. It is easy to see that |g] < |f| on 0U, since |g| = e™* < 1 everywhere in H, whereas

|z —2| > 1 for all x € 0U except at z = 3, at which point |g(z)| = e~ < 1. Therefore, by Rouche’s theorem,
fand f+ g =2z—2— e * have the same number of zeros in U; since f clearly has one zero in U, it follows
that

z—2—e7%=0

has exactly one solution in H. [

Problem 9. Suppose that f is a holomorphic function in the punctured open unit disc D* := D\{0}
such that

f FEIRPAAR) < @
D*

where integration is with respect to two dimensional Lebesgue measure. Show that f has a holomorphic
extension to the unit disc D.

Solution. Let g(z) = zf(z). It’s clear that g is also holomorphic on D*. By the mean value property,
for z € D* fixed we have

1
2N | ooy T ) 2A)

1/2 3/2]2| 2 1/2 3/2]2| 1/2
2|72 j |w|? dA(w) S |27 J f r2r df dr < 272 f r3dr
B(0,3/2|z]) 0 0 0
1/2
3
(Gl) =

Thus g is bounded and holomorphic in the punctured disc D*, which means that the singularity at 0 must
be removable. So zf(z) has a removable singularity at 0, which implies that the singularity of f at 0 is

l9(2)] =

A

N

™
|
N

31

1/2
< R —2 wsz w y 2dA y
< J4 (sz,mn [ aA( >) ( ooy 1FR a >>

1/2



either removable or a simple pole. But if f has a simple pole at zero, then there is a constant C' > 0 and a
neighborhood of 0 on which |f(z)| = C|z|~!, which contradicts the fact that § . |f(2)|*dA(z) < 0. So f
has a removable singularity at 0 and therefore can be extended to a holomorphic function on D. [

Problem 10. Let © < C be a simply connected domain and f : Q — € be a holomorphic mapping.
Suppose there are points z; # 2o with f(z1) = z; and f(z2) = 2z2. Show that f is the identity on .

Solution. We need to assume f is conformal, otherwise it isn’t true (as a counterexample take Q0 = B(0, 2)
and f(z) = 22, then 0 and 1 are both fixed points). By the Riemann mapping theorem, let 7' : Q@ — D be a
conformal map. Then ¢ = TfT~! : D — D is a conformal map with ¢(a1) = a1, ¢(az) = az and a1 # as
(take aj = T'(z;)). Let ¢ be an automorphism of D that sends a; to 0. Then we have 1 (¢(xp~1(0))) = 0,
so the Schwartz lemma applies to @1 ~!. But note also that ¥ (¢(1p =1 (1 (a2)))) = ¥(az). So equality holds
in the Schwartz lemma (actual equality, not just equality in absolute value), so ¥¢)~! is the identity, which
implies ¢ is the identity, which implies f is the identity. [

Problem 11. Let f : C — C be a holomorphic function with f(z) # 0 for all z € C. Define U =
{ze C:|f(2)] < 1}. Show that all connected components of U are unbounded.

Solution. Since f is nonvanishing, 1/f is also entire. First note that U is clearly an open set because
it’s the preimage of (0,1) under the continuous function |f(z)|. Suppose that €2 were a bounded connected
component of U. Note that Q is also open: let z € Q and let B be an open ball centered at z contained
in U. If B were not contained in 2, then there would be w € B where w belongs to a different connected
component of U. But z and w can be joined by a path lying in U, so they must be in the same connected
component. Thus € is a bounded connected open set, i.e. a region on which the maximum principle can be
applied. First note that by continuity and by the fact that 0Q is disjoint from Q, we must have |f| = 1 on
0Q. Thus |1/f] = 1 on 09 also. So by the maximum principle, we have |1/f| < 1 throughout €2, implying
|f] = 1 throughout Q. But |f| < 1 in Q by definition, which is a contradiction. O

Problem 12. A holomorphic function f : C — C is said to be of exponential type if there are constants

c1,co > 0 such that
If(2)] < erell for all z € C.

Show that f is of exponential type if and only if f’ is of exponential type.

Solution. First suppose f is of exponential type. For any z, the Cauchy estimates give

1 1
SIS g s @I < et

for any R > 0. Pick R =1, we get
1F(2)] < ere=lFD = ¢pecze2ll,
so f is of exponential type.

Now suppose f’ is of exponential type. For any z we can write
£G) = 1O+ | Jw)du
¥

where v is a straight line from 0 to z. So we have

FACHIES |f(0)|+|2\§01£|f’(w)| < fO)] + |zlere™ < ([£(0)] + el DI,

so f is of exponential type. [
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7 Spring 2012

Problem 1. f, € L3([0,1]). True or false:
(
(

a) If f,, — f almost everywhere then a subsequence converges to f in L3.

If f, — f in measure then the sequence converges to f in L3.

(c

)
b) If f, — f in L? then a subsequence converges almost everywhere.
)
(d) If f, — f in L3 then the sequence converges to f in measure.

Solution.

(a) False. Let f, =n - X[0,1/n]- Then f,, — 0 almost everywhere but Sé |fal® = Sé/" n? =n?, so f, doesn’t
converge to 0 in L3.

(b) True. By part (d) we know that f,, — f in measure. So for each k, we have

lim {z : |fn(x) — f(z)| > 1/k} = 0.

n—0o0

For each k, pick ny large enough so that Mx : |f,(z) — f(z)| > 1/k} < 27F. Let Ey = {x : |fu(z) —
f(x)] > 1/k}. We claim that f,, — f almost everywhere. Note that since >, A(Ejy) < o0, the
Borel-Cantelli lemma implies that the set of x that lie in infinitely many FE) has measure zero. Fix
€ > 0 and let  be one of the almost everywhere points lying in only finitely many Ej. Then, as long
as k is big enough so that 1/k < € and = ¢ Ej, we have |f,, () — f(z)| < 1/k < e. This shows that
fa, () = f(x) for a.e. z. O

(c) False. The same counterexample from part (a) works again.

(d) True. Fix o > 0. Then we have
Jif=ge = | o= 11 > 0 Ma: |fale) — (@) > o,
{xlfn(x)_f(i)‘>o‘}

The left side goes to 0 as n — o0, so the right side does as well. O

Problem 2. Let X and Y be topological spaces and X x Y the Cartesian product endowed with the product
topology. B(X) denotes the Borel sets in X and similarly, B(Y') and B(X x Y).

(a) Suppose f: X — Y is continuous. Prove that E € B(Y) implies f~1(F) € B(X).
(b) Suppose A€ B(X) and E € B(Y). Show that A x Ee B(X xY).

Solution.

(a) Let F={ECY : f~}(E)e B(X)}. We want to show that B(Y) < F. It’s enough to show that F is a
o-algebra containing all open sets of Y. It’s clear that F contains all open sets in Y by the definition
of continuous functions. Thus J and Y are in F because they are open. Suppose A € F. Then we
have f~1(A¢) = f~1(A)¢ € B(X), so F is closed under complementation. Finally, suppose A4, € F.
Then we have f~! ((JA,) = Jf ' (4,) € B(X), so F is closed under countable unions. Thus F is a
o-algebra, so we're done. [J

(b) Fix an open set U < X. We first show that U x F € B(X xY) for any F € B(Y). Let Fy = {F <
Y :U x Ee B(X xY)}. To verify that claim, we just need to show Fy is a o-algebra containing all
open sets of Y. It’s clear that Fy; contains all open sets because the product of open sets is open. So
Fu contains J and V. If E € Fy, then U x E° = (U x Y)\(U x E) € B(X xY), so Fy is closed
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under complementation. If E,, € Fyy, then U x | JE,, = |J(U x E,,) € B(X xY), so Fy is closed under
countable unions, so it’s a o-algebra. This shows that U x E € B(X x Y) for any open U € X and any
Borel EC Y.

Now fix a Borel set E € YV and let Fg = {A < X : Ax E € B(X xY)}. We want to show Fg
contains all Borel sets in X, so it’s enough to show Fg is a o-algebra containing all open sets of
X. We know it contains all open sets of X by the above work. The exact same argument as above
shows that it’s a o-algebra. Thus we conclude that Ax EF € B(X xY) forany Ae B(X), E€ B(Y). O

Alternate solution. (b) Let mx (resp. my) be the projection maps X x Y — X (resp. Y). They are
both continuous. Then by part (a),

AxE = 1 (A) nay(B) e B(X xY). O

Problem 3. Given f : [0,1] — R belonging to L' and n € N, define
(k+1)/n
folz) = nf fly)dy forxelk/n,(k+1)/n)and 0 <k <n—1.
k/n
Prove f, — fin L.
Solution. First suppose f is the characteristic function of an interval f = X[4,). Then note that for n

large enough, f,, is constant and equal to f on each subinterval except for possibly the two subintervals
containing a and b. On these two subintervals, we still have 0 < f,, < 1. Thus we have

! 1 2
‘fn_f‘ <2'*'1’naX|fn_f| < -,
0 n n

which shows that f, — f in L'. Next note that the map f — f,, is linear, so we also know that f,, — f in
L' for any f which is a linear combination of characteristic functions of intervals. This class of functions is
dense in L'. So for a general f € L', let g; be a sequence of functions of the above form with g, — f in L.
Then for any n large enough we have

| fr *fHLl < ||f*gk”L1 + llgr — (gk)nHLl + [1(gx)n *anLl .

We estimate

n—=1 ~(k+1)/n n=1 n(k+1)/n (k+1)/n
M= fulls = 3 [ ) = s@lde = 5 [ al [ ) - ) dy| s

k=0 Vk/n k=0 Vk/n k/n
n=1  ~(k+1)/n (k+1)/n

< nj |f(y) — gr(y)| dxdy by Tonelli
k=0 Jk/n k/n
n=1 r(k+1)/n

- Y[ e - awldy = 15— gl
j=0 Jk/n

Thus we have
= fllp < 20 = grllpy + llgx — (gr)nllLs -

This holds for any n, so taking n — o0 we get
limsup || f = fllp < 21f = el
n—o0

since we already verified the desired property for each gr. Now the above holds for any k, so we can take
k — oo and conclude lim,, o0 || frn — f]|,: = 0. O

Problem 4. Let S = {f € L'(R?) : { f(z) dz = 0}.
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(a) Show that S is closed in the L' topology.
(b) Show that S n L?(R?) is a dense subset of L?(R3).

Solution.

(a) Let f, € S and f e L' with f,, — f in L. Then for each n we have
J=10-1n

(b) We know that the set of L? functions with compact support is dense in L2, so it suffices to show that
for any f € L? with compact support and any € > 0, there is some g € S n L? with [|g — f||;. < e
Fix f € L? with compact support and € > 0. Say supp(f) < B(0,M) and let I = { f(z) dz. We know
that I < oo because L? functions with compact support are also L' (by Cauchy-Schwarz). We may
assume I > 0 because if I = 0 then we’re done, and if I < 0 then we can do the same argument with
a negative sign on everything. The idea is to let g = f on the support of f, and then let g be equal to
a small negative value outside the support of f so that {g(z)dz = 0.

Let C > M be a solution to 47/3(C% — M3) = I?/e. Let g(x) = f(x) for |z| < M, g(x) = —¢/I for
M < |z| < C, and g(z) = 0 otherwise. It’s clear that g € L?. We have

< [Ir-nl -0

sof{f=0. 0O

Jg(x) dx = J f(z) dx+f —e/I = I—¢/I-X3(M < |z| < C) :Ife/f-éw(c?uM?') =0,
|z|<M M<|z|<C 3
so ge S n L% Also we have

lo=flls = [ &P = &P M <ja<0) = e O
M<|z|<C

Problem 5. State and prove the Riesz representation theorem for linear functionals on a Hilbert space.

Solution. Statement: let H be a Hilbert space and let f be a bounded linear functional on H. Then
there exists z € H such that f(x) = {x,2) for all z € H.

Proof: Let f € H*. Since f is a continuous map into a l-dimensional space, we know that ker(f) is
a closed, co-dimension 1 subspace of H. Fix a nonzero u € ker(f)*. Then we have the decomposition
H = ker(f) @span(u). Let a = f(u)/||ul|>. Then we claim that f(z) = (x,au) for all z € H. Since every
2 € H decomposes uniquely as the sum of something in ker(f) and something in span(u), we just need to
show that « — f(z) and z — {(x, au) agree on ker(f) and span(u). For y € ker(f), we clearly have f(y) =0
and (y,au) = 0 because u was chosen to be in ker(f)*. For z € span(u), we have z = cu for some ¢, so
we have f(z) = f(cu) = cf(u) and (z, au) = ca||u||* = ¢f(u) by choice of a. Thus f(z) = (z,au) for all
reH. O

Problem 6. Suppose f € L?(R) and that the Fourier transform obeys f(f) > 0 for almost every &.
Show that the set of finite linear combinations of translates of f is dense in the Hilbert space L?(R).

Solution. Let M = span{z — f(x + a)}.cr wWhere the closure is with respect to the L? norm. Suppose for
contradiction that M # L?. Then there is some nonzero g € M. In particular we have SR flz+a)g(x)dz =0
for all a € R. By Plancherel, this implies that

JR}'(%Hf(fﬂ+a)(£))f(g)(£)df = J}R6_2”“5]"(,1“)(6)?(9)(6)% = F(F(U)F@)(a) = 0
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for all a € R, where F denotes the Fourier-Plancherel transform L? — L2. This formula is valid because
since f,g € L%, F(f)F(g) € L', and thus the Fourier-Plancherel transform agrees with the standard L!
Fourier transform. But since F is a bijection this implies that F(f)(£)F(g)(§) = 0 for almost every £. And
since F(f)(€) > 0 almost everywhere, this implies F(g) = 0 almost everywhere, so g = 0 almost everywhere,
which is a contradiction. [

Problem 7. Let {u,(z)} be a sequence of real-valued harmonic functions on D that obey
ui(z) = wu2(z) = -+ =0 forallzeD.

Prove that z — inf,, u,(2) is a harmonic function on D.

Solution. Let u(z) = inf, u,(z) = lim, e u,(2) (the limit exists and equals the inf because the se-
quence is monotonically decreasing and bounded for each z). First we show that w, — wu uniformly on
compact subsets of D. Fix a compact subset B(0,r) € D. For any n > m, u,, — u, is a positive harmonic
function on I, so we can apply Harnack’s inequality on the disc B(0, (1 + 7)/2) to get, for any |z| < r,

(1+7)/2+ 2| 1+r)/2+r
(1+7r)/2—|z| 1+r)/2—-r
as n, m — oo uniformly in |z| < r because {u,(0)} is a convergent sequence.

Since each wu,, is continuous, the local uniform convergence implies that u is continuous. Also, for any
B(zg,r) €D, we have

um (2) —un(2)] < um (0) = un (0)] < |tum(0) = un(0)] — 0

2 27 21
i0 . i0 . i0 .
— dg = — | dg = lim — do =1 =
o7 o u(zo+re’”) 57 ), Jim U (20+1€") Jim — L Un (z0+1€") Jim un (0) = u(0)
where switching the limit and the integral is justified by uniform convergence on the compact set 0B(z, 7).
Thus u is continuous and satisfies the mean value property on every disc, so it’s harmonic. [

Problem 8. Let Q = {z +iy : © > 0,y > 0,zy < 1}. Give an example of an unbounded harmonic
function on €2 that extends continuously to 02 and vanishes there.

Solution. We want to conformally map €2 to a region where it will be easier to find such a function.
Motivated by the fact that (z + iy)? = (2? — y?) + i(2zy), we see that the map z — 722 is a conformal
map from  to the strip S := {z : 0 < Im(z) < 27}. Now note that z — Im(e*) is an unbounded har-
monic function in S which vanishes on the boundary of S: we have Im(exp(z + 0i)) = Im(exp(x)) = 0 and
Im(exp(z + 27i)) = Im(exp(z)) = 0, and Im(exp(z + i7/2)) = Im(iexp(z)) = exp(z), which is unbounded
in S. Therefore the function u(z) = Im(exp(72?)) is a function that works. [

Problem 9. Prove Jordan’s lemma: If f(z): C — C is meromorphic, R > 0, and k > 0, then

[ r@eas) < sl

zel

where T is the quarter circle z = Re® with 0 < 0 < /2.

Solution. We have

/2 ] o
< R- sup |f(2:)| . f esz(cosG+1s1n9) do

/2 ) ) ; ]
f f(RezO)esze QZ.RBZG do
0 zell 0

J f(2)e** dz
r

/2 )
R -sup |f(2)| J e kRsinG gg.
C

zel )

So we just need to show that SS/Q e~ kisinG qh < %. We break the integral in two:

/2 ) /4 ) /2 )
J e—k:RsmO do = J e—kRsm@ do _,_f e—kRsm9 dd = A+ B.
0 0 /4
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Now we estimate

A= J L J et < f e < V2
0 0 kRcos 0 kR\2/2 Jo kR
/2 ; /2 T ™2 1

B = f e FRsinG gp < J e hRV22 g9 — ZeokRVZ2 o TVZ L hecause e < 1/z for z > 0.
/4 /4 4 4 kR

Thus we conclude

/2 4 2 100
—kRsin 6
df < < —. O
L ‘ (I’L )kR *R

Alternate solution. Same up to the bound

/2 )
< R-sup|f(2)]- f e FRsn(9) g
zel 0

Now note that on [0,7/2], sin(f) > (2/7)0, so we have

/2 0
< mowplf ) [ et ap = ey [t an < Powpisa et <

zell zell 0 zell 0

and I think this is the optimal constant. [

Problem 10. Let us define the Gamma function via

Q0
L(z) = J t*~le~tdt
0

when the integral is absolutely convergent. Show that this function extends to a meromorphic function in
the whole complex plane.

Solution. Note that for Re(z) > 0, we have
0 0
J‘ [t te tdt = J‘ tRe@=le gt < oo,
0 0

So the integral is absolutely convergent for all Re(z) > 0. First we show that it defines an analytic function

for Re(z) > 1. We have
L(z+h)—T(2) Jm oty <th - 1>

h o h

th—1
‘ettzl < )) _ efttRe(z)fl
h

—t;Re(z)—1 - |10gt|n
< e 't Z ‘ for |n| <1
n

We estimate
eh logt __ 1 ’

0 n—1 n
—t;Re(z)—1 |h| ‘logt‘
; < et e

n!

n=1

—t —1 _|logt
< e tRe(x)Lellost]

If Re(z) > 1, then e~ “tRe(=)=1ellogt] ig integrable on [0, ), so by the Dominated Convergence theorem we
see that the above difference quotient converges as h — 0, so I" is analytic. So far we have that I' is analytic
in Re(z) > 1. By integrating by parts we get, for any Re(z) > 0,

o0 o0
I'z+1) = J tte tdt = ZJ t*"letdt = 2I(2).
0 0
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So we can extend the definition of I' by setting I'(z) := 1I'(z + 1) = ﬁf(z +2) for all =1 < Re(z) <0
except for z = 0. This definition makes " analytic in —1 < Re(z) < 0 except at 0 because for any nonzero
point in that strip, we can take a neighborhood around that point on which z — Z(%H) and z — T'(z+2) are
both analytic. There is no problem even when taking neighborhoods around points with Re(z) = 0 because
in 0 < Re(z) < 1, the two definitions of I" agree because of the functional equation.

We can extend this definition to all of C. In general, for non-negative integers n, define I' on the strip

—n —1 < Re(z) < —n (except not at z = —n) by
1
I(z) =

zZ(z+ 1) (z+n+1)
By the same reasoning, this definition makes I' analytic everywhere except for at all of the non-positive
integers. To show that I' is meromorphic, we just need to show that it has poles at each non-positive integer.
Fix a non-positive integer —n. In any neighborhood of z = —n, the representation

1
P& = o GansD

I'(z+n+2).

L(z+n+2).

is valid regardless of whether Re(z) < —n or Re(z) > —n, because of the functional equation which is valid
in the right half plane. Since T'(2) # 0, it’s clear that I'(z) — o0 as z — —n, and thus " has a pole at —n. [

Problem 11. Let P(z) be a polynomial. Show that there is an integer n and a second polynomial Q(z) so
that
P(2)Q(z) = 2"|P(2)]*> whenever |z| = 1.

Solution. Write P(z) = (z —a1) -+ (2 — ayp). Define Q(z) = (1 —agz) - (1 — @pz). It’s clear Q is a
polynomial. On |z| = 1, we have
[P(2)* = P(2)P(z) = (z—a1) (2 = am)(Z —a1) - (2 — @)
(z—a1)--(z—am)(1/z —a1) - (1/z — @)
1

= (2= a) (2= ap)(1/2)" (1= a12) - (L= az) = —-P(2)Q(2).

z

So P(2)Q(z) = 2™|P(2)[? on |z| =1. O

Problem 12. Show that the only entire function f(z) obeying both

n

/ 2 "
If'(z)] < ¢*' and f(m

) =0 forallneZ

is the zero function.

Solution. Suppose f is not identically zero. Then since its zeros are discrete, it has countable many. Enu-
merate them {a;}. By hypothesis f vanishes at every n/4/1 + |n| for n € Z, so we know that Y., |ax| 2 = 0.
This implies that the genus of f is at least 2 (proof below). By Hadamard’s theorem, this also implies the
order of f is at least 2. But by hypothesis, we have f(0) = 0, and so for any z we can write

< Jzf sup [f'(w)] < J2fel*! < e?
WEYz

1) =

f(w)dx
o

where 7, is a straight line from 0 to z. But this shows that the order of f is < 1, a contradiction.
Here is a proof that ), |ax|™® = oo implies the genus of f is at least 2. It follows from the more gen-

eral claim: If genus(f) < h and {a;} are the zeros of f, then 3, |ax|~"*1) < co. If the genus is < h, then
we know that the product

0 2 h
z z 1/ 2 1/ 2z

||<1—>exp +<> +...+(>

iy Qg Q. 2 ag h Qg
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converges uniformly on compact sets. In particular, fix some z which is not a zero of f, then we know the

series ) ,
& z z 1/ 2 1/ z
Stog(1-2)+ 242 (2) 41 (2
bl ag Q. 2 ag h Q.

convergs absolutely. For all |a;| > 3|z, we have the estimate

2 h
z z 1/ z 1/ z
log(1— =)+ +- (=) +...4+- (=
ag 7% 2 [43% h ag

1|z " i h+1 (z)j_(h+1)
h+1 |ay S T \aw
h+1 e j—(h+1)
> |z <1 Loy kel )
+ 1 |ag Pt 7 ay
1 5 h+1< e
> ——|— 1- > (1/3)j—<h+1>>
h+1|ag Pl
h+1
> 2] la |7(h+1).
2(h+1)
Thus
2(h +1 1 2 1 "
Z |ak|_(h+1)<u Z log -2 )+ 2+ (2) .+ (2 < .
‘Z|h+1 ag Q. 2 ag h Q.
lak|>3]|z] lak|>3]z|
This establishes the desired claim because there are only finitely many aj with |ax| < 3|z|. O
Alternate solution. By the same argument as in the other solution we have |f(z)| < e?/*l. We want

to use Jensen’s formula. First multiply f by a power of z so that f(0) # 0. This preserves an inequality of
the form |f(z)| < e, For any R (assuming f has no zeros on |z| = R), Jensen’s formula gives (enumerating
the zeros of f as a,)

Qn

1 ,
g | O] = 5= | logls(Re) a0+ Y] 1og|

|an|<R

A

log e“® + Z log
In]/A/14+|n|<R

n
RA/1+ |n

Jn
< R log | Y=
s + 2 og’ I
n<R?
< R-— Z log R + Z log v/n
n<R? n<R?

1 ("
< R*RzlogR+§J\ log x dx
0

1
< R—R%logR + R*log R — §R2

which goes to —o0 as R — o0, a contradiction. [
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8 Fall 2012

Problem 1. Let 1 < p < o0 and let f,, : R® - R be a sequence of functions such that limsup||f,||;, < .
Show that if f,, converges almost everywhere, then f, converges weakly in LP.

Solution. Let A denote Lebesgue measure on R3. Say that f, — f pointwise almost everywhere and
also that ||f,||;, < M for all n. To show that f,, — f weakly in L, we need to show that ¢(f,) — ¢(f) for
every bounded linear functional ¢ € (L?)*. By LP-L? duality, we know that every ¢ € (LP)* is of the form
#(f) = § fgdX for some g € L. So let g be any L? function; it suffices to show that

ffng - ffg-

Since f,, — f almost everywhere, we also know that f,,g — fg almost everywhere. By the Vitali Convergence
Theorem, to show { f,gd\ — § fgd\ it suffices to show that the sequence {f,g} is uniformly integrable
and tight.

For uniform integrability, let € > 0. Since |g|? is integrable, let § > 0 be such that whenever A\(A) < 4,
we have {, [g|?d\ < e. Then for any n and any A(A) < §, we have by Holder’s inequality

1/p 1/q
f |fngldX < <J fn|pdA) U |g|qu) < MeéYa,
A A A

which shows that {f,g} is a uniformly integrable family.

For tightness, let ¢ > 0 and let E be a subset of R? such that SEC |g|?dX\ < e. Then for any n, we have by

the same argument
1/p 1/q
f |fngld\ < U |fn|pdA) (f |qu)\) < Meé'a,
Ec Ec Eec

so {fng} is a tight family, so we are done. [

Problem 2. Suppose du is a Borel probability measure on the unit circle in the complex plane such

that
lim 2" du(z) = 0.

n—o0 |Z‘:1

For f e L'(du) show that
lim 2" f(z)du(z) = 0.

N0 Jz|=1

Solution. By linearity, it is clear that the desired result holds for any trigonometric polynomial on the
unit circle, i.e. any function of the form P(z) = Zﬁ[:_N anz™. Since p is a Borel measure and the unit circle
is compact, we know that the set of continuous functions on S is dense in L!(u) with respect to the norm
] Li(u)- We also know by the Stone-Weierstrass theorem that the set of trigonometric polynomials on S !
is dense in the set of continuous functions on S* with respect to the norm 1 oo -

Solet f € L'(u) and fix € > 0. Let g be a continuous function on S! such that || f — 9llpr(y < €andlet P
be a trigonometric polynomial such that ||g — P L () Since the result holds for trigonometric polynomials,
we can pick n large enough so that

< €.

‘[ - 2" P(z) du(z)
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Then for such n, we have

fl I an)

<f (F(2) — 9(2)] du(z) + f 27(9(2) — P(2))] dplz) +
|z|=1

|z|=1

J 2" P(z) du(z)
|z|=1

< jl M) =) dnte) + [ o)~ P aute) +-

z|=1
< Hf—QHLl(H) + ||g_P||Lm(H)H(Sl) +e < 3e,

which shows that SIZIzl 2"f(2)du(z) > 0asn—oo. O

Problem 3. Let H be a Hilbert space and let E be a closed convex subset of H. Prove that there
exists a unique element x € FE such that

= inf ||y|| .
llel] = inf [lyl]

Solution. First note that if 0 € F, then the statement is obviously true by taking x = 0, so assume 0 ¢ E.
Let inf ep ||y|| = 6 > 0. First we prove that such an 2 must be unique. Suppose that ||z|| = ||2/|| = . Then
since E is convex, we have (1/2)x + (1/2)a’ € E and

1 1

5= sl sl = 3] + 32 > 3+ 52 >

2 2 2 2 2

‘ 1 1

= ’

But we know that equality in the triangle inequality occurs if and only if z and ' are scalar multiples of
each other. Thus the above inequality yields the contradiction § > ¢ unless x and 2’ are scalar multiples of
each other. So we can write z = cz’ where |c| = 1. Then since E is convex, (1/2)(z + z’) = <12’ € E also,
so |[<a’|| = |(c+1)/2|§ =6, which implies ¢ = 1, so x = a’.

Now we show existence. Let {y,} be a sequence in E such that ||y,|| — § as n — . Then for any n
and m, by the parallelogram law we can write

2 2 2 2

LU WO U N [ES
2yn 2ym Qyn 2ym = 2yn 2ym
Since E is convex, (1/2)y, + (1/2)ym € E, so we have
2
1 , 1, 1 , I 1 1 o, 1 s o
- n — Ym = 3 n o m —laYn “Ym < - n = m —0°.
1 lon = ymll 5 lynll”™ + 5 M1yl 5Yn T 5Y 5 lynll” + 5 [lyml|

As n,m — oo, the right side of the above inequality tends to 0 by definition of the y,,, so we conclude that
Y — Yml|* = 0 as n,m — o0, so {y,} is a Cauchy sequence. Since H is complete, there is some z € H such
that y, — = as n — o0, and since F is closed, we must have x € E. Finally, since the norm is a continuous
function on H, we must have ||z|| = lim,—« ||y,]| =9d. O

Problem 4. Fix f € C(T) where T = R/27Z. Let s, denote the nth partial sum of the Fourier series
of f. Prove that
Snllpow
sl
% Tog(n)

Solution. Recall that we have s, (f)(x) = (f * D,,)(x), where D,, is the Dirichlet kernel
Da(t) = i gkt _ sin((n +1/2)t)

sin(t/2)
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Therefore we immediately see that |[s,,(f)|| o < ||fll < ||Dnl|;:- We estimate

sin((n + 1/2)t) T lsin((n + 1/2)t)
e = [P [

where the second inequality is valid because D,, is even and sin(t/2) > t/100 on [0, 7]. Continuing,

J‘(n+1/2)ﬂ' |Sln(u)| < i J(kJrl)Tr |sm(u)| i
k=0

T

a

A

|1 Dn]| —
i 0 u km u
< J“““)“ [sin(u)|

LA
du < — <1 .
(k+1m v ;0k+1 < log(n)

k=0 vk
So we have established |[s, ()|« < ||f|| = log(n) for all f e C(T). Note that if P is a polynomial, then
$n(P) — P uniformly on T (this is proven by integrating by parts twice on the definition of the Fourier
coefficients to get |]3(k:)| < k72, and then applying the Weierstrass M-test combined with the general fact
that s, (P) — P in L?). In particular, ||s,(P)||;» is bounded, so we clearly have ||s,(P)||; /log(n) — 0.
Fix e > 0 and any f € C(T). We can find a polynomial P with ||f — P||;» < e. Then we have

n [ee] . n 7P o] nP ]
pmup Lon e ol = Pllge | llsnPllie < e py

now  log(n) n—00 log(n) log(n)

Take ¢ — 0 and we’re done. [

Problem 5. Let f, : R* — R be a sequence of functions such that sup,, ||fn|/;: < o0. Show that if
fn converges almost everywhere to a function f : R® — R, then

[ 1= 1sa = 2 =152 @ = o
R3

Solution. Let M be such that ||f,|[;. < M for all n. Since f, — f almost everywhere, we also have
|fn]? = |f|* almost everywhere, so by Fatou’s lemma,

J|f|2 = fliminf\fﬂ2 < liminff|fn\2 < M?,
n—o n—o
which shows that f € L? and || f|| . < M. Notice that we have the identity

||fn|2_‘fn_f‘2_‘f|2| = ‘|fn_f+f‘2_|fn_f|2_|f‘2| = 2|fn_f”f|

Fix e > 0. Since |f|? is integrable, there is a § > 0 such that A(E) < § implies §, |f|* < e. We can also pick
an R which is big enough so that S‘$|>R |f|? < e. Then on the set || < R, we can apply Egorov’s theorem to

get a set F < {|z| < R} such that f,, — f uniformly on {|z| < R}\E and A\(E) < 4. So we have the estimate
[ir=siat = [ A=t [ A=A [ =gl = A B
{lo|<RNE E {lo|>R}

Since f,, — f uniformly on {|z| < R}\FE, let n be big enough so that S{IzISR}\E |fn — f|?> < €. Now we
estimate each of A, B, C' separately using Cauchy-Schwarz. We have

1/2 1/2
A < (f Ifn—f|2> (j f|2> < Mye
{lz|<RN\E {lz|<R}\E

o (nes) ()" < v

1/2 1/2
C < (f Ifn—f|2> (j |f|2> < V2.
{lz|>R} {|z|>R}
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This shows that {|f, — f||f| — 0 as n — oo, which is enough to conclude the desired result. O

Problem 6. Let f € L'(R) and let M f denote its maximal function, that is,

Mf)@) = swp ~ [ |f@—y)ldy.

O<r<oo 27 —r

By the Hardy-Littlewood maximal function theorem,
HzeR: (Mf)(z) > A} < 3AH||f]|;:  forall A> 0.

Using this show that

r

1
lim sup — |f(y) — f(z)|dy = 0 for almost every z € R.

r—0 T —_r

Solution. This is actually false as stated. As a counterexample, take f = x[_1,1). For any z ¢ [—1,1], we
have f(x) =0 but

T T

timsup o [ 1)~ F@)ldy = mswp o [ F@)ldy = 1.

r—0 rJ_r r—0 —r

Presumably, what the question meant to say is to prove that
1 T+7r
lim sup — |f(y) — f(z)|dy = 0 for almost every z € R,

r—0 T Jp—r

which is the Lebesgue differentiation theorem. Here is a proof of this:

Define
TH@ = 5 [ 1) - @y
(Th)(x) = lirri%gp(Trf)(w)o

We want to prove that T'f = 0 almost everywhere. Fix some ¢ > 0. Since the set of continuous functions
with compact support is dense in L*(R), let g be a continuous function with compact support such that
I|f —gll;1 <€ Define h = f — g sothat f = g + h. Note that for any r > 0 we have

T.f = Tr(g+h) < T,g+Th.

By the definition of continuity, it is clear that the desired result holds for continuous functions, so we have
that T'g is identically zero, and thus we obtain T'f < Th.

To show that T'f = 0 almost everywhere, it suffices to show that m{z € R : (T'f)(z) > 6} = 0 for any
fixed 6 > 0, where m is Lebesgue measure on R. So fix > 0 and define F := {x e R : (T'f)(z) > 0} and

={zeR: (Th)(x) > d§}. Since Tf < Th, F € E, so we analyze the measure of E. Note that for any =
and any r > 0, we have

@ = - [ ) -l < o [l o [ h@la < 0@+ he).

27’xr

Therefore we have
E < {zeR:(Mh)(x)>0/2} u{xeR:|h(x)| > d/2},
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so by the Hardy-Littlewood theorem, Chebyshev’s inequality, and the definition of A,

6 2 8
m(E) < 5||h’||L1+S||h||L1 < 5¢

Thus we have m(F) < (8/d)e. Since the set F' does not depend on ¢, this holds for any € > 0 and thus we
conclude m(F) = 0, which is enough to conclude that T'f = 0 almost everywhere. [

Problem 7. Let f be a function holomorphic in C and suppose that f(0) = 0, f(1) = 1, and f(D) < D.
Show that (a) f’(1) e R and (b) f'(1) > 1.

Solution. (a) Suppose that f/(1) ¢ R. Then there exists v € C with Re(v) < 0 such that Re(f’(1)v) > 0.
The limit definition of the derivative, together with the fact that f(1) = 1 implies that

, o fl4tw) -1
J e = t1—1>I(I)1+ t )

For sufficiently small ¢, we have 1 + tv € D. Since f(D) € D, But then Re M < 0 small t. After
passing to the limit, we have Re(f’(1)v) < 0 which is a contradiction.
(b) Fix t € (0,1). By the Schwarz lemma, |f(1 —t)| <1 — ¢. Therefore

SL=n =1 1-lsa-0)
t t

Taking the limit as t — 01, we see that |f'(1)] > 1.

1.

Problem 8. Let f : C — C be a nonconstant holomorphic function such that every zero of f has even
multiplicity. Show that f has a holomorphic square root, i.e. there exists a holomorphic function g : C — C
such that f(z) = g(z)? for all z € C.

Solution. If the set of zeros of f had a limit point, then f would have to be identically zero. But f
is nonconstant by hypothesis, so the zeros of f are isolated. Since all of the multiplicities are even and the
zeros are isolated, by Weierstrass’s theorem there exists an entire function h such that h has the same zeros
as f, but with each one half the multiplicity. Then h? is an entire function with exactly the same zeros as f
with all the same multiplicities. Therefore the function f/h? is analytic at all points which are not zeros of
f, and it has removable singularities at the zeros of f. So it can be extended to a function which is analytic
everywhere, so we can assume without loss of generality that f/h? is a nonvanishing entire function. Since
it is nonvanishing, it has a well-defined analytic logarithm, i.e. there is some entire function g such that
f/h? = exp(g). Then f = h%exp(g9) = (hexp(g/2))?, and hexp(g/2) is an entire function, so this is the
desired result. [

Problem 9. Suppose f is a holomorphic function in the unit disk D and {x,,} is a sequence of real numbers
satisfying 0 < z,41 < @, < 1 for all n € N and lim,,_,o ¢, = 0. Show that if f(z2,4+1) = f(z2,) for all n,
then f is a constant function.

Solution. By translating by a constant, we may assume that f(0) = 0. Define g(z) = f(z)f(Z). Since
f(Z) is also holomorphic, we see that g is also holomorphic and g(z) € R whenever z € R. So we can consider
the restriction of g to the positive real axis as a differential function on R. Then since g(za,+1) = g(x2,) for
all n, by the mean value theorem there is a number y,, € (2541, Z2,) such that ¢'(y,) = 0. Since z, — 0,
also y, — 0. Thus ¢’ is zero on a set with a limit point, so ¢’ is identically zero. Therefore g is a constant,
and since f(0) = 0, we also have g(0) = 0, so g is identically zero. Therefore we have f(z)f(Z) = 0 for all
z € D, which implies that f is identically zero because either f(z) or f(Z) is zero on a set with a limit point.
O

Problem 10. Let {f,} be a sequence of holomorphic functions on I satisfying |f,(z)| < 1 for all z and all
n Let A = D be the set of all z € D for which the limit lim,, . f(2) exists. Show that if A has an accu-
mulation point in D, then there exists a holomorphic function f on D such that f,, — f locally uniformly on D.
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Solution. Since the sequence f,, is uniformly bounded, by Montel’s theorem we know it is a normal
family, so there is a subsequence f,, which converges locally uniformly on ID to some function f. Since local
uniform limits of holomorphic functions are holomorphic, we know that f is holomorphic. Now, to show that
the whole sequence f, converges locally uniformly to f, it suffices to prove that every subsequence has a
further subsequence which converges locally uniformly to f. Since the whole sequence is uniformly bounded,
clearly any subsequence is also uniformly bounded, so by applying Montel’s theorem to the subsequence, we
obtain a further subsequence which converges locally uniformly to some holomorphic function g on . But
note that for every z € A, since the limit of the whole sequence lim,,_,, f,,(2) exists, any subsequences which
converge pointwise at z must have the same limit. This implies in particular, since local uniform convergence
implies pointwise convergence, that f(z) = g(z) for all z € A. Since A has a limit point in D and f and g are
both holomorphic, this implies that f = g on D. Thus we conclude that any subsequence of f, has a further
subsequence converging locally uniformly to f, which implies that f,, converges locally uniformly to f. [

Problem 11. Find all holomorphic functions f : C — C satisfying f(z + 1) = f(2) and f(z + i) = e*" f(2)
for all z € C.

Solution. Note that exp(—2miz) is one such function. Let f : C — C be any entire function satisfy-
ing f(z+1) = f(2) and f(z + i) = €27 f(z) for all z € C. Define g(z) = f(z)exp(2miz). Then g is also an
entire function and it satisfies

g(z+1) = f(z+1)exp(2mi(z+ 1)) = f(z)exp(2miz)exp(2mi) = g(2)

g(z+i) = f(z+i)exp(2mi(z +14)) = > f(2)exp(2miz) exp(—27) = g(2).
Thus g is a doubly periodic entire function, so it must be bounded and hence must be constant by Liouville’s

theorem. Thus we conclude that f(z) = Cexp(—2miz) for some C € C, and these are all of the functions f
which satisfy the desired property. [

Problem 12a. Let M € R, Q < C be a bounded open set, and u : 2 — R be a harmonic function.
Show that if
limsupu(z) < M

z—20

for all zg € 09, then u(z) < M for all z € Q.

Solution. Fix ¢ > 0. By the limsup condition, for each zy € 0f, there is a radius 7(zp) such that
|z — 20| < r(20) implies that u(z) < M + e. Then the set

U B(zo,7(20))
Z[)GaQ
is an open cover of 0f2, which is a compact set because {2 is bounded. Therefore o€ is covered by only finitely
many of these balls. Call them By, ..., By. Now the set
A = Q\(Biu...uBy)

is an open set on which u is harmonic, extends continuously to the boundary, and satisfies u(w) < M + € for
all w € 0A. Thus by the maximum principle, we conclude that u(z) < M + € for all z € A. By construction
of A, we also know that u(z) < M + € for all z € Q\A, so we have u(z) < M + € for all z € Q. Since this
argument holds for any € > 0 we conclude that u(z) < M for all ze Q. O

Problem 12b. Show that if u is bounded from above and the above condition holds for all but finitely
many zg € 0€2, then it still follows that u(z) < M for all z € Q.

Solution. Since (2 is bounded, let d = diam(Q2) = sup, ,eq |2 — w| < . Let p1,...,pn be the points
in 09 for which the limsup condition above does not hold. Define the function

=D
d

2 — PN
d

v(z) := —log —...—log
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Note that v is a nonnegative harmonic function in 2 because the function

L (z—dpl) <z—de>

is a nonvanishing analytic function in 2.

Fix € > 0 and define f(z) = u(z) — ev(z). For any zp € 0Q\{p1,...,pn}, the limsup condition holds,
and so as in the previous problem we have a radius r(zg) such that |z — zg| < r(2¢) implies u(z) < M + ¢,
and since v > 0 we also have f(z) < M + € for all such z. However, for any p;, since u is bounded above
and v(z) — o0 as z — pj, there is also a radius 7(j) such that |z — p;| < r(j) implies f(z) < M + €. Now
we proceed as in the previous problem. Since 052 is compact, it can be covered by finitely many of the balls
B(zo,7(20)) and B(pj,r(j)). So we obtain a smaller set A < Q on which f is harmonic, extends continuously
to the boundary, and satisfies f(w) < M + € on the boundary of A. So by the maximum principle and by
construction of A we have f(z) < M + e for all z € Q, i.e. u(z) < M + €+ ev(z) for all z € Q. And this
argument holds for any € > 0, so we conclude that u(z) < M for all ze Q. O
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9 Spring 2013
Problem 1. Suppose f: R — R is bounded, Lebesgue measurable, and

f@+h) = f@)]
L 3 dx = 0.

lim
h—0

Show that f is a.e. constant on [0, 1].

Solution. Let F(z) = {j f(t)dt. By the Lebesgue differentiation theorem, there is a set E of measure

zero such that ” B F
lim (@+h)=Fl@) _ f(z)

h—0 h

for all x ¢ E. Then for any a,b ¢ E, pick h small enough so that without loss of generality we have
a,a+ h <b,b+ h, then we have

— i L
Y

|f(a) = f(b)] = lim

h—0

— Lbf(t) dt — FM f(t)dt

a+h

Fla+h)—F(a) F(b+h)— F(b) ‘

< ,{lg})hLM e+ 1) = fOlde < Jim & [ 1+ 1) = f0)1de = o

so f is constant a.e. [

Problem 2. Consider the Hilbert space ¢2(Z). Show that the Borel o-algebra N on ¢?(Z) associated
to the norm topology agrees with the Borel o-algebra W on ¢2(Z) associated to the weak topology.

Solution. Note: I'm pretty sure this argument still works if ¢2(Z) is replaced by any separable Hilbert
space.

It’s known that the weak topology is coarser than the norm topology, so we automatically have W < N.
We just need to show that any norm-open set in £2(Z) is in W. Since ¢?(Z) with the norm topology is
separable, any norm-open set is a countable union of open balls, so it suffices to show that every norm-open
ball is in W. Fix B(z,r) = {y € (*(Z) : ||y — a:H?z < r?}. We can view this as a preimage f~1([0,7?)) where
f:2(Z) — R is given by

0
F) = lly—al* = llyll” +[lell* = 2Rey,z) = ) Ky,en)|” + |[2]]* = 2Re(y, z)
n=1

where {e,} is an orthonormal basis for £2(Z) and we have used Parseval’s theorem. We claim that this
function is W-measurable. This is because by definition of the weak topology, the function y — (y, z) is
weak-continuous for any z € £?(Z) and therefore WW-measurable. So the first term in f is a countable sum of
non-negative measurable functions, which is measurable (combination of the facts that g measurable implies
|g|? measurable, sum of measurable functions is measurable, and pointwise limit of measurable functions
is measurable). The second term in f is a constant, which is measurable, and the third term in f is the
real part of a measurable function, again measurable. So f is a W-measurable function, and therefore
B(x,r) = f~4[0,7?)ew. O

Problem 3. Given f : R? — R continuous, we define

us

[A.fl(z,y) = % f(x 4+ rcos(9),y + rsin(9))dd

and
[Mf](z,y) := sup [A.f](x,y).

O<r<1

47



By a theorem of Borgain, there is an absolute constant C' so that

M ]l s m2y < ClIS M s (ge)

for all f € C.(R?). Use this to show the following: If K < R? is compact, then [A,xx](z,y) = 1 asr — 0
at almost every point (z,y) in K (with respect to Lebesgue measure).

Solution. We would like to mimic the proof of the Lebesgue differentiation theorem. This doesn’t work

directly since we are only given Borgain’s result for continuous functions, so we start by expanding this result

slightly. In what follows C' will always denote an absolute constant which may change from line to line.
Claim. Let S be a bounded open subset of R? with A\(S) < c0. Then for ¢t > 0 we have

3
Mi(e,) € B : [Mxs(ey) > 1)) < 0250

Proof. First note that the restriction of xg to a circle is Borel measurable with respect to the uniform
measure on the circle, since the restriction of an open set to a subset of R? is open in the subspace topology.
So [Mxs] is defined.

Note that xg is the characteristic function of an open set and is therefore lower semi-continuous. Thust
we may find an increasing sequence of functions f € C.(R?) converging monotonically to xs. By replacing
fr with max(fx,0), we may assume that each f; is non-negative. From the weak-type L? estimate which
follows from Borgain’s result, we have

M(@,y) : [Mfil(wy) > 1)) < Ot Ifulls < CE2 |Ixs|ly = CHPAS).

If [Mxs](z,y) > t, then there exists r € (0,1) such that [A4,xs](z,y) > t, and by monotone convergence,
we have [A, fi](z,y) > t for sufficiently large k. Since M fi is an increasing sequence of functions, we can
write

{(@.9): [Mxs)(z,y) > t} = | J{(z,9) : M fil(z,y) > ).

k=1

Then applying continuity from below along with the earlier weak-type estimate gives

M(,y) : [Mxs](@,y) > t}) < C2 || fll3,

which proves the claim.

To prove the main result, we define
. 1
Sp = {(z,y) € K : limsup |4, xk (z,y) — 1| > —}.
r—0 n

Next we fix € > 0 and approximate K by a bounded open set U 2 K where A(U\K) < e. Note that the
stated theorem is true if we replaced K with U. For fixed r € (0,1) and (z,y) € K we have

|ATXK(-T7 y) - 1‘ < ‘ATXK(x7y) - ATXU($7 y)| + |ATXU($7y) - 1]'
= [Arxuvnk](z,y) + [Arxo(z,y) —1]|
< [Mxoxl(z,y) + [Arxu(z,y) — 1]

As r — 0 the last term tends to 0, so if (z,y) lies in S, then [Mxy\k](z,y) > 1/n. Note that U\K is open,
so the claim applies and gives (
N(S,) < C(1/n) 3ANU\K)? < Cn?és.

But € was arbitrary, so A*(S,,) = A(S,) = 0. Finally we have A(|J/_, S,) = 0, so

limsup |A,xx(x,y) — 1| =0
T‘)O
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for a.e. (z,y) in K, and the main result follows.

Problem 4. Let K be a non-empty compact subset of R?. For any Borel probability measure p on
K, define the Newtonian energy I(u) € (0, +0o0] by

1
I(p) = L L Tl dp(x) dp(y)

and let Ry be the infimum of I(u) over all Borel probability measures p on K. Show that there exists a
Borel probability measure p such that I(u) = Rg.

Solution. Let M be the set of all Borel probability measures on K. By the Riesz representation theo-
rem, M is a subset of the unit ball in the dual space C(K)*. Let u, be a sequence in M with I(u,) — Rk.
By the Banach-Alaoglu theorem, the unit ball in C(K)* is weak-* compact, and since C'(K) is separable, it
is also sequentially compact. So by passing to a subsequence if necessary, we have a measure p in the unit
ball of C(K)* with p, — p in weak-+. By applying weak-# convergence to the constant function 1, we see
that p is also a probability measure on K.

Now we claim that I(u) = Rx. We first need to show that p, ® u, — ¢ ® p in weak-*, i.e. that

[[ 7. dun @) disnt) [ 0. diste) o)

for all f e C(K x K). This is clear for all functions of the form (z,y) — g(z)h(y) with g,h € C(K) by the
weak-# convergence of u, to u. Let F be the span of all functions of the above form. Then it’s easy to
check that F is dense in C(K x K) by the Stone-Weierstrass theorem. Thus the desired result holds for all
of C(K x K). This establishes that p, ® pn, — 1 ® p in weak-=.
We want to conclude that
I(g) = lim I(n) = Ric.

n—o0

We would be done by the weak-# convergence of u, ® py, to p® u, except (x,y) — isn’t continuous on

_1
L N lz=y]
K x K. However, it is lower semicontinuous, so by the portmanteau theorem, we have

liminf I'(p,) = I(p).

n—o0

But liminf, o I (i) = Ri and Ry is the inf of all values of I(u), so also Rx < I(p) and thus I(p) = Ry,
so I achieves its minimum. O

Problem 5. Define a Hilbert space

H = {u :D — R: u is harmonic and J lu(,y)|? de dy < oo}
D

with inner product {f,g) = SD fgdxdy.
(a) Show that f — f,(0,0) is a bounded linear functional on H.

(b) Compute the norm of this linear functional.

Solution (bad). We show that the norm is 2/4/7. Since u is harmonic, u, also is. So we apply the mean
value property on a disc of radius r € (0,1) to get

1
J Uy dA
B(0,r)

mr2

1

5 f udy
= 1JoB(0,r)

|uz(0)] =
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by Green’s theorem. So

1

mr2

27
|ug (0)] ‘[ u(r cos @, rsin0)r cos(0) de’

0

1 2m 27
luz(0)> < —— (L u(r cos @, rsinf)? d@) (J cos? 9) by Cauchy-Schwarz

7T2T2 0

21
772 lug (0)° < f u(r cos @, rsin 0)? df.
0

Multiplying both sides by r and integrating over r € [0, 1] we get
ThaOF < [ a?da
4 D

so |ug(0)] < % llu|| ;. Finally, it’s easy to check that u(z,y) = z achieves this bound, so 2/4/7 is the
operator norm. [J

Alternate solution (way better). Since D is simply connected, u is the real part of an analytic function
f=wu+iwonD. Write f(z) = Zflozo anz"™. We know this power series converges uniformly on compact
subsets of . We have

0 0
= Z Re(a,r™e™?) "(Re(an) cos(nb) — Im(a,) sin(nd)).
n=0

n=0

We also know that u, = Re(f’), so we have u,(0) = Re(a1). We have

JD uldA Jl Jzﬂ (i (Re(ay) cos(nf) — Im(ay,) 51n(n0))> 2 rdfdr

f f " w r* (Re(an) cos(nf) — Tm(ay,) sin(nf))(Re(ax) cos(k6) — Tm(ax) sin(k@)) df dr.

Using the orthonormality properties of sin and cos and the fact that the power series converges uniformly
on compact sets, this is equal to

f Z r2”+1j (Re(ay,)? cos®(nf) + Im(ay,)? sin®(nd)) do dr

WV
O%
3,
>\
=
2
S
I
\
=
2.
2
e

Thus we see that

SO
2
uz(0) = Re(a1) < NG [lullg -
This shows that the operator norm is at most 2/4/7. And by inspecting the above proof, we see that equality
holds if Re(a,,) = Im(a,) = 0 for n # 1 and Im(ay) = 0. This is achieved when f(z) = z, i.e. u(x,y) =z, so
the operator norm is exactly 2/4/7. Alternatively one could compute directly that w(z,y) = = achieves this
bound. O
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Problem 6. Let

X = {fHLei&f(x)dx:feLl(R)}.

Show that (a) X is a subset of Cy(R), (b) X is a dense subset of Cy(R), and (c) X # Cy(R).

Solution. Note that & — § €™ f(x) is the function f(ff). For the sake of a having a convenient no-
tation, we will prove each of these results for the Fourier transform. Obviously (a)-(c) will follow.

(a)

Continuity follows immediately from the dominated convergence theorem, since [e=** f(z)| < |f(z)],
which is integrable by hypothesis.

By directly calculating the integral, it is easy to see that § lies in Cp(R) when s is a sum of characteristic
functions of open intervals. The set of such functions is dense in L' (R), so given f € L' choose s with

I1f — s|l, < e. Then Hf—gH <|If = sll; <e and so
0

m f(6) < lm s(€) +e=-e

1
|€]—00 |€]—00

But € was arbitrary, so the limit is 0.
Remark. One could also solve this problem by invoking the density of C* (or even C}) in L'(R) and
then applying integration by parts.

We claim that CP(R) is dense in C.(R). To see this, fix f € C.(R) and choose M large enough so
that |f(z)] < € when |z| > M. Let g be a smooth function such that |f(x) — g(z)] < € for z €
[—(M+1), M+1]. Also let 5 : R — [0, 1] be a smooth bump function with supp(8) < [-(M +1), M +1]
and which takes the value 1 on [—-M, M]. Then B¢ is smooth, and we have ||f — Bg||,, < 2e.

So CP(R) is dense in C.(R), and in particular the space of Schwartz functions is dense in C.(R).
The Fourier transform is a bijection on the space of Schwartz functions, so X contains all Schwartz
functions which gives a dense subset.

Recall that the Fourier transform JF is an injective bounded linear map from L!(R) to Co(R). If the
Fourier transform was surjective onto Co(RR) then by the open mapping theorem F~! : Co(R) — L'(R)
would be bounded.

Let h = x—1,1 and let h; € CF(R) be a uniformly bounded sequence of functions which converges
to h in L? (for instance, bump functions would suffice). Also let g; = F~!(h;). Note that the g;’s
are Schwartz functions and therefore lie in L!. (Alternatively, this must be true by the hypothesis
of surjectivity.) Now h lies in L? and is therefore the Fourier-Plancherel transform of a function g.
Since the Fourier-Plancherel transform is an L? isometry, we have that g; — g in L?. By passing to a
subsequence if necessary, we may assume that g; — ¢ pointwise almost everywhere.

On the other hand g is not in L', otherwise its Fourier transform would be continuous. Thus by Fatou’s
lemma, lim;_,o ||g;||, = 0. However this contradicts the boundedness of !, since we assumed that
the h;’s were uniformly bounded.

Remark. It turns out that g(z) = sin@)  However this wasn’t important to us. In fact we could have

taken h to be any bounded L2 function which doesn’t agree a.e. with a continuous function.

Problem 7. Let f : C — C be an entire function such that log|f| is absolutely integrable with respect to
planar Lebesgue measure. Show that f is constant.

Solution. Suppose that f is not constant. By Liouville there exists zg € C such that log|f(z0)] > 1.
Recall that log|f| is subharmonic. By the mean value property we have

0 2m 0
f 10g|f(z)|d)\zf T’J log\f(zo—krew)\(wdr)f 2rrdr =o0. O
R2 r=0 0 r=0
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Problem 8a. Let A and B be positive definite n x n real symmetric matrices with the property
[BA ]| < |la]

for all x € R™, where [|z|| denotes the usual Euclidean norm. Show that for each pair x,y € R,
Z <y, BZA_ZQ:>

admits an analytic continuation from 0 < z < 1 to the whole complex plane.

Solution. Since A and B are symmetric and positive definite, we can write A = SAAAS,Zl and B =
S BABS§1 where A4 and Ap are diagonal matrices with positive diagonal entries. Then for z € (0,1),
A=% = S4A3 S, and B* = SpA%S5t, where A% is simply the matrix gotten by raising each diagonal entry
to the power z. The given function is seen to be a polynomial in the zth powers of the eigenvalues of B
and the inverses of the eigenvalues of B, and therefore extends to a holomorphic function on C. (Note that
M\ = elog(M2 | which is holomorphic.)

Problem 8b. Show that |[B?A~%z|| < ||z|| for all 0 <6 < 1.

Solution. For z,y € R", let f; ,(2) be holomorphic function from part (a).
When Re(z) = 0 we note that the eigenvalues of B* and A~# have norm 1. These matrices are symmetric,
so they each have operator norm 1, which implies that

|fow(2)] = [{y, B*A™Z2)| < lyll || BFA™ x| < [lyl] []2]] -
When Re(z) = 1, write z = 1 + bi. Then

1B=A7||,, = [|B=BAT AT=]| < [|B=]|, [[BATY], [[A7]],, <1
op op op op

op -

and so
| fen(2)] < [yl [|B*A™2x|| < |lyll |2l -

Also note that f,, is bounded on the strip S = {z : Re(z) € [0, 1]}, since each function A* is bounded
on the strip (recall the solution to part (a)). By the Hadamard three lines theorem, we conclude that f, , is
bounded by ||z|| ||y|| everywhere in S. (Alternatively one can mimic the proof of this theorem by applying
the Phragmen-Lindelof method.)

Finally for 6 € [0,1] we have

[B°470al] = sup 1£ey )] < ]

lyll=1

Problem 9. Let P(z) be a non-constant polynomial, all of whose zeros lie in a half plane {z € C : Re(z) < o}.
Show that all zeros of P’(z) also lie in the same half plane.

Solution. Write P(z) = (2 —ay) -+ (2 — ap). Then we have

P'(2) 1 1
= + ...+ .
P(z) z—a Z— G

Suppose that P'(z) = 0. If P(z) = 0 also, then z is obviously in the same half plane, so assume otherwise.

Then in particular we have
1 1
0=Re< >+...+Re< >
Z — aq Z = Gnp

Re(z) — Re(aq) Re(z) — Re(an)
_— Yt
|z — a1]? |z — an|?
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So

n

Re(aq;)
Z|z—a|2 Zf-ap "Z|z—aj\2’
so Re(z) <o. O

Problem 10. Let f : C — C be a non-constant entire function. Without using either of the Picard
theorems, show that there exist arbitrarily large complex numbers z for which f(z) is a positive real.

Solution. Fix a closed ball B, centered at 0 of radius r so that f(z) € C\Rxg for |z| > r. By com-
pactness, |f(z)| attains a maximum value R on B,. Then f(z) — R is a holomorphic function which avoids
the poitive real axis.

Let ¢ : C\R>o — D be a conformal equivalence of the complex plane with the positive real axis removed,
and the open unit disc. Such a map exists by the Riemann mapping theorem. For the sake of being concrete
we may take

Vz—i

NCEE

$(z) =

where Vet = /2 for § € [0,2r).
The map z — ¢(f(z) — R) is holomorphic and bounded, and therefore constant by Liouville. So for some
constant C, we have f(z) = ¢~1(C) + R. We conclude that f is constant.

Problem 11. Let f(z) = —wzcot(mz) be a meromorphic function on C.
(a) Locate all poles of f and determine their residues.

(b) Show that for each n = 1 the coefficient of 22" in the Taylor expansion of f(z) about z = 0 coincides
with
- 2n
ok

Solution. (a) We have
—mzcos(mz
—mzcot(mz) = Wi(ﬂ)
sin(7z)
From this representation it is clear that f has simple poles at every nonzero integer. (because sin(7z) has a
simple pole at every integer). So to calculate the residue at z = n we have

es(f,z=mn) = lim —m(z —n)cos(rz) im —z - cos(mz _memn) L ntip
Res(fiz = n) =l —HE_ ¢ lim = cos(rz) - T E 1 = (o)

(b) Here we use the other standard representation

a1 1 o 2
weot(mz) = Z o ;+2227k2’

so we have

Write f(z) = g(2%) where g(z) = =1 —Y,", % Note that g is holomorphic except at the points where
it equals oo because the series defining it converges uniformly on compact sets. So the coefficient of 22" in
the power series for f is the same as the coefficient of 2™ in the power series for g. It now suffices to show
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that g™ (0) = n!->,"_| 3= Write g(2) = —1 — 2zh(2), where h(z) = >}~ | L. Again, h is holomorphic
except for at the points where it blows up. Therefore we have

) — 953 (" 2 D (OVRED(0) = —2rMm=D Q).
4™ (0) 2%(].)( JD(O)R(0) = —20¢D) (o)

Since the series defining h converges uniformly on compact sets, it can be differentiated term-by-term, so
it’s easy to see by induction that

h(")(z) _ i (—1)7Ln!

k=1

Therefore

o 2
g™ (0) = —207D(0) = n! Y - O

k=1

Problem 12. Let f: H — H be a holomorphic function obeying
1

Z}eroloyf(zy) =i and |[f(2)] < Tm(2) for all z € H.

(a) For e > 0, write g.(z) := 1 Im f(z + ic). Show that

f(z +ie) = f 9¢() dz.

RL—Z

(b) Show that there exists a Borel probability measure p on R such that

flz) = fR du(z) dzx.

r—z

Solution.
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10 Fall 2013

Problem 1. Let U and V be open and connected sets in the complex plane C, and f : U — C be a
holomorphic function with f(U) < V. Suppose that f is a proper map from U into V, i.e., f~}(K) € U is
compact, whenver K € V is compact. Then f is surjective.

Solution. We use a connectedness argument. First note that f can’t be constant on U, otherwise f
isn’t proper. Then by the open mapping theorem, f(U) is open.

We claim that V\ f(U) is also open. Fix v € V\f(U), and let By € By ... S V be a segence of nested
closed balls around v such that (7),.y B; = v. We have

@ =) =" (ﬂ Bz-> = (By).
€N 1eN

By properness, each f~1(B;) is compact. In general, a nested sequence of nonempty compact sets has
nontrivial intersectiorﬂ It follows that one of the sets f~!(B;) must be empty. The interior of B; is an open
neighborhood of v lying in V\f(U). But v € V\ f(U) was arbitrary, so V\f(U) is open.

Since f(U) is nonempty, and V is connected we must have V = f(U). O

Problem 2. Show that there is no function f that is holomorphic near 0 € C and satisfies

n?—1

nd

F/n?) =

for all large n € N.

Solution. Since f is holomorphic near 0, there is an r > 0 such that f has a power series expansion
* .
fz) = ) a2
j=0

valid in B(0,7). If f is identically zero then it obviously does not satisfy the condition, so assume it isn’t.
Then let k£ be the smallest j for which a; # 0, so we can write

0
flz) = ¥ 2 ajzj_k.
j=k
When n is big enough so that 1/n? < r, we have
1 2 . ]. L (Zj
f( /n ) - ﬁzlng(j_k)'
j=

We have the inequalities

1 1] & a; (3/2)|ax]
2 J
[F(1/n7)] < n2k <|ak| Tz Z n2G—k—1) ) S Tk
j=k+1
1 1| & a; (1/2)|ax]
2 J
IF(1/n7)| = n2k <|ak| ) 2 n2G—k—1) ) = n2k
j=k+1

for sufficiently large n. Thus if the condition f(1/n?) = (n? — 1)/n® is satisfied, we would have

(/D0 _ w21 _ (3/2)]an]
n2k o n2k

1To see this, consider a sequence consisting of a point from each set.
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for all sufficiently large n. But since (n? —1)/n® is asymptotic to n=> as n — 00, it can’t be ©(n2*) for any

integer k, and so there is no integer k for which this is true. So f can’t satisfy the condition. [

Alternate Solution. By setting x = 1/n, we have f(z2?) = 2% — 2° for all = of the form 1/n where
n € N is large enough. We also have f(0) = 0 by continuity. Thus f(?) is a holomorphic function on a
neighborhood of 0 which agrees with 23 — 2° on a set with a limit point. So f(2?) = 23 — 2° everywhere on

a neighborhood of 0. Then for |z| small enough we must have
2= 2% = (%) = f((=2)*) = (=2)° = (=2)°,
which is false for z # 0.

Problem 3. Does there exist a holomorphic function f : D — C such that

lim |f(z,)| = +o0

n—oo

for all sequences {z,} in D with lim, o |2,| = 17

Solution. There does not exist such a function. Roughly, we would like to apply the minimum princi-
ple on the disk. Unfortunately f may take on the value 0 so this doesn’t work directly. We can rectify the
situation as follows.

By hypothesis, f cannot have a sequence of zeros approaching the boundary of D. Moreover the zeros of
f cannot have a limit point in the interior of D, otherwise f would be identically 0. Moreover each zero of f
occurs with finite multiplicity. So by compactness, f has only finitely many zeros o, ...aq, in D counting
multiplicity. Let p(z) = (z — a1) ... (2 — ay). Then p(z)/f(z) has removable singularities at the zeros of f,
and hence may be regarded as an analytic function on D. By hypothesis, p(z)/f(z) extends continuously to
take the value 0 on the boundary of D. But then by the maximum principle, p(z)/f(z) is identically 0, which
is a contradiction. [

Problem 4. Let u be a non-negative continuous function on D\{0} that is subharmonic on D\{0}. Suppose

that u|sp = 0 and
1

lim — J
r—0+ 1210g(1/1) Jizeci0<|2|<r}

where integration is with respect to Lebesgue measure A on C. Show that then u = 0.

u(z)dA(z) = 0,

Solution. First we want to show that u(z) = o(log|1/z|) as |z| — 0. Fix ¢ < 0. By the hypothesis,
let |z| be small enough so that

j w(w) d\(w) < €|z*log|1/z]|.
{zeC:0<|w|<3]|z|/2}
Then by the mean value property for subharmonic functions we have

1

m(|2]/2)? LweC:|w—z|<(1/2)|z|}

which shows that u(z) = o(log|1/z|) as |z| — 0.

4re|z|? log |1/2]

w(w) d\(w) < - BE :

u(z) < SR u(w) dA\(w) <

Lwe@:0<w<3|z/2}

Now let & > 0 and note that the function f(z) := alog|1/z| is harmonic on D\{0}. Thus we know that
u — f does not have a maximum value inside D\{0}. Notice that since u(z) = o(log|1/z|) as |z| — 0,
u(z) — f(z) » —0 as |z| — 0. Thus there exists an r > 0 such that u(z) — f(z) < 0 for |2| < r. Now
on the compact set S := {z € C: r < |z| < 1}, u — f is continuous so it achieves a maximum. But the
maximum must be achieved on the boundary of f because u — f doesn’t have any maxima inside D\{0}.
Since u — f =0 on D and u — f < 0 on |z| = r by choice of r, this implies that u — f < 0 in all of D\{0}.
So u(z) — alog|1/z| < 0 for all z € D\{0}, and since « is arbitrary this implies u(z) < 0 for all z € D\{0},
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which since u > 0 by hypothesis gives that u is identically zero. [

Problem 5. Let {f,} be a sequence of holomorphic functions on ID and suppose that

f Fa(2)dAz) <1
D

for all n € N. Show that then there exists a subsequence {f,,} that converges uniformly on all compact
subsets of D.

Solution. We would like to show that the functions f,, form a normal family. Since each f,, is holo-
morphic, this is equivalent to verifying that the f,,’s are uniformly bounded on the closed ball B, = B(0,7)
for each r € (0,1). (Note that each compact subset of D is contained in some such ball.) Fix zp € B, and let
U = B(zo,1 — |z0|). Applying the mean value property we have

1> fU Fa(2)ldA(z) >

[ £u0203] 3 501 = Lol o)) = w00 217

Therefore |f(zo)| < ﬁ for all zp € B,., and so f is uniformly bounded on compact sets. [

Problem 6. Let U < C be a bounded open set with 0 € U, and f : U — C be holomorphic with
f(U) < U and f(0) = 0. Show that |f’(0)] < 1. Hint: Consider the iterates f™ = fo---o f of f.
[N —

n times

Solution. First we prove by induction that (f™)'(0) = (f’(0))™. The case n = 1 is obviously true. Supposing
(f~~1(0) = (f(0))"~1, since f(0) = 0 we have

(/")) = (f*7He f)(0) = ("7 (F0)F(0) = (£(0)",

so the induction is finished. Note that since U is a bounded set and f(U) < U, also f*(U) < U for all n
and there is an M such that |f™(z)| < M for all z € U and all n. Since U is open, let R > 0 be such that
B(0,R) € U. Then applying the Cauchy estimate to f™, we get

M

/ n o _ ny/ 1 n
SO = YO < 5 sw 177G <

for all n. If |f'(0)] > 1 this would be impossible because |f’(0)|™ would tend to infinity as n — o, so
FO)l<1 D

Problem 7. Show that there is a dense set of functions f € L([0, 1]) such that = — =~ Y2f(z) e L*([0,1])
and S(l) Y2 f(z)dx = 0.

Solution. Let S := {f € L*([0,1]) : = — o "2f(x) € L*([0,1]) and §, =~ Y2f(x)dz = 0}. Since the
set of continuous functions with compact support properly contained in [0, 1] is dense in L?([0, 1]), it suffices
to show that S is dense in that set. Let g be a function which is continuous on [d, 1] and identically zero on
[0, 0] for some fixed § > 0. Fix € > 0. Define

1
I = J e V2g(z)dr = < o
4

because /2 is bounded on [4,1]. Now define the function f. by

9(x) z e [6,1]
fe(z) = { Fea=12*e 2€(0,0) .
0 z=0
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We calculate

J V2 f (x)de = f M ede+T =0
0 o Jo

and

9 ) )
I —gll2 = Llfe(x)fg(x)\zdw < 4j0 (@) de

4[262 9 i 4[262 626 )
5% Lx A

which can be made as small as desired. So S is dense in L%([0,1]). O

Problem 8(a). Compute
k

k
lim z" (1 — E) dx
k—o0 0 k

where n € N.

Solution. Define the functions fi(z) := 2"(1 — a/k)* - x[o4)- For each x € [0,%0), as soon as k > =
we have fi(x) = 2"(1 —x/k)*, so we see that fi.(z) — z"e~% pointwise on [0,0). Also note that for each k,
fe(z) = 0 for all z € [0,00) because (1 —x/k) = 0 for = € [0,k] and fr(z) = 0 for z > k. We want to show
that fr(x) < fr41(z) for all z so that we can use the Monotone Convergence Theorem. By the AM-GM
inequality, we have

kE+1 T k+1 0 k+1

A A 1+k(1-%) l+k—z x
(1~(1—k)) < -

so (1 —z/k)* < (1 —x/(k+1))**1. This establishes that fy < fr,1. Since 2"~ is integrable on [0, c0), the
Monotone Convergence Theorem gives
k
lim " (1 —
0

k—o0

T

k o] o]
) dx = ‘[ fe(x)de = J 2"e Fdr = n! O
k 0

0

Problem 8(b). Compute

o]

—k
lim (1 + %) cos(x/k) dz.

k—w Jo

Solution. For each k > 2 define fy(z) := (1+(x/k)) ™% cos(x/k). For a fixed x € [0, ), we have cos(x/k) — 1
as k — o and (1 + (z/k))™* — e™® as k — co. Thus fi(x) converges pointwise to e~* on [0, ). Using the
same AM-GM inequality argument as in the problem above, we see

1+ — — v
* k+1 k+1 +k+Y

k

which establishes (1 + x/k)* < (1 + 2/(k + 1))**1. Thus fx(z) = frs1(z) for all z € [0,00). So we have the
estimate

x\ kK 1
|fi(2)] < (1+E> < T+ 222

which is integrable on [0, 00), for all k¥ > 2. Thus by the Dominated Convergence Theorem we have

im [ (142)7 k)d T 0
Jim . (1+E) cos(z/k)dr = L e = 1.
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Note. Alternate way of showing that Dominated Convergence applies: we just need to show that 0 <
(1 — z/k)* < e7@ for all k and all z € [0,k]. Equivalent, we want klog(l — z/k) < —x. Expanding
t — log(1 —t) in a power series around ¢ = 0 gives this.

Problem 9. Let X be a Banach space, Y be a normed linear space, and B : X x Y — R be a bilin-
ear function. Suppose that for each x € X there exists a constant C, > 0 such that |B(z,y)| < C.||y|| for
all y € Y, and for each y € Y there exists C,, > 0 such that |B(z,y)| < Cy||z|| for all z € X.

Show that then there exists a constant C' > 0 such that |B(x,y)| < C||z||||y|| for all z € X and all y e Y.

Solution. For each y € Y, define the function T, : X — R by Ty(xz) = B(z,y). Since B is bilinear,
T, is a linear functional on X. By hypothesis, for each y we have |T,(z)| = |B(z,y)| < Cyl|z||, so T} is
actually a bounded linear functional. Let F = {T), : ||y|| = 1}. This is a family of bounded linear functionals
on X, and for each x € X we have by the other hypothesis

sup |T,(@)] = sup |Bla.y)| < Co < o
[ly|l=1 [lyll=1

Thus since X is a Banach space, we can apply the uniform boundedness principle to conclude that sup,i_1 [|7y[| <
co. This means that there is a C' > 0 such that ||T|| < C for any ||y|| = 1, which means that |T,(z)| =
|B(z,y)| < C||z|| for any = € X and any ||y|| = 1. Then by linearity in the second variable we get that
|B(z,y)| < C|lz||||ly|| for any z € X, ye Y. O

Problem 10a. Let f € L?*(R) and define h(z) = §; f(z — y)f(y)dy for x € R. Show that then there
exists a function g € L'(R) such that

he) = | e gla) da

for £ € R, i.e. h is the Fourier transform of a function in L!(R).

Solution. We are motivated by the fact that if g were such a function, then we would have F(g) =

fof=FF D)= FFN) =F(F ), s09=F 1f)*

Let F denote the Fourier-Plancherel transform. Recall it is an isometric isomorphism L? — L2. Given
f € L? define g := F~1(f)2 It’s clear that g € L'. Let ~ denote the regular Fourier transform L' — L.
Recall that = and F(-) agree on L' n L2. We verify

§ = FUHFUS) = FE)FEN) = f+f

In the previous line we used the identity ab = F(a) * F(b) for a,b e L?. Here is a proof of it (not sure if this
would be required on the qual or not):

We know the identity holds for Schwartz functions (this follows from basic properties of the Fourier transform
and a lot of Fubini’s theorem). Let a,,b, be Schwartz functions with a,, — a and b, — b in L?. We know

—

that apb, = F(ay)*F(by,) for each n, so it suffices to show that anby — ab and F(an) = F(by) — F(a)*F(b)
in L*. We have

[1F(an) * F(bn) — F(a) = F(O)|

—_

@nbn = bHLac

Il

|anbn = ab]| < llanbn = abll < ll(an = @bl + 1B = Dall s
lan = all e 18]l 2 + 10 = bl 2 llall e — 0

1F(an = a) = FO)ll o + 17 (bn = 8) + F(@)]| .o

1 (an = )l 2 I F O 2 + 1FGn = D)l 2 1 F(@)]] 2

lan — a||L2 ||b||L2 + |[bn — bHL2 HaHL2 — 0. 0O

NN N
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Problem 10b. Conversely, show that if g e Lt (R) then there is a function f € L2(R) such that the
Fourier transform of g is given by = — h(z) := {; f( (y) dy.

Solution. Using a similar motivating argument as in part (a), we see that we want to set f = F~'(1/7)
(recall that §(z) := g(—z) and that for Schwartz functions, F2(s) = ). This is a little annoying because
/7 isn’t even necessarily defined. But in general, for measurable functions h : R — C, we can define /h(x)
to be the square root defined by removing the positive real axis if h(x) is not a positive real, and define it
to be the positive real square root if h(x) is a positive real. The representation

Vh = sqrti(h Xgen@gr+y) + 5qrta(h - X(zh(m)er+y)

where sqrt; is the branch cut square root and sqrts is the positive real square root immediately shows that
the square root defined this way is measurable, and it’s clear that v/h € L? if and only if h € L'. So the
definition f := F~!(4/§) € L? makes sense. Again, we just verify

fef = F'W9=F' (WD) = Fo) = Flo).
Here we have used the identity F~'(a) * F~1(b) = F(ab) for a,b € L. This is proven using a similar
argument as for the corresponding identity in part (a), recalling that F—! = F3 for Schwartz functions. [
Problem 11. Consider the space C([0,1]) of real-valued continuous functions on the unit interval [0, 1].

1/2
We denote by |[f|[., := sup,e[o,17 |f(2)| the supremum norm and by |[|f[|, := (So |f(z ) the L?-norm of

a function f e C([0,1]).
Let S be a subspace of C([0,1]). Show that if there exists a constant K > 0 such that ||f||, < K |[f]]5
for all f € S, then S is finite-dimensional.

Solution. Let S denote the closure of S with respect to the L? norm. It obviously suffices to show
that S is finite-dimensional. First we show that S is still contained in C([0, 1]). Suppose f € S, then there is
a sequence f, € S with ||f, — f||, = 0 as n — oo. For any n,m, we have ||f, — f|l, < K|[fn — fmll5, and
since {f,} converges in L?, it is also Cauchy in L?, so by the above inequality it is also a Cauchy sequence
in C([0,1]). Since C([0,1]) is complete, there is some g € C([0,1]) with ||f, —g||,, — 0 as n — . Note
that since ||h||, < ||h||,, for any h e C([0,1]), we have

g = flly < llg = fally +11fa = flly < llg = falle + 1fn = fll; = 0
as n — o0. Thus ||g — f||, = 0, so f = g in L?, hence f is continuous. Thus S < C([0, 1]).

For each z € [0,1], define the map between normed vector spaces ¢, : (S,[||[;) = R by f — f(=).
This is clearly a linear functional on the space S. For any f € S, we have

0(N] = 1f@)] < |Ifll, < Kl

so in fact ¢, is a bounded linear functional on S. Since S is a closed subspace of the Hilbert space L?(|0, I]L
it is also a Hilbert space, and thus by the Riesz representation theorem for each x there exists some g, € S
such that f(x) = ¢, (f) = {(f, g, for all f € S. Note also that for each x

2
gzllz = 1€92:92)] = lg2(2)| < llgalle < Kllgally

50 |[gall, < K.

Now let {fi,...,fn} be any linearly independent set in S. By applying the Gram-Schmidt process if
necessary we may assume that it is an orthonormal set. Then by Bessel’s inequality, we have for each x that

Zm Z|<f],gx>|2 lgal? < K2
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Then integrating both sides from 0 to 1 we get

N 1 N
2 > Zf H@Pdr = SILIE = N
j=170 j=1

This shows that a linearly independent set in S can have at most K2 elements and thus dim(S) < K? < o.
O

Problem 12(a). Let f : [0,1] — R be a continuous function that is absolutely continuous on each in-
terval [e,1] with 0 < e < 1. Show that f is not necessarily absolutely continuous on [0, 1].

Solution. Let f(x) = xsin(1/z) for x > 0 and f(0) = 0. For any = > 0, f is differentiable and

fl) = sin(l/m)_w.
So for a fixed € > 0 and any « € [, 1], we have
/(@) < |sin(1/z)| + “’S(xﬂ <14 %

Thus f’ is bounded on [e, 1], so f is Lipschitz and thus f is absolutely continuous on [e, 1].

Let x, = 1/27n and y,, = 1/(7 + 2mn). Note that we have

T 1
[on =yl = 4m2n2 + 272n n?
T+ 4mn

[f(@n) = flyn)| = |2n +yn| =

4m2n2 + 2m2n

In particular, 7| |7n, — yu| < 0 and Y, |f(2n) — f(yn)| = 0. Suppose that f were absolutely con-
tinuous on [0,1]. Then pick ¢ = 1 and let § be such that for any N, M, ZfiN |z, — yn| < & implies
Zﬁiz\/ |f(xzn) — f(yn)] < 1. But by the convergence and divergence of the above series, we can pick an N

such that >.° |z, — yn| < § and then we can pick an M such that ZiiN |f(xn) — f(yn)| > 1, which is a
contradiction. Thus f is not absolutely continuous on [0,1]. O

Problem 12(b). Show that if f is of bounded variation on [0,1], then f is absolutely continuous on
[0,1].

Solution. Let TV, denote the total variation of f on the interval [a,b]. Since f is continuous and
of bounded variation on [0, 1], we can show that TV} ,] is a continuous function of 2. Fix € > 0. Since f is
of bounded variation, pick a partition {0 = tg < ¢, < --- < t, = 1} such that

n
Z (ti—1)| > TVigay —

Since f is continuous, we can pick an h € (0,¢1) such that |f(h) — f(0)] < e. By adding h into the original
partition, the variation can only increase. Furthermore, {h,t1,...,t,} is a partition of [h,1], so we get

€+ TVinay > |f(h) = FO) + [f(t1) = Z -l > TViouy —

which implies T'Vjo ] = TVjo,1] — TV{n,1) < 2¢. Since TV[0,x] is an increasing function, this shows that it
is continuous at 0.
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Now we want to show that f is absolutely continuous on [0,1]. Fix € > 0 and let h > 0 be such that
TVio,n) < €. By hypothesis, f is absolutely continuous on [h, 1], so let § > 0 be as in the definition of
absolute continuity on [h,1]. Let a; < b < as < -+ < a, < b, be such that 22:1 by — ar < ¢. By dividing
one of the intervals into two subintervals, the variation can only increase, so without loss of generality we
may assume that h ¢ (ag,by) for any k. Let £ be the index such that b, < h < agq1. Since {a1,bq, ..., ae, be}
is a partition of [0, k], by the choice of h we have

4
Y 1Fb)) = flag)] < TViyy < e
j=1

By absolute continuity on [h, 1], we have

and hence

DUIF®;) = flay)| < 2

j=1

which establishes that f is absolutely continuous on [0,1]. O
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11 Spring 2014

Problem 1. Let (X, A,u) be a o-finite measure space. For each t € R let e; be the characteristic
function of the interval (¢,00). Prove that if f,g : X — R are A-measurable, then ||f—gll,i(x) =

SRH% Of_etogHLl(X) dt.

JRHet of —eog|l.dt= JR (L&kt o f(x) — e og(x)|dx) dt
_ JR UR lev o f(z) — e, og(x)|dt> dx

where we are justified in switching the order of integration by Tonelli’s theorem since p is o-finite. Now
observe that |e; o f(z) — ez 0 g(x)| is equal to 1 if either f(x) <t < g(z) or g(z) <t < f(x) and 0 otherwise.
Thus the inner integral evaluates to |f(z) — g(z)|, which gives the desired result. O

Solution. We have

Problem 2. Let f € L'(R,dx) and 3 € (0,1). Prove that

@
R |z —al’
for (Lebesgue) a.e. a € R.
Solution. Write F(a) = SR = ?‘lﬁ dx. We would be done if we could show that {; F(a)da < oo. Unfor-
tunately this isn’t true However it is enough to show that SR )F(a)da < oo for some strictly positive

u.
We take u(a) = min(a=2, 1), with the convention that u(0) = 1. By Tonelli’s theorem, we write

JR u(a)F(a)da = f u(a) < mf_(iz'/g dx) d
= J e (J g d“) e

Let I be the interval [z — 1,2 + 1]. We bound the inner integral as follows:

u(a)
= a a
|a—x|ﬂ rla—xlf J]R\I la — x|
< J ;da +J u(a)da
rla—alf R\J
1
< | ——da +J u(a)da
JI la — [P R (@
1
= da—!—J da,
J [—1,1] |al® R u(a)

where we applied a linear change of variables in the last step. But 8 € (0,1) so the first integral is finite,
and it’ s clear the second integral integral is finite. So there is a constant C', independent of x such that

& Iau 7 < C. Returning to the original integral, we have

f u(a)F(a)da < j Clf(@)ldz = C ||l
R R

which is finite by hypothesis. It follows that F(a) < oo for a.e. a e R. [
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Problem 3.1. Let [a,b] be a finite interval and let f : [a,b] — R be a bounded Borel measurable function.
Prove that {x € [a,]] : f is continuous at x} is Borel measurable.

Solution. Let
E, := {x € [a,b]: there exists a § > 0 such that |f(a) — f(b)| < 1/n for any a,b € (x — d,x + 9)}.

Note that f is continuous at x if and only if = € ﬂf=1 FE,. So to show the set of continuities of f is Borel
it suffices to show that each E,, is an open set. Let x € E, and let § be as in the definition of E,,. We
show that (x — /2,2 + §/2) € E,,. Indeed, if |y — z| < 6/2, then for any a,b € (y — 6/2,y + 6/2) we have
la —z|,|b—z| <4, so |f(a) — f(b)| < 1/n. Thus y € E,, with the choice §/2, so E,, is open. [

Problem 3.2. Prove that f is Riemann integrable if and only if it is continuous almost everywhere.

Solution. Let I be the upper Riemann integral of f and I be the lower Riemann integral of f. We
know that we can find a sequence of nested partitions Py € P» € ... of [a,b] such that the mesh size of
P, tends to 0 as n — o0 and lim, o U(f, P,) = I and lim,_, L(f, P,) = I. Denote by Ej, the kth
subinterval of the partition P, and let my, and Mj , be the infimum and supremum respectively of f on
Ej . Define the functions U,, and L,, by

L, = Z Mg nXEy, ,
k

U, = Z Mk,nXEk,” .
k

By construction we have SZ U, =U(f, P,) and SZ L, = L(f, P,). Also, since the partitions are nested, we
have
Ly < L, < ... < f<...<U; < U

Since {U,} and {L,} are both monotone, they converge pointwise to functions U and L respectively such
that L < f < U. By applying the Dominated Convergence Theorem to both L, and U, with U; as the
dominating function, we see that SZ L =1 and SZ U = I. Now we have that f is Riemann intergrable if
and only if I = I, which happens if and only if SZL = Sz U, which since L < U happens if and only if
L = U almost everywhere, and since L < f < U this happens if and only if L(z) = f(z) = U(z) almost
everywhere. Note that the set of x which appear as a partition point of some P, is at most countable, and
thus has measure zero and can be ignored. For other z, the statement that L(x) = f(z) = U(z) is exactly
the statement that f is continuous at 2 (because the mesh size of the partition tends to 0). Thus we conclude
that f is Riemann integrable if and only if f is continuous almost everywhere. [

Problem 4a. Consider a sequence {a,} < [0,1]. For f e C(]0,1]), let us denote
0
o(f) = Y, 27" f(an).
n=1

Prove that there is no g € L'([0,1]) such that ¢(f) = § f(z)g(x) dz is true for all f € C([0,1]).

Solution. Suppose there was such a g. Let fj be the function which is zero outside [a; — 1/k, a1 + 1/k],
equal to 1 at a1, and linear in between (the graph is a triangle of height 1 and width 2/k centered at a;)
Then for each k we have ¢(fr) = 1/2. But we also have f; — 0 pointwise almost everywhere and |fx| < 1,
so by the dominated convergence theorem, Sé frg — 0, which is a contradiction. [

Problem 4b. Each g € L'([0, 1]) defines a continuous functional T, on L*([0,1]) by
7,(1) = [ fe)gta)da.
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Prove that there are continuous functionals on L ([0,1]) that are not of this form.

Solution. Suppose not, i.e. that every element of (L*)* is of the form T} for some g € L'. Then the
map g — T, is a normed vector space isomorphism L' — (L®)*. Indeed, it is surjective by assumption,

injective because T, = 0 implies Sé fg =0 for all fe C([0,1]), which implies g = 0, and bounded because

1 1
[ o) < |[ o] < vt
0 0

Thus by the open mapping theorem, it’s inverse is also bounded and therefore it’s an isomorphism. Thus
L' ~ (L*)*. Since L' is separable, this implies (L®)* is separable, which implies L® is separable. But this
is a contradiction: {x[o,,]}o<r<1 is an uncountable discrete set in L. [

ITyll,, = sup
P e =1

Alternate Solution (using part a). Note that ¢ is a bounded linear functional on the space C([0,1]), so
by Hahn-Banach ¢ extends to a bounded linear functional ¢ on L*([0,1]). If ¢ was of the form T}, then its
restriction ¢ would also be of this form, which contradicts part (a).

Problem 5a. Prove that ¢!(N) and ¢2(N) are separable Banach spaces but £*°(N) is not.

Solution. Let X be either £}(N) or £2(N) (the proof that follows works for both). Define the set
Sy = {feX: f(k)eQ+iQ for all k and f(k) =0 for k > n}

and let S = Ule Sn. Note that each S,, can be identified with (Q + iQ)™, which is countable, so S is
countable as well. We now show that S is dense in X. Let f € X and fix ¢ > 0. Let e be either 1 or 2
depending on if X is ¢*(N) or £2(N). Since ;. |f(k)|® < oo, there is an N such that Y>};~ ., [f(k)|° <.
For each k < N, since Q + iQ is dense in C, pick ¢, € Q + iQ such that |g, — f(k)| < (¢/N)¥¢. Now define
g by g(k) = g for k < N and g(k) = 0 for k > N. Then we see that g€ Sy < S and

0 N 0
If=gllx = D 1FR) —g®)® = DI IFR) —al*+ D, IfFR)° < e+e = 2
k=1 k=1 k=N+1

Thus S is dense in X, so X is separable.

For ¢*(N), for any subset A < N, define f4 € ¢(*(N) by fa(k) = 1if k € A and 0 otherwise. Note
that for any two subsets A and B, if A # B then ||fa — fB|[;~ = 1. But since there are uncountably many
subsets of N, the collection {fa}acn is an uncountable discrete subset of £*°(N), which means ¢*(N) can’t
be separable. [J

Problem 5b. Prove that there exists no bounded linear surjective map T : 2(N) — ¢}(N).

Solution. If such a map existed then it would induce a bounded injective map T* : [(N) — [?(N) between
the dual spaces. Taking duals again, we obtain a surjective bounded linear map T** : [?(N) — (I*(N))*.
But the image of a separable space under a bounded linear map is separable, so (I°(N))* must be separable.

But then {*(N) is separable, which is a contradiction.

Problem 6a. Given a Hilbert space H, let {a,} be a sequence with [|a,|| = 1 for all n. Recall that
the closed convex hull of {a,} is the closure of the set of all convex combinations of elements in {a,}. Show
that if {a,} spans H linearly, then H is finite dimensional.

Solution. Suppose {a,} linearly spans H and suppose that H is infinite-dimensional. By inductively
removing any elements a,, which are in the span of {ai,...,a,-1}, we may assume that {a,} is a linearly
independent set in H. Define Sy := span(ay,...,an). We know that Sy is a finite-dimensional subspace of
‘H and is therefore closed. We also know that Sy does not contain any open sets because if Sy contained the

65



open ball B(z,r), then since S is a subspace it would also contain the set B(z,r) —z = B(0,r), and then it
would also have to contain the set n - B(0,r) = B(0,nr) for all integers n, implying that Sy would be equal
to all of ‘H. But since H is infinite dimensional this is not the case. Hence Sy has empty interior and since
S is closed, Sy is nowhere dense. By the assumption that {a,} spans H, we see that H = Uﬁzl Sy. But
this is a countable union of nowhere dense sets, and since Hilbert spaces are complete, this contradicts the
Baire category theorem. Thus H must be finite dimensional. [

Problem 6b. Show that if {a,,&) — 0 for all £ € H, then 0 is in the closed convex hull of {a,}.

Solution. Fix € > 0. It suffices to show the existence of a convex combination of the a, with norm
less than e. Set ay, = a1. Since {an,an,y — 0 as n — oo, pick ap, so that [{an,,an,)| < e. Now since
{an,an,y and {a,,an,y both tend to 0 as n — oo, we can pick ap, so that [{an,,an,)|,[{an;,an, )| < €.
Continuing this construction inductively we get a subsequence ay, with the property that every pairwise
inner product in the subsequence has absolute value less than e. Now let r be big enough so that 1/r < e
and consider the convex combination (1/r)ay, + ...+ (1/r)ay,.. We have

2
= 7‘—2<0LN1 +...an.,anN, +...aN,.»

1 " 9 1 3
7'2<j21||m| +Z<“N““Nﬂ'>) < S(r+r%) < Je D

i

1 1
—an, +...+ —an.,
r r

Problem 7. Characterize all entire functions f with |f(z)| > 0 for z large and

[log | f (=)l

limsup ———— < oo.
z—00 |2

Solution. The condition that |f(z)| > 0 for |z| large implies that all of the zeros of f lie in some bounded
set, and since the zeros have to be discrete, f has only finitely many zeros. Let p(z) be the polynomial with
the same zeros as f, counting multiplicity. Then f(z)/p(2) is a nonvanishing entire function, so we can write
f(2)/p(z) = e for some entire function h. So we have the representation f(z) = p(z)e"*) where p is a
polynomial and A is entire. We have

e OB ogp(a)] | [1og [ Re(BeDI o fiog [Re(h(:)l|

Z—00 |Z| Z—00 |Z| |Z‘ 2—00 |Z|

Thus we have |Re(h(z))| < C|z| for some constant C' and all z. We claim this implies that h is a degree 1
polynomial. It would be obvious if the bound had |h(z)| instead of | Re(h(z))], but it doesn’t, so we have to
do more work. Write h = u + v and also write

O
h(z) = h(re') = > apre™.
n=0

Then we have u(re??) = > °_  r"(Re(a,) cos(nf) —Im(a,) sin(nd)). Using various orthonormality properties
and the fact the the power series converges uniformly on compact sets, one can compute

27
f u(re®®)e *dp = mrkay
0

for each fixed k. Thus

1 27 )
g < fj lu(rei®)]| do.
™ Jo
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Combining this with the mean value property for u, we have

27

1 . . 1
lax|r® + 2u(0) < fj (Ju(re®)| + u(re?®))dd < =-2r-2Cr = 4Cr

™ Jo ™
by the estimate on | Re(h)| from above. Thus we have |aj| < 4Cr'~% — 2u(0)r—%. This holds for any 7, so
we can take r — o0 to conclude that ay = 0 for any & > 1. This implies that h is a degree 1 polynomial.

So we conclude that if f satisfies the given conditions, then f(z) = p(2)e®**? for some polynomial p and

a,be C. It’s clear that every function of this form satisfies the conditions, so this is a complete characteri-
zation. [

Problem 8. Construct a non-constant entire function f(z) such that the zeros of f are simple and co-
incide with the set of all (positive) natural numbers.

Solution. Use the canonical product representation. Let

f(z) = ﬁ(l_Z) e*/m,

This clearly has the right zeros. We just need to show f is entire. It’s enough to show that the product
converges uniformly and absolutely on compact sets. Equivalently, we need to show that

Z [log(1 — z/n) + z/n|

n=1

converges uniformly on compact sets. Examining the power series expansion of log(1 — z) around 0, we see
that there exists § > 0 such that |z| < § implies |log(1 — x) + z| < |z|?. Fix a compact set B(0, R). Pick n
big enough so that R/n < § and also so that n > R. Then for any |z| < R, we have |z|/n < J, so

|Z‘2 R2
< R

log(1 —z/n) + z/n| <
log(1 — 2/n) + 2/n| <
Thus the series in question is eventually majorized by the convergent series Zfil R?/n? for all |z| < R,
which shows that it converges uniformly and absolutely on B(0,R). [

Problem 9. Prove Hurwitz” Theorem: Let 2 © C be a connected open set and f,,f : & — C holo-
morphic functions. Assume that f,(z) converges uniformly to f(z) on compact subsets of Q. Prove that if
fn(z) # 0 for all z € Q and all n, then either f is identically zero or f(z) # 0 for all z € Q.

Solution. Since f, — f uniformly on compact sets, we also know that f/, — f’ uniformly on compact
sets. Suppose that f is not identically zero. Then the zeros of f are isolated. Fix any zy € €2. Choose
an r > 0 small enough so that f has no zeros in B(zg,r) except for possibly at zp and |f(z)] = § > 0 for
|z — zo| = . Because 0B(zp,r) is compact and each f,, is nonvanishing, each f,, is bounded away from 0 on
0B(zp,r), and since f is also bounded away from zero on it, we have 1/f,, — 1/f uniformly on dB(zo, 7).
Therefore by the argument principle, we have

. o : fa(z2) f f'(z) o
0 = lim (# zeros of f, inside B(zg,7)) = lim dz = dz = (# zeros of f inside B(zg,r)).
n—»oo( ( 0 )) n=% JoB(zo,r) fn(z) 0B(z0,r) f(Z) ( ( 0 ))

Therefore f(z9) # 0, and since this argument can be applied at any point zg, we conclude that f is nonvan-
ishing in Q. O

Problem 10. Let o € [0,1]\Q and let {a,} € £}(N) with a,, # 0 for all n. Show that

1@ = Y

_ pltan
ns1 z e
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converges and defines a function that is analytic in D which does not admit an analytic continuation to any
domain larger than D.

Solution. Each of the summands is analytic in D, so to show that f is analytic in I it suffices to show that
the sum converges uniformly on compact sets. Note that it is enough to show that sum converges uniformly
on D, = {z:|z] <r} For z € D, we have

0

Z e’LOé’I’L

n= k

0

|an| 1 -
Z eian| < 1—7r Z ‘a"|7
n=~k

which converges to 0 as kK — o0. Thus the sequence of partial sums for f is uniformly Cauchy on D,.. This
establishes that the, sum converges everywhere in D, and defines an analytic function in D.

Let Q be any region containing . Then €2 contains an open arc of the unit circle. Since « is irrational, the
points {€’®"} are dense in the unit circle, so there is some e’** € Q. The intuition is that this is a contradiction
because f will blow up near e’“* but it’s hard to show this directly. Instead let g(z) = (z — e'**) f(z). Since
f is analytic in © by assumption, g(e?*) = 0. Consider for 0 <r < 1

; an(r—1)e
g(re’™®) = ap + Z n T
oyl retak _ gian
n

iak

where changing the order of summation is allowed because the series converges absolutely on each circle
|z| = r for r < 1. Now note that we have

an(r — 1)tk 1—r
reio‘k — elan |an| 1 = |an|
for all » < 1, so by the Dominated Convergence theorem we have
an r— 1) ik

g(e*) = lim g(re'™*) = ay + Z

r—1-

L ek —gan T 7 0

which is a contradiction. O

Problem 11. For each p € (—1, 1), compute the improper Riemann integral
0 D
J 2x dx.
o T +1

Solution. Define log(z) to be the branch with the negative imaginary axis removed, i.e. Im(log(rei’)) =
€ (—m/2,3m/2). Then define

£2) = 22” _ exp(Qp log 2) '
z¢+1 z2+1

Integrate f over the contour which consists of a half circle in the upper half plane from —R to R, then along

the negative real axis from —R to —e, then a half circle in the upper half plane from —e to €, then along the

positive real axis from € to R. The contributions from the two half circles go to 0 as ¢ - 0, R — o0 and you

are left with

o0 D
(1+ exp(pm'))J %dm = 2mi-Res,—; f(2) = m-exp(pmi/2)
o T
(I left out the computation of the residue). After rearranging you get that the answer is W. O

Problem 12. Compute the number of zeros, including multiplicity, of f(z) = 26 + iz* + 1 in the up-
per half plane.

Solution. Since the polynomial is even, z is a root of multiplicity m if and only if —z is a root of multiplicity
m. Therefore the roots in the open upper half plane are in bijection with the roots in the open lower half
plane. If r # 0 is real, then Im(f(r)) = r* which is nonzero. Since f(0) # 0 we see that f has no real roots.
Since z has 6 total roots (counting multiplicity), exactly 3 of them must lie in the upper half plane. O
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12 Fall 2014

Problem 1. Show that
A = {fe L}R): J |f(z)]? dz < oo}
R

is a Borel subset of L3(R).

Solution. Define the functional ¢,, on L?(R) by

ouls) = [ 1P

Note that we have o o
A= |J N elP®:ou(f) <m).
m=1n=1

So to show A is Borel it suffices to prove that ¢,, is a continuous function from L3(R) — R. For f,g € L3,
we have

n

160(F) — 6u(g)| < j

1

2=l < | 1= ol r1+1aD

< [ir-aune [ -l

< ([ 1r-ar) " (] ) " (] ) " (] 1r-ar) " (] o) " (] 13)1/3
< 20) Y315 = gll s (15 + llgllo) -

Fix ¢ > 0. 1F || — gll < ¢~ (320)% ||l o)~ and [If — gllza < [17]] s, then

[0 (F) = dulg)l < @0)"PBIIfIL) [If —dllpa < e

Thus ¢,,(f) is continuous at f for every f e L3*(R), so we're done. [

Problem 2. Construct an f € L*(R) so that f(z + y) does not converge almost everywhere to f(z) as
y — 0. Prove that your f has this property.

Solution. Let K be a fat Cantor set contained in [0,1]. Recall that K is closed, has positive measure,
and that each point in K is a boundary point. Take f = y. Since K is closed, f is measurable, and since
K has finite measure, f lies in L'. But for each z € K every neighborhood U of z contains a point u which
lies outside K and hence has f(u) = 0. Therefore for each x € K, f(r + y) does not converge to f(z) as
y — 0. This is enough, since K has positive measure. [

Problem 3. Let (f,) be a bounded sequence in L?(R) and suppose that f, — 0 Lebesgue almost ev-
erywhere. Show that f,, — 0 in the weak topology on L?(R).

Solution. To show that f, — 0 in the weak topology on L?(R), we need to show that ¢(f,) — 0 for
every bounded linear functional ¢ on L?(R). Since L?(R) is a Hilbert space, by the Riesz representation
theorem we know that every bounded linear functional ¢ is of the form ¢(f) = § f(z)g(x)dx for some
g € L*(R). So it suffices to show that for any g € L*(R), we have { f,(z)g(z)dz — 0 as n — 0. Since
fn — 0 pointwise almost everywhere, we also have that f,g — 0 pointwise almost everywhere. By the
Vitali Convergence Theorem, to conclude that § f,g — 0, it suffices to show that the sequence {f,g} is both
uniformly integrable and tight.

As a reminder, uniformly integrable means that for every € > 0 there exists a § > 0 such that for any n,
m(A) < 0 implies {, |fng| < e. Tight means that for any e > 0, there exists a subset £ < R such that for
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any n, SEC | fng| <e

We know that {f,} is a bounded sequence in L*(R), so let ||f,||;. < M for all n. First we show uni-
form integrability. Fix e > 0. Since |g|? is integrable, there is a § so that m(A) < ¢ implies §, [g]* < ¢/M.
Now for any n, we have by Cauchy-Schwarz that if m(A) < §,

1/2 1/2
2 2 € .
JA\fngl < (Lm) (L |g) < il < e

so the family {f,g} is uniformly integrable.

For tightness, fix ¢ > 0. Since |g|* is integrable, there is a set E such that {,.|g|> < ¢/M. Then for

any n, by the same Cauchy-Schwarz argument we have

f gl < €
A

Thus {f,g} is tight, so we conclude that § f,g > 0 asn — . O

Problem 4. Given f € L*([0,7]), we say that f € G if f admits a representation of the form

o0 o0
Z cos(nz) with Z (1+n?)|ca)® < oo
1=0 n=0

Show that if f € G and g € G then fge G.

Solution. The motivation for this is that the ¢, are basically the Fourier coefficients of f, so the con-
dition for membership in G translates as (1 +n2)Y/2f ( ) € 2. So G is basically a “Fourier series version” of
the Sobolev space H'.

First we want to make a technical modification so that we can work directly with the regular Fourier
coefficients (it makes stuff easier later). It’s clear that L2([0,7]) is in bijection with the space L? := the
subspace of L?([—m,7]) consisting of even functions. So we identify each f € G with its even extension to
[—m,7]. For f € G, the given condition implies that

o0 o0 0 1/2 © 1/2
> Jenl 2 (1 4+n2)2(1+n?) "2 < (Z |cn|2(1+n2)> <Z(1+n2)1> < .
n=0 1=0

n=0 n=0

Thus by the Weierstrass M-test, we know that the given series representation for f converges absolutely and
uniformly on [—, 7]. Recall that {cos(nz)}*_, is an orthonormal basis for the Hilbert space L2. For a fixed
n, we calculate in two different ways the inner product

{f,cos(nx))y = <f7 e'ne m"”)> = %(A(n)—k f(=n)) = f(n) because f is even

{f,cos(nx)y = — f( ) cos(nz)dx = %Jj Z ¢m cos(mz) cos(nx) dx

& 1 (" Len 0
Z cm?J cos(mx) cos(nzx) dr = 26n N F
T

= cg n=0

where switching the order is justified because of the uniform convergence. Thus we conclude that for f € G,
the coefficients c,, are exactly equal to 2f ( ) for n # 0 and f ( ) for n = 0. So the problem is equivalent to

showing that for f,g € G, we have (1 +n2)Y2fg(n) € ¢2.

70



Let f,g € G. The same argument from above that showed the uniform convergence of the series repre-
sentations also shows that the representations f or g(z) = Zf:_oo f or g(n)e™® converge uniformly, so we
can compute the Fourier coefficients

1 1 (& k&

f/B(n) = % f( Yg(x)e —inT . — oy - k;w f(k)eika: é;ooa(g)ewxe—mx dr
- 3w Oy |0 > Fin k) = (Feam)
kf=—00 ™ E——o

Also note the elementary estimate

1+n)Y2 = A+ (m—k+k))Y2 = A+ n—-k)?+ k2 +2n—kk)Y? < (1+2(n—k)? + 2k>)Y?
< 2+2m—k)?+2+2H)Y2 < 1+ (n—k)H)Y2 4+ (1 + k22,

valid for any k € R. So we estimate

0 0
~

(L+n)'2fgm) < D) A+ P2FR)Gm—k) + Y, 1+ 0 —k)?)"Gn—k)f(k)

k=—o0 k=—00
= ((L+E)2F(k) % §)(n) + (1 + k) G(k) = f)(n).

Thus we have

@+ n22Fom)| , < [j+ k20270 « ]|, + ||+ 87250k
< H 1+ k2 1/Qf( )H 9]l + H 1+ EHYV25(k by Young’s convolution inequality
<

because we showed at the very beginning that f € G implies f € 1. Thus (1 + n2)Y2fg(n) € €2 so we're
done. [

Problem 5. Let ¢ : [0,1] — [0,1] be continuous and let du be a Borel probability measure on [0, 1].
Suppose pu(¢~1(E)) = 0 for every Borel set E < [0, 1] with u(E) = 0. Show that there is a Borel measurable

function w : [0,1] — [0, o) so that
[ red@ dnta) = [ rwutaut)

Solution. Since ¢ is continuous, it is Borel measurable. The condition that u(¢~*(E)) = 0 whenever
w(E) = 0 says that the measure ¢, u is absolutely continuous with respect to u. Both p and ¢4 pu are finite
measures on [0, 1], so by the Radon-Nikodym theorem there is a Borel measurable function w such that

for all continuous f : [0,1] — R.

(duit)(A) = L w(z) dy(z)

for all Borel sets A. Since ¢4 is a positive measure, we know that w is a nonnegative function. Also, if f
is any continuous function on [0, 1], then it is also integrable on [0,1], so by a well-known property of the
Radon-Nikodym derivative,

Llfw(x) ff d(bais) (& ff (z). O
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Problem 6. Let X be a Banach space and let X* be its dual space. Suppose X* is separable; show
that X is separable (you should assume the Axiom of Choice).

Solution. Let {f,}>_; be a countable dense subset of X*. By definition of operator norm, for each n
pick z, € X with ||z,|| = 1 such that |f,(x,)| > (1/2)||fn]|. Let M = span{z,}. We first want to show that
M is dense in X, i.e. M = X. Suppose that y ¢ M. Then by the Hahn-Banach theorem, there is a linear
functional f € X* such that f = 0 on M and f(y) # 0. By the separability of X*, there is a subsequence
{fn.} that converges to f in the operator norm topology. We have

1

and since ||fn, — f|| — 0 as k& — oo, this implies that ||f,,|| — 0 as k — o0 as well, which implies that
fn, — 0. But f,,, — f, and f is not identically zero, so this is a contradiction. Thus M = X, so M is dense
in X.

Now to show X is separable, it suffices to find a countable set which is dense in M. Let S be the sub-
set of M which consists only of linear combinations with coefficients in Q + iQ. S is a countable set because
it can be put in bijection with Ufil((@ + ¢Q)™, which is countable. Since Q + iQ is dense in C, it follows
that S is dense in M, so S is dense in X and hence X is separable. [

Problem 7. Find an explicit conformal mapping from the upper half plane slit along the vertical seg-
ment

{z e C:Im(z) > 0}\(0,0+¢h], h>0
to the unit disk.

Solution. Start with Oy = {z € C : Im(z) > 0}\(0,0 + ¢h]. Let fi(z) = i(h/z). This is a conformal map
Q — O := {2 : Re(z) > 0}\[1, ). Let f2(z) = 2z2. This is a conformal map Q; — Qy := C\[1, 00)\(—00, 0].
Let f3(z) = 1/z — 1. This is a conformal map Qs — Q3 := C\(—00,0]. Let f4(z) be the branch of 4/z
that you get by removing the negative real axis. Then this is a conformal map Q3 — H. Finally let
f5(2) = (z —i)/(z + 4); this is a conformal map H — D. Thus f := f50 fy 0 fz o fa o f is a conformal map
Q-D. O

Problem 8. Let f: C — C be an entire function. Show that
[f(2)] < Ce
for some constants C and a if and only if we have
FMO)] < M
for some constant M.

Solution. First suppose that |f(z)] < Ce®?l for all z € C. Then by applying the Cauchy estimates to

a disk of radius R centered at 0, we get
n! . .R
ﬁCe .

Since f is entire, the above inequality is valid for any R > 0, so we choose R = n/a to get

11O <

nla™

[FPO)] < —-Ce” < C(ea)” < M™!

for some constant M.

Conversely, suppose that | f(™ (0)] < M™*! for all n. Then, since f is entire, we can write f as a power series

f(z) = Z anz"
n=0
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and it is valid for all z € C. We know that the power series coefficients are given by

(n)
L)
n!
so we have
S g M Ml
F)] < D lanllz” < ) " = Me
n=0 n=0 :

forall ze C. O

Problem 9. Let 2 < C be open and connected. Suppose (f,) is a sequence of injective holomorphic
functions defined on 2 such that f, — f locally uniformly in 2. Show that if f is not constant, then f is
also injective in €.

Solution. Since f,, — f locally uniformly, we know that f is also holomorphic. We first prove the fol-
lowing variation of Hurwitz’s theorem: If each f, has at most one zero in €2, then either f is identically zero
or f has at most one zero in Q.

Suppose that f is not identically zero. Then the zeros of f are isolated. Suppose that f(z9) = 0. Pick
r > 0 small enough so that f has no other zeros in B(zp,r). Since f is nonzero on 0B(zp,r), which is
compact, we have |f(z)| = 6 > 0 for |z — 29| = r. This shows that 1/f, — 1/f uniformly on 0B(zo,r). We
also know that f/ — f’ uniformly on compact sets. Thus we conclude that

G, [ I,
17

lim
B(zo,r) f(Z)

=90 JoB(z0,r) fn(z)

By the argument principle, the right side of this equation is equal to the number of zeros of f inside B(zo, ),
which is one. Similarly, the left side is equal to the number of zeros of f,, inside B(zg,r). Thus the above
equation implies that for sufficiently large n, f, has exactly one zero inside B(zg, ). So we have shown that
given a zero of f and a sufficiently small ball around that zero, then n can be made sufficiently large so that
fn has zero inside that ball. Thus, if f had two zeros, we could put two disjoint balls around them, then the
previous statement would imply that f,, would eventually have to have two zeros, which is a contradiction.
Thus we conclude that f has only one zero.

Now, for any w € C, we have that f, — w converges locally uniformly to f — w. Since each f, is injec-
tive, f,, —w has at most one zero in 2. Thus f — w is either identically zero or has at most one zero. Since
this is true for every w € C, it implies that f is either constant or injective. [

Problem 10. Let us introduce a vector space B as follows.
B = {u:C— C:uis holomorphic and Jf |u(z + iy)P@—(ﬂfzﬂJz) dr dy < o0
C

Show that B becomes a complete vector space when equipped with the norm

lul? = j j (o + i) 2@+ dy dy.
C

Solution. Define a measure p on C by dy = e~ @+ gy dy, i.e.

w(A) = f e*(zzﬂ’z)dmdy.
A
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Note that j is a finite measure on C, and L?(u) is a complete vector space. Thus B is simply the subspace of
L?(u) consisting of holomorphic functions, so to show that B is complete it suffices to show that B is closed
with respect to the L?(u) norm.

Let {f.} be a sequence in B converging to f € L?(u). We need to show that f is holomorphic. To do
that, it suffices to show that f, — f uniformly on compact subsets of C. Let K < C be compact. Then
K’ :={z e C : dist(z, K) < 1} is also compact, so in particular, we have e~@+v") > ¢ > 0 on K’ and
AK') < oo where X\ denotes Lebesgue measure on C. For any z € K, we use the mean value property of
holomorphic functions to write

o) = fmlz) = * f (o (10) — fon () dA(u0),
T JB(z,1)
thus we have by Cauchy-Schwarz
)= I < 3 [ Ualw) = ()] dA(w)

T JB(z,1)
) 1/2

< —A(B(z,1)"? U fn(w)fm(w)IQdA(w)>
0 B(z,1)
1 1 v

< SA(K)HV? (J | fr(w) — fm(w)|20d)\(w)>
m C JB(z,1)

= M <J | fo(w) — fm(w)|2e(x2+y2)d/\(w)>
B(z,1)

< MK ||fn - fm”LZ(#)-

Since {f,,} converges in the L?(p) norm, the above inequality implies that || f,, — fllpeo () = 0 as n,m — oo,
meaning that {f,} is uniformly Cauchy on K. Since L® is complete, this means that f,, converges uniformly
on K to some function g. In particular, f,, converges pointwise to g on K. But we know that f,, converges
to f in L%(u), and thus (by passing to a subsequence if necessary) we also know that f,, converges to f
pointwise. Thus we must have f = g, so we conclude that f, converges uniformly to f on K. This holds for
any compact set K < C and thus we know that f must be holomorphic, so B is a closed subspace of L?(u)
and therefore complete. [

Problem 11. Let 2 < C be open, bounded, and simply connected. Let u be harmonic in €2 and as-
sume that u > 0. Show the following: for each compact set K < 2, there exists a constant C'x > 0 such
that

supu(z) < Ck inf u(z).
zeK reK

Solution. Since (2 is open, simply connected and not all of C, by the Riemann mapping theorem there
is a conformal map ¢ : D — Q. Then the function v(z) = u(¢(z)) is a harmonic function on D. Let K
be any compact subset of Q. Then ¢~1(K) is a compact subset of I, so there is some 7 € (0,1) such that
¢~ 1(K) < B(0,r) < B(0,r) < D. Since u is nonnegative, so is v, and thus by Harnack’s inequality, for any
z € ¢~ 1K) we have

1—r 1—|z|
0) <
1+rv(> 1+ |2

v(0) < v(z) € ——

The left inequality shows that inf.c,—1(x)v(2) = %U(O), which implies v(0) < ii: inf.cp1(xyv(2). Then
by putting this into the right inequality we get

1+7\°
< inf
v(z) (1 - 7") ze¢lPl(K)U(Z)
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2 2
for any z € ¢71(K), so SUPep-1(k) V(2) < (1+r) inf.cy-1(xyv(2). The constant <1+r) depends only on

1-r 1—r
the set K, so we conclude

e we2) < O jnf u(6(2));

and since ¢ is a bijection this is the same as saying sup,cx u(w) < Cginfyex u(w). O

Problem 12. Let Q = {z € C : |z| > 1}. Suppose u : § — R is bounded and continuous on Q and
subharmonic on Q. Prove the following: if u(z) < 0 for all |z| = 1 then u(z) < 0 for all z € Q.

Solution. Let v(z) = u(1l/z). Then v is subharmonic on A := D\{0} and bounded and continuous on
A\{0} because z — 1/z is a conformal map from A — . Fix € > 0 and let f(2) = v(z) — elog|1/z|. Since
log |z| is harmonic on A, we know that f does not have a local maximum in A. Also, since u is bounded,
v also is, and thus f(z) — —oo as |z| — 0. So there exists an r > 0 such that f(z) < 0 for |z| < r. Now
f is continuous on the compact set {z € C : r < |z| < 1}, so it achieves a maximum somewhere. But since
f(z) <0 for all |z| = r and all |z] = 1, if that maximum were positive then it would have to be achieved on
the interior of A, which contradicts the maximum principle. Thus the maximum is at most zero, so f(z) <0
for all r < |z] < 1, and by choice of r this implies that f < 0 on A. Thus we have v(z) < elog|1/z| for all
z € A. Since € is arbitrary, this means v(z) = u(1/z) < 0 for all z € A, which means that u(w) < 0 for all
wef). O
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13 Spring 2015
Problem 1. Let f € L'(R). Show that

lim _ J|f(x)| da.
n—o0 2

(k+1)/n
J f(x)dx

k/n

Solution. Let V be the set of functions which are finite linear combinations of characteristic functions
of closed intervals. First we show that the result holds for elements of V. Let g € V and write

M
9 = Z @5 * Xlay,b;]
j=1

Let n be sufficiently large so that for each —n? < k < n?, the interval [k/n, (k + 1)/n] does not intersect
more than one of the intervals [a;,b;]. Then in particular, on each subinterval [k/n, (k 4+ 1)/n], f is either
non-negative or non-positive, depending on the sign of a;. Thus we have, for such sufficiently large n,

n® (k+1)/n n® (k+1)/n n
| i = X [ @l de = [ 5@ de
k=—_n2 k/n ke —n2 k/n -n
SO
n? (k+1)/n
lim J fl@)dz| = J|f(x)|d:v
n—»ook:_nz k/n

Thus the result holds for functions in V.

We know that V is dense in L'(R). Let f € L*(R) and fix ¢ > 0. We need to show that when n is

sufficiently large, we have
2

n (k+1)/n
2 J flx)dzx

ke —n2 k/n

- [I@ds| < e

Let g be an element of V' such that ||f — g||;1 < ¢/3. We have the estimate

n® (k+1)/n n? (k+1)/n
| f@de] - [1r@)as] < \ Jir@lde = [gnad + | 3 [ gwds| - [lgta)ldo
k=—n2 |Vk/n k=—n2 |k/n
n® (k+1)/n n® (k+1)/n
+ J f(z)dz| — Z f g(x) dx
k=—n2 |Vk/n k=—n2 |VR/n
= I+ IT+1I1I.

By choice of g, we have I < ¢/3. Since we have already proved the result for elements of V| let n be large
enough so that IT < ¢/3. Finally, by taking absolute values inside multiple times we have

(k+1)/n (k+1)/n
| e [ ey
k/n k/n

IIT <

k=—n2

< If gl < o3

n (k+1)/n n
< X[ @ -g@lde = [ @) - gl ds

ke —n2 k/n —-n

Thus we conclude that
2
n

(b+1)/n
J f(z)dx

k/n

- [I@ds| < e

k=—n2
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for all sufficiently large n and thus the result holds for all f € L}*(R). O

Problem 2. Let f € L} (R"), g€ L} (R™). Assume that for all real r > 1, we have

[ w@Pa < [ j@Pd <
r<|z|<2r r<|z|<2r

Here a and b are such that 3a + 2b + n < 0. Show that fg e L'(R").
Solution. Let By = {x € R" : |z| < 1} and for k > 1 let B}, = {z € R™ : 2871 < |2| < 2%}, Since

each Ej, is compact for k > 0, |f|?> and |g|> are integrable on each Ej, which also implies by compactness
that |f| and |g| are integrable on each Ej. To show that fg € L'(R") it suffices to show that

ZJ x)|dx < oo.

For each k > 1, by Holder’s inequality using 1/6 + 1/2 4+ 1/3 = 1, we have

[, 1o < ( . 1z " (fE ) ds ) " ( . o) ) "

< OB VO((F ) (),

Since Ej € [—2%,2%], we have A\, (E)) < (2¥*1)". Thus we have
JE |f(x)g(x)|dx < (2k+1)n/6(2k—1)a/2(2k—1)b/3 _ 4n/6 . (Qk—l)n/6+a/2+b/3.
k

By hypothesis, n/6 + a/2 + /3 < 0, so let —§ € (n/6 + a/2 + b/3,0). Then we have

0 o] 1 k—1
Zf z)|de < 4 22’“ 5—4"/62(25> < ®
k=1 k=1

because 2° > 1. Thus fge L*(R"). O

Problem 3a. Let f € L}, (R") and let
1
Mf(x :supif fy)ldy
( ) r>0 m(B(nx)) B(r,z)| ( )|

be the Hardy-Littlewood maximal function. Show that
m({x: M f(z) > s}) —f x)|dx, s>0,
lf (7f)|>‘3/2
where the constant C,, depends on n only. The Hardy-Littlewood maximal theorem may be used.

Solution. Suppose that B < R™ is a ball and that —& SB |f(y)|dy > s. Then we have

m(B) < f F@)ldy + f F@)ldy
Bo{ai|f(x)|<s/2} B f(z)|>s/2}

S
<5om®)+ | 7 ldy.
Bod{wz:|f(x)|>s/2}

Define f(z) to be f(z) if |f(z)| > s/2 and 0 otherwise. It follows from the work above that

| ity >3
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Thus if M f(x) > s, then M f(z) > s/2. Applying the Hardy-Littlewood maximal inequality to f gives
m({z: Mf(z) > s}) <m({z: Mf(z) > s/2})

<< [ 1)y

Cn
_ J F)ldy,
S Jif(x)]>s/2

for some constant C,,. [

Problem 3b. Prove that if ¢ € C*(R), ¢(0) = 0, and ¢’ > 0, then
¢'(t)
M dr < Cy, dt | dx.
f¢( fle)) dw < J'f(x)‘ (Jo<t<2|f(r) t ) ’

Solution. Using part (a), we estimate the integral on the right by

, /
cnflf(xﬂ(fo I dt> tr = €[] @15 drdr by Tonel becase o > 0
<t<2|f ()] {(z,1):0<t<2|f(x)[}

0]
= C), dxd
.[ J(w)|>t/2|f(x)| v

¢>’ v Mf(z) > t}dt :J &) - miz: Mf(z) >t} dt

JO o' (t) JMMN dz dt

¢'(t)dx dt  again by Tonelli because ¢’ > 0

(z,t) 0<t<Mf(z)}

\Y

Problem 4. Let f € L}, .(R) be 2r-periodic. Show that the linear combinations of the translates f(z—a), a €
R, are dense in L'((0,27)) if and only if each Fourier coefficient of f is # 0.

Solution. For a function u € L([0,27]), denote by 4(n) the nth Fourier coefficient of u. First sup-
pose that f(n) = 0 for some n. Then note that for any linear combination of translates of f, h(z) =
o1 f(z—a1) + ...+ amf(z — ap), we have h(n) = a1e=™% f(n) + ... + ame ™ f(n) = 0. But then the
span of the linear translates of f can’t possibly be dense in L', because if we let g(x) = ¢™*, then g(n) = 1,
and since the map u — 4 is a continuous mapping L' — ¢, there can’t be a sequence of linear combinations
of translates of f converging to g in L.

Conversely, suppose that f (n) # 0 for every n. Let M be the closure (with respect to the L' norm) of
span{f(z — a) : a € R} and suppose that M # L'. Then by the Hahn-Banach theorem, there is a nonzero
bounded linear functional ¢ € (L)* which is zero on M. Since (L')* ~ L®, we get that there exists a
nonzero g € L* such that

[ ose—aar = o

0
for every a € R. If we consider the above integral as a function of a, call it h(a), then h is identically
zero, so in particular it is 27-periodic, so we can look at its Fourier coefficients. A standard computation
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shows that h(n) = §(n)f(n) for all n, and since h is identically zero, h(n) = 0 for all n. Since f(n) # 0
for all n, this implies that §(n) = 0 for all n, but this contradicts the fact that g is nonzero, so we’re done. [J

Problem 5. Let v € L?(R) and let us set
Ulw§) = [ Pugdy, aek

Show that U(x,€) is well-defined on R? and that there exists a constant C' > 0 such that for all u € L?(R),
we have

j U@, ) e dede = C f fu(y)|? dy.

Determine C' explicitly.

Solution. To show that U(z, &) is well-defined, note that by Cauchy-Schwarz

, 2 _ 2 1/2 1/2
[l ruy) ay < (je—@“f-w dy) ( | |u<y>|2dy) <

Now we expand
Uz, &) = e_wz/geéz/Qe_izffewy_y2/2u(y)eigy dy.
For a fixed z, let
2
fo(y) = u(y)e™ v /2

Then we see that

£©) = [ Puty)e ey,

SO
U(z,€) = e 2828 f (—¢/(2m)).

Therefore, by Plancherel and Tonelli since everything is non-negative, we have

er*r2|fx(—§/(27f))|2dxd§ = Qﬂje—ﬁj

on [ [P dyds = 2n [ 2 )P dy o
27rf|u(y)|2 (fe_(x_y)z dm) dy = 27r3/2J-|u(y)|2 dy. O

f U (26))2e€ da d¢ f}c(ﬁ)\2 d€ dzx

Problem 6. When B; and By are Banach spaces, we say a linear operator T' : By — By is compact
if for any bounded sequence (z,,) in By, the sequence (T'z,) has a convergent subsequence. Show that if T'
is compact then Im(7") has a dense countable subset.

Solution. Since T is a compact operator, we know that for any bounded set A = By, T(A) is a rela-

tively compact subset of By. Let A, = {z € By : ||z|[5, < n}. Then we can write By = Ur_, Ay, so we
have Im(7T') = | J/_, T(A,). Since each A, is a bounded set, each T'(A,,) is relatively compact. This means

that T'(A,) is compact. Since compact sets are separable (this follows from the totally bounded definition of
compactness), it follows that T'(4,) has a countable dense subset. We need to upgrade this to a countable
dense subset of T(A,). Let E be a countable dense subset of T(A,,). Start with E := E ~ T(A,). For any
x € E\T(A,), there is a sequence {z;} € T(A,) converging to . Add the sequence {z}} to E. Repeating
this process for every x € E\T(A,,), we see that E is at most a countable union of countable sequences and
is thus countable, and it’s clear that it is dense in T'(A4,,). Thus T'(A,,) also has a countable dense subset for
each n. Thus by taking the (countable) union of these dense subsets, we see that Im(7) = | J"_, T(A,,) has

n=1
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a countable dense subset. [

Problem 7. Suppose f, : D — H is a sequence of holomorphic functions and f,(0) — 0 as n — 0.
Show that f,,(z) — 0 uniformly on compact subsets of D.

Solution. Any compact subset of D is contained in B(0,r) for some 0 < r < 1, so it suffices to show
that f,, — 0 uniformly on B(0,r) for each 0 < r < 1. Fix such an r. Note that since each f, takes values
only in H, we can define a single-valued analytic branch of g, (z) := 4/ f.(z) on D. Each g, is a holomorphic
function from D to Q := {z € C : Re(z),Im(z) > 1} and it is still true that g,(0) — 0 as n — . Let
un, = Re(gn) and v, = Im(g,). We also have u,(0),v,(0) — 0 as n — 0. Since gy, is holomorphic and takes
values in €2, u,, and v,, are both positive harmonic functions on I. Thus for any z € B(0,r), we can apply
Harnack’s inequality to get

1+ 2| 1+
a0

which shows that w,, — 0 uniformly on B(0,7). The same argument holds for v,. Thus since Re(g,) and
Im(g,) both converge uniformly to 0 on B(0,r), g, also does. Finally, since |f,(2)| = |gn(2)|?, this also
shows that f,, — 0 uniformly on B(0,r), so we are done. [

|un(0)],

un(2)] —

Alternate solution. Let g, = ?;Z The relation f, = (_ig)i%”frl) shows that it suffices to show that
the g, converge locally uniformly to —1. Note the g,, are holomorphic maps D — D. Let ¥, be an au-
tomorphism of D which takes g,(0) to 0 and let h,, = ¥,;! o g,. Then h,, is holomorphic with h, (0) = 0.
Write g, = ¥, o h,. We want to show that g, converges locally uniformly to —1. Fix a compact set
K := B(0,r) € D. By the Schwarz lemma, h,(K) € K. So to show g, — —1 uniformly on K, it’s enough

to show v, — —1 uniformly on K. This is just a calculation: for any |z| < r, we have

2r
1—r

2]

z + gn(0) _
‘1 + gn(0)z

-~ 2
.00 (1= 19.(0)]%)

(1192 (0)) <

|wn(z) - gn(o)‘ = - gn(o)

for sufficiently large n (where “sufficiently large” here only depends on the convergence of g, (0) to —1, so
this is uniform in |z| < r). Since g,(0) — —1 by hypothesis (because f,(0) — 0), this shows ), — —1
uniformly on K, so we’re done. [

Problem 8. Let f : C — C be holomorphic and suppose

suﬂltg{|f(:b)|2 + |f(iz)[*} < o0 and | f(2)| < el*l for all z € C.
TE
Deduce that f is constant.

Solution. By Liouville’s theorem, to show f is constant it is enough to show that f is bounded. The
first given condition implies that there is some M < oo such that |f(z)| < M for all z with either Re(z) =0
or Im(z) = 0. First we show that f is bounded in the first quadrant A := {z: Re(z) > 0,Im(z) > 0}.

We use the Phragmen-Lindel6f method. Fix € > 0, and define
9(2) = f(2)-exp(—e(e”™*2)%?)

where w — w?*? is defined by removing the branch cut along the negative real axis, so that (re
73/2e139/2 We wish to show that |g(2)| — 0 as |z| — o in A. Writing z = re’, we have

9(2)] = |f(2)|exp(Re(—e(e™*2)*2)) < exp(r) exp(—er®? Re(e™™/5e/2))
< exp(r) exp(—er®/? cos(30/2 — 31/8)).

i0)3/2 _

On A, since 0 € (0, 7/2), we have 30/2—37/8 € (—3n/8,37/8), and thus cos(30/2—37/8) > cos(37/8) =: § > 0.
So we have
9(2)] < exp(r —eor™?)
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and this tends to 0 as |z| = r — 0.

So pick R big enough so that |g(z)] < M for all z € A with |z|] = R. Now A n B(0,R) is a bounded
domain such that |g(z)| < M everywhere on the boundary. Thus, since g is holomorphic, it follows from the
maximum principle that |g| < M everywhere in A n B(0, R). Thus by choice of R, |g| < M on all of A. This
means that for any z € A,

[f()] < M- Jexp(e(e712)*?)).

Since € is arbitrary, we can take e — 0 and thus conclude that |f(z)| < M for all z € A.

Since M is a bound for |f(z)| on the entirety of the real and imaginary axes, we can repeat this argu-
ment in each of the other three quadrants and hence obtain that |f(z)| < M for all z € C, implying that f
is a bounded entire function and thus f must be constant. [

Problem 9. Let Q = {z € C : |2|] > 1 and Re(z) > —2}. Suppose u : Q — R is bounded, continuous,
and harmonic on © and also that u(z) = 1 when |z| = 1 and that u(z) = 0 when Re(z) = —2. Determine
u(2).

Solution. Note that €2 is a region on which the Dirichlet problem can be solved, so the function w is
uniquely determined by its boundary values. We want to conformally map {2 to an annulus, on which we can
determine u easily. Note that the map z — 1/z is a conformal map from Q to Q@' =D\{z € C : |2+1/4| < 1/4}.
We now want to conformally map ' to the annulus {z € C : r < |z| < 1}. Tt suffices to find a conformal
map which fixes the unit circle and maps 0 to  and —1/2 to —r. We know that the map

Z—

qb:z_)lfaz

fixes the unit circle, so we just need to pick an « such that ¢(0) = r and ¢(—1/2) = —r. Solving the system
of equations, we find that —a = r = 2 — 4/3 is the right choice.

So we know that z — ¢(1/z) is a conformal map from € to the annulus A = {z € C : r < |z| < 1},
with the line Re(z) = —2 mapping onto the inner circle |z| = r and the unit circle mapping to itself. So we
find a harmonic function v on A with v(z) = 0 for |z| = r and v(z) = 1 for |z| = 1. The function

~ log|z/r|
v(z) = Tog(1/r)

accomplishes this. Thus the original function u is given by

1

u(z) = 0(0(1/2) = s los |2

rz + r2

1427

2r+r2 |* O

So u(2) = W log

Problem 10. Determine

e

—oo (L4921 + (z—y)?)
for all x € R.

Solution. For a fixed x € R, integrate the function

1
(1+22)(1 + (z—2)?)

flz) =

around a half circle in the upper half plane from R to —R and then along the real axis from —R to R. After
computing the residues and taking the limit (the contribution from the half circle goes to 0) you get that
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. 27
the answer is - O

Problem 11. Let © = D\{0}. Prove that for every bounded harmonic function v : § — R there is a
harmonic function v : Q — R obeying

ou v ou ov

or oy oy oz

Solution. Let *du = —u, dx + u, dy be the conjugate differential of u. We know that for any 0 < r < 1,
the function u satisfies

f u(rew)dﬂ = alog(r) + 8
z|=r

for some constants « and 3, and « is given by the quantity

f *du,
|z|=r

which is constant with respect to r. Since u is bounded on Q, write |u| < M, then we have

J u(re®) d| < J lu(re?®)|df < 2xrM,
|z|=r z|=r

which tends to 0 as 7 — 0T. This implies that we must have o = 0. Thus in particular S|z\:1/2 *du = 0.
Since the circle |z| = 1/2 forms a homology basis for €2, this implies that Sﬁ{ *du = 0 for any curve v < €,
so *du is an exact differential on 2. This implies that there is a function v on 2 satisfying dv = *du, i.e.
Vg = —Uy and v, = u;. The only thing left to verify is that v is harmonic. Note that we can define f = u+1iv
on () and since f satisfies the Cauchy-Riemann equations, it is holomorphic on €2, and therefore its real and
imaginary parts are harmonic, so v is harmonic on . [

Alternate solution. It is a standard fact that a harmonic function on a simply connected domain has
a harmonic conjugate. So to show the existence of v it suffices to show that u can be extended to be har-
monic on all of D. We know that u is continuous on the circle |z| = 1/2, so let h be the function which is
harmonic in |z| < 1/2 and solves the Dirichlet problem with boundary values u(w) for |w| = 1/2. If we show
that u = h everywhere where they are both defined, then this shows that u can be extended to be harmonic
at 0. Let f = uw— h. Then f is a function which is harmonic in |z| < 1/2 and is equal to 0 everywhere
on |z| = 1/2. Also, since u and h are both bounded, f is bounded. We now proceed with the standard e
argument. Fix € > 0 and consider the function z — f(z) + elog |2z|. This function is harmonic in |z| < 1/2
and is equal to 0 on the boundary |z| = 1/2. Furthermore, since f is bounded, this function tends to —oo
as z — 0. Therefore, we may pick 0 < r > 1/2 such that f(z) + elog|2z| < 0 for |z|] < r. Now since
f(2) + €log |2z| is harmonic on r < |z| < 1/2 and vanishes on the boundary, by the maximum principle we
conclude that f(z) < —elog|2z| for all r < |z| < 1/2, and by choice of r we also have that f(z) < —elog |2z]
for all z € Q. Now taking ¢ — 0 we conclude that f(z) < 0 for all z € ©, so u(z) < h(z) in 2. Now we can
repeat the entire argument again with f := h—u in place of f, and conclude that h(z) <u(z)inQ,soh=u
and we are done. [

Problem 12. Find all entire functions f : C — C that obey

fl2)?+ f(2)? =1L

Prove your list is exhaustive.

Solution. By taking the derivative of the above equation, we see that a necessary condition is

21" (2)f"(2) + 2f(2)f'(2) = 21" (2)(f"(2) + f(2)) = O
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for all z € C. This means we have {z € C: f'(2) =0} u{z € C: f’(z) + f(2) = 0} = C, so at least one of
those sets must have a limit point, and since f is holomorphic, both f’ and f” + f also are, and thus we
either have f/ =0 or f” + f =0 on all of C.

If f/ =0, then f is a constant, and the only constants which satisfy the original equation are f(z) = *1.
Now focus on the case f” + f = 0. We show that the most general function that satisfies this is given by
f(2) = acos(z) + bsin(z). We can write f as a power series f(z) = Y, a,2", and since f"(z) = —f(z)
and power series can be differentiated term by term, we conclude that a,, = —(n + 2)(n + 1)a,42 for each
n. This shows that a solution f is uniquely determined by its first two coefficients a¢p and a1, which means
the set of solutions is a 2-dimensional subspace of the vector space of entire functions. Since we know that
cos(z) and sin(z) are two linearly independent solutions, it follows that f(z) = acos(z) + bsin(z) is the most
general solution. Plugging this into the original condition, we get

2

(—asin(z) + bcos(2))? + (acos(z) + bsin(2))? = a? +b* = 1.

Thus we conclude that all of the solutions of the original equation are f(z) = +1 or f(z) = acos(z) + bsin(z)
where a2 + b2 =1. [
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14 Fall 2015

Problem 1. Let g, be a sequence of measurable functions on R?, such that |g,(z)| < 1 for all 2, and assume
that g, — 0 almost everywhere. Let f € L'(R?). Show that the sequence

Fr9u(a) = [ £ = 9)galu) =0
uniformly on each compact subset of R%, as n — oo.

Solution. Fix r > 0 and let B, denote the closed ball of radius r centered at the origin. We will show that
f * gn converges uniformly on B,..
For an arbitrary a > 0, we and x € B, have

1 % gnl@)] < f|f<z — )gn()ldy
=f @ =) - ga)ldy + f =) lga )y

a a

< La @ — )] - lgn(@)ldy + fR\ @ — )|y

a

We analyze each of these last two integrals separately.
For the second integral, we recall that x € B,., so we have

f @)l < f £ () ldy,
R\B, R\Bq_,

after a linear change of variables. Then for fixed ¢ > 0 we may choose an a = a(e) so that this integral is

bounded by 7}

For the first integral, recall that the integral of an L' function over a set of small measure is small. So by
Egarov we may find a measurable set £ € B, so that f, — f uniformly on B,\F, and SE fla—y)dy < €.
Then for large enough n we have

f F@ =) lgn()]dy = j F@ =) lgn(w)ldy + j F@— )| - 9a(v)|dy
Bq E

a

< JE |f(x—y)ldy + € JB B lgn (y)|dy

< (1 + Ma(By)).
Combining the two pieces, we have
|[f # gn(@)] < € - (14 Xa(Bae)) + €.

By choosing € = €/(1 + Aa(By(e))), we see that |f * g,(x)| < 2¢ for large enough n. Since this bound is
independent of x, we conclude that f * g, — 0 uniformly on B,. O

Remark. One can also solve this problem by first solving it when f has compact support and then ap-
plying an approximation argument. This is equivalent, but perhaps conceptually simpler since some of the
details get abstracted into the compact support case.

Problem 2. Let f € LP(R), 1 < p < o0, and let a € R be such that @ > 1 — 1/p. Show that the

series
e) n+n-%
> arwlay
n=1vn"

2This follows by “continuity from below” for general measures.
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converges for almost all = € R.

Solution. Let g be the conjugate exponent so that 1/p + 1/¢ = 1. Define

ZJ Fla + )| dy.

n=1

With a change of variables we can write

o 1
= Z n_“f |f(z+n+n"%)|dz.
n=1 0

Applying Hoélder’s inequality for sums we have

9(@)| < (imﬂw (i <L1|f(x+n+n_az)|dz)p>

1/p

n=1

Since ag > 1 by hypothesis, the first term on the right side is just a constant C', and applying Hélder to the
integral in the second term we get

j9(2)] <c<f((J )l/q (j Ftnsn Z|pdz)1/p>,,>1/,, =C(g:ljol|f($+n+n‘“z)|”dz>1/p.

To show g is finite almost everywhere it is sufficient to show that SNH
have

lg(z)|P dz < o for each N € Z. We

N+1 N+1 oo
J \()|pdas<C’pJ f|fz+n+na)|pdzdx

N
1 ®© N+l
= C’I’J ZJ |f(x+n+n"%)|Pdedz

by two applications of the Monotone Convergence Theorem and one application of Tonelli’s Theorem. Chang-
ing variables again we get

a

N+1 1 OC N+1+n+n~"%z
J 9@ dz < cpf f | (w)[P du d=
N

N4n+n—az

N+n+2
< CP f f u)|P dudz

N+n
< c”j 201 £, d= = 207 |||, < oo.
0

N+1

Thus S |g|? is finite for any integer N, so we conclude that g(z) is finite almost everywhere. [

Problem 3. Let f € L} (R%) be such that for some 0 < p < 1, we have

[r@srad] < ([lor) "

for all g € Cy(R?) (continuous functions with compact support). Show that f(z) = 0 a.e.

Solution.
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We would like to apply the condition of the problem when g is a characteristic function. Unfortunately
characteristic functions aren’t continuous, but we’re able to recover the same information via a suitable
approximation.

Lemma. Let K be a compact set. Then | {, f(z)dz| < Ag(K)'P.

Proof: Fix e > 0 and let U be an open set with compact closure containing K such that SU\K |f(x)|dz < e.
(This is possible by continuity from above together with the fact that the integral of f over a set of small
measure is small.) By replacing U with a set of smaller measure if necessary, we may suppose in addition
that \g(U\K) < e. Let gx be a continuous function R? — [0, 1] which takes the value 1 on K and 0 outside
of U (such a function exists by Urysohn). We have

\ [ 1@t | s@as

\ [ 1@ oxte) = i

< L\K (@)

< €.

Then we have

<e+ ] [ s@oxteyis

<t ([lontor) "

< e+ M(U)YP
<e+ (Ma(K) +e)l/P.

’ L{ F)dz

But € was arbitrary, so we the lemma follows by taking the limit as ¢ — 0.

Now fix a cube C' < R? of side length s. For any positive integer N we may dissect C' into N¢ cubes
{Ci}ie[va) of side lengths s/N. By the lemma,

p (8 /p
LZ_ F)de < Aa(C)VP = (N)d .

Summing over all C; we find that
f f(z)dx < N¢. (%)d/p _ gd/p . Nd(=1/p)
c

But 1 — % < 0, so the right-hand side tends to 0 as N — o0. Thus we conclude that SC f(z)dx for all cubes
C.

Every open set is a union of countably many cubes with disjoint interiors. Therefore SU f(z)dx = 0 for
any open set U. Then by continuity from above, { s f(z) must be zero for any measurable set M, from which
it follows that f is 0 a.e. [

Alternate solution. Same idea as the first solution but the technical details are different.

Fix a large closed ball S = B(0, R), it’s enough to show f = 0 a.e. on S. Suppose not. Then
Claim: There exists a § > 0 and a set E < S with A\(F) > 0 with the property that for any subset F € F,
IS5 f(z) dz| > OA(F).
Assume the claim for now. A corollary of the claim is that there exist sets E of arbitrarily small positive
measure satisfying the inequality in the claim. Fix such a set F with measure small enough to satisfy
SA(E) > M(E)'/? (possible because 1/p > 1).

Fix € > 0 (assume w.l.o.g that e < A\(E)/10). Since f is integrable on S, let & > 0 be small enough so
that A(A) < 2a and A < S implies §, | f| < e. We may also pick o < €. Take a compact set K and an open
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set U with K € Ec U < S and M(E\K), A\(U\F) < e. Let g be a continuous function with 0 < g<1,g=1
on K, and g = 0 outside U. Then g also has compact support. We have the estimates

([1storr az) v
\ [ @9t ar

By the hypothesis of the problem, this implies

1/p
( f (@) + j g(x)wczx) < (\I) +20"7 < (A(B) + 207
K U\K

dm+jU\Kf< U flayda| - | I
> )—e = 0(AME)+e)—e = ONE)—(6+1e

I

SME) — (6 +1)e < (M(E) + 2¢)'/7.
Since € was arbitrary, taking e — 0 gives SA(E) < A(E)'/P, a contradiction by the choice of E at the beginning.

We need to prove the claim. Suppose f is not a.e. 0. Then by continuity from below, there is some
d > 0 such that Mz € S: |f(z)| > 20} > 0. For any k, we have the decomposition

{xeS:|f(x)]>20} =
{xeS:|f(x) >20,arg(f) e [-2n/k,2n/k)}u...u{xe S:|f(x)] > 20,arg(f) € [-2n(k — 3)/k,2n(k — 1)/k), }
so one of those sets has positive measure. By multiplying f by a rotation, without loss of generality we can

assume

AME) == Mz e S:|f(x)| > 26,arg(f) € [-2n/k,27/k)} > 0.

Let k be big enough so that |f(z)| > 26 and arg(f) € [—2n/k, 27 /k) implies Re(f) > §. Then for any subset
F c E, we have

fFf‘ g

J Re(f)‘ > IA(F).
F
This proves the claim, so we're done. [

Problem 4a. Let H be a separable infinite-dimensional Hilbert space and assume that (e,) is an or-
thonormal system in H. Let (f,) be another orthonormal system which is complete, i.e. the closure of the
span of (f,,) is all of H. Show that if >, ||f, — en| | < 1 then the orthonormal system (e,,) is also complete.

Solution. Let v be a vector which is orthogonal to each of the e;. It suffices to show that v = 0. Since
(fi) is an orthonormal system, we can write v = Zfil (v, fn) fn. Using this expression as motivation, we
define w = Zfil (v, fnyen. Note that v and w are orthogonal, while the original condition suggests that
they should be close in some suitable sense. More precisely, by applying Cauchy-Schwarz we have

0 2
Z <U fn en < (Z |<Un7fn>‘ Hfz _ei|>
n=1

< (Z <U7fi>|2> : (Z IIfn—en||2> < lolf*.

On the other hand, v and w are orthogonal, so ||v — w||* = ||v||* +|Jw||* . Thus |Jw||* = 0, and by our original
definition of w we must have (v, f,,> = 0 for all n. Since (f,,) is a complete system, this means that v = 0 as
desired.

2

2
[lo —w|” =

Problem 4b. Assume we only have > ||, — enl||? < 0. Prove that it is still true that (e,) is complete.

Solution. Let Ex = span(en,en+1,...) and Fy = span(fy, fn+1,...). The condition that > ||f, — en||” <
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o tells us that for big n, e, and f, are very close together, so the subspaces Ey and Fy should also be
“close together” when N is big enough. For a closed subspace M < H, let mp; : H — M be the orthogonal
projection onto M. We show that |[7gy — 7ryll,, — 0 as N — o0 (this is one way of saying the subspaces
are close to each other). For any x € H we have

(mEx — 7Try)(@)]| = 2 (@, en)en =T, fn) fn Z (,en) (en — fn) + Z (x,en = fn) fn

n=N+1 n=N+1 n=N+1
< Z Kz, en)l len — fall + Z (x,en = fn) fn
n=N+1 n=N+1
S 1/2 © 1/2 o 1/2
2 2 2
<(:2@%») (2 mﬁmn> +(Z w@ﬁnw>
n=N+1 n=N+1 n=N+1
- 1/2 w© 1/2
2 2 2
< |l=| ( D, llen = fall ) + ( 1 =zl llen = fall )
n=N+1 n=N+1
© 1/2
2
< ||~’U|'2< 7 len — fall >
n=N+1

where we have used Cauchy-Schwarz for sums, the Pythagorean theorem, and Cauchy-Schwarz in H. This
shows that ||7g, — 7TFNH§p <4y nviillen — fnll?, which goes to 0 as N — co by hypothesis.

We know that H = Ey @ Ex for any N because Ey is closed. So to show that span({e,}) = H,
it’s enough to find an N such that {ey,...,en} spans Eﬁ, Since the e, are orthonormal, we at least
know that span(es,...,en) S Ejy for each N. The e; are also independent, so it suffices to find an
N such that dim(E%) < N. By the assumption that {f,} is a complete system, we also know that
span(fi, ..., fn) = Fx, so dim(F%) = N. Finally, since mg1 = id — mg for any closed subspace S, we have

<1/2.

|t e

Now the desired result follows from the following lemma.

= ||mey — TEyll,, — 0as N — c0. Pick N to be large enough so that Hﬂ'EJ_ — gL
op P N Nllop

Claim: Let S and T be two closed subspaces of H with ||rs —7r|[,, < 1/2 and dim(T) = N < o0.
Then dim(S) < N.

Proof: Let x1,...,xny4+1 be any N + 1 vectors in S. Then 7y (z1),...,mr(xn4+1) are N 4+ 1 vectors in an
N-dimensional space, so we have

0 = Ozlﬂ'T(l‘l) + ...+ QN+17TT(xN+1) = 7TT(041171 + ...+ QN+193N+1)
But also since each z; € S, we have mg(c1z1 + ... + an41ZN41) = Z1 + ... + ANF1TN+1, SO
||OZ1.’E1 + ...+ CVN+1(EN+1|| = H7r5(a1$1 + ...+ O[N+1.’EN+1) — ’7TT(CV1(E1 + ...+ OéN+1£L'N+1)||
1
< 5 ||Oéll‘1 +...+ ozN+1xN+1H R

which implies ay 21 + ... + anyr1Zn4+1 = 0, so the x; are a dependent set. So any set of N + 1 vectors in S
is dependent, so dim(S) < N. O

Problem 5. A function f € C([0,1]) is called Holder continuous of order § > 0 if there is a constant
C such that |f(z) — f(y)| < C|z —yl|° for all 2,y € [0,1]. Show that the Hélder continuous functions form a
meager set in C([0,1]).

Solution. Define A’ to be the set of all Hélder continuous functions of order § on [0,1] and let A be
the set of all Holder continuous functions of any order on [0, 1]. First note that § > 7 implies that A° < A",

SO we can write
o0
A = U AY™
n=1
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Since a countable union of meager sets is meager, it suffices to show that A° is a meager subset of C([0, 1])
for any fixed 4. We can write

A = e ifll <m) = | En
m=1

where the norm ||f||,s is defined by

|f(0>| + sup |f($) _f(y>|

z,y€[0,1] |:]C - y|6

(this is one of the standard norms on the space of Holder continuous functions). So it suffices to show that
each FE,, is closed and nowhere dense with respect to the L* norm.

To show E,, is closed, suppose that f,, € E,, and f, converges uniformly to f € C([0,1]). Fix ¢ > 0,
and for any x,y € [0, 1], let n be big enough so that |f — f,| < €|z — y|° < € on [0,1]. Then we have

| @)~ 1) £@) = Fa@)] | o) = fa@)] | [fale) = £)

|z —y|° |z —y[° |z —y|° |z —y[°

< 1£(0) = fn(0)] + [ £ (0)] +

< || fullps +3€ < M + 3e,

£(0)]

and since the left side does not depend on ¢, we conclude that

@)~ f) _

lz —y|°

3

£ (0)] +

for all z,y, so ||f||xs < m. Therefore E,, is closed.

For nowhere dense, let f € E,, and fix ¢ > 0. We just need to show the existence of some h ¢ FE,,
with |[h — f||;» < €. Fix any g ¢ A° (for example, g(z) = 292 works) and by scaling, we may assume
llg]l;~ = 1. Thenlet b = f + eg. Then we clearly have ||h — f||,;. = €. Since g ¢ A°, we can find points
T, Yn such that

|g(xn) _g(yn)| > n

‘xn - yn|(S - €
Then we have
[h(@n) = h(yn)l _ | f(zn) + €9(zn) — f(Yn) — €g(yn)|
|xn 7yn|6 |xn 7yn‘5
L o)~ i) sl
|Zn — Ynl |Zn — Ynl

which goes to o0 as n — o0, so h ¢ A°. Therefore E,, is closed and nowhere dense, so we're done.  [J

Problem 6. Let u e L?(R%) and say that u € H'/?(R?%) (a Sobolev space) if
(1+ 1g2) ) € L2R?).

Here @ is the Fourier transform of u. Show that u € H'/2(R?) if and only if

J u(z +y) — u(@)|

|y|d+1

2
drdy < oo0.
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Solution. Since u € L%(R%), we know immediately that & € L2(R?) also, so we just need to show that
(14 1€[*?) a(€) e L2(R) if and only if the above double integral is finite. It suffices to prove that

[iaor e < [[HEEDZO0 gy < [ief1acor g

where throughout this problem < denotes an implied constant which depends only on d. First note that by
Plancherel, we have

|U£E+y ( 1 Imin£12 | ’17627my§|
ff [y|a+T d:cdy =) et 1= P la©)) dedy = | la©) [y|d+T dy dg,

so it now suffices just to prove the estimates

‘1 27rz'g£|
€l < J a5

For the upper bound, we have the estimate

J |1 27r1y §| |1 _ eQﬂiy~§|2 |1 _ e27'riy.£|2
dy = J —dy + J —dy
e+ wi<yele) I w1y Yl

4y - € 4
< J %dy +J T g because |1 — €| < 2|z| for |z] < 1/2
wi<i/clen 1Y i=1/c2le)) Y|4 dy
2
1
< |§‘2J |yd|+ dy+J T W
l<1/c2lel) 1Yl i>1/c21¢)) 1Yl
s K+ 16 < (€]

Now we do the lower bound. For ¢ fixed, define E = {y e R%: |y - &| = (1/2)|y]|¢]}. We estimate

|1 _ e27r7,'y<§ |2

J‘ |1 27r1y§|
dy > J dy
[yl wi<y/@lehyer Y14
2
> J '”ydfl‘ dy because |e* — 1| > (1/2)|2] for |2| < 1/3
lyl<1/Glg)weE 1Yl
1/2)y|2[¢]2 1
ZJ %dy2||2j L
wi<1/Gle) e Y] lyl<1/Glgl).weE 1Yl

Now note that membership in F is determined only by the direction of y and is independent of the magnitude
of y. So since the above integrand is a function only of |y|, and E takes up a “positive proportion” of all of
R? (this can be made precise), it follows that the above integral is

1
2 |€|2J T dy 2 €],

i</l 19le!

which concludes the proof of the lower bound, so we are done. [

Problem 7. Assume that f(z) is analytic in D and continuous on D. If f(z) = f(1/2) when |z| = 1,
prove that f(z) is constant.

Solution. Define the function g by



Because of the condition that f(z) = f(1/z) for |z| = 1, we see that g is continuous on all of C. We now
mimic the proof of the Schwarz reflection principle to show that ¢ is analytic on all of C. By Morera’s
theorem, it is enough to show that

for any rectangle R. It is clear from the definition that g is analytic inside D and so we don’t need to consider
rectangles R that are contained in D. Also, since z — 1/z is a conformal map from C\D into D\{0}, we also
see that g is analytic on the exterior of D, so we also don’t need to consider rectangles that are contained
in the exterior of D. Thus we only need to consider rectangles which intersect the unit circle. For such a
rectangle, split the contour along the arc of the unit circle into a band of width ¢ (this is hard to explain
without a picture). Since g is analytic on both the inside and the outside of D, the integral over this split
contour is necessarily 0. Then, since g is continuous everywhere, as we let § — 0, the integral over the split
contour approaches the integral over the original rectangle, and so we conclude that Sa r9(2)dz = 0 for all
rectangles R and thus ¢ is analytic on all of C.

Now note that since f is continuous on D, which is compact, f must be bounded, and thus g must also
be bounded. But g is entire, so g must be a constant, which means f must also be a constant. [

Problem 8. Assume that f(z) is an entire function that is 27-periodic in the sense that f(z + 27) = f(2),
and
(@ +iy)| < Cel

for some C > 0, where 0 < a < 1. Prove that f is constant.

Solution. Since f(z) is 27 periodic, we can express f as the pullback of a holomorphic function on the
cylinder. More formally, we can write

f(z) = g(e”)

where we define g on C\{0} by g(z) = f(1log(z)). Since f is 27-periodic, the branch of log is irrelevant, and
g is well-defined.
The given bound implies that |g(e¥ - €/%)| < Ce®!¥l. Thus we have

l9(2)| < Cexp(allog|z|]).

As |z] — 0, we have |g(z)] < Cz™%, but a < 1, so g has a removable singularity at 0, and we can extend g
to an analytic function on C. Similarly as |z| — 0, we have |g(z)| < Cz%, and so g must be constant. This
immediately implies that f is constant.

Problem 9. Let (f;) be a sequence of entire functions such that, writing z = = + iy, we have
J fi(2)Pe P dady < C, j=1,2,...
C

for some constant C' > 0. Show that there exists a subsequence (fj,) and an entire function f such that we
have

f £ (2) = f(2)[2e 2 dady — 0, Kk — .
C

Solution. By the mean value property and Cauchy-Schwarz, for any z € C with |z| > 2 and any j we
can write

1/2 1/2
2 _lwl?
FECIIES J [fi(w)| dzdy < (f |3 (w)[? dwdy) < exlzl+D) (J |fi(w)|? eI dxdy)
B(z,1) B(z,1) B(z,1)
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In particular, this implies that the sequence {f;} is uniformly bounded on every compact subset of C, so it
is a normal family. Thus it has a subsequence {f;, } which converges uniformly on every compact subset of
C. Since each f; is entire, we also know that the limit function f is entire and also satisfies the estimate
HOISTTE AR
for |z| = 2.
To show the desired conclusion, fix € > 0. Let R be big enough so that
J e~ |2l +lzl+1 dedy < e.
|z|>R

Since f;, — f uniformly on every compact subset of C, we may choose k to be big enough so that

— z 2
| i@ - sepe dway < e
|z|<R
Thus we have the estimate

j\fjk<z>—f<z>|2e—2'z‘2dxdy: j £ (2) = f(2)[2e~ 22" dady + f fi(2) = £(2)12e7 2 dz dy
C |z|<R

|z|>R

A

€+ f (C" - 2e3 14D 26212 g4 gy
|z|>R

N

€+ C”f el gy < (14 C"e,
|z|>R

which establishes the desired conclusion. [

Problem 10. Use the Residue Theorem to prove that

* dx m
COS T L3 3 - — _ 1
L e sin(sin x) . 5 (e—1)

Use a large semicircle as part of the contour.

Solution. For real z, the integrand can be written as %Im(eem). We can rewrite our integral as

f Im(eez )d—x=ImJ e d—x,

0 x 0 x

where the equality holds provided the second integral exists (which it will).

Set f(z) = %ee“ and let I'p denote a large semicircular contour of radius R with endpoints at —R and
R. Also let 7, denote a small clockwise contour of radius r with endpoints at —r and r.

Note that f is holomorphic everywhere except z = 0, where it has a simple pole with residue e. Thus by
(a variant of) the residue theorem for “indented contours”, we have

1
lim | f(2)dz = —=-2mi-e= —ime.
r—0 A 2

On the outer contour we have
eiR exp(i0)

f(z)dz = iJWe do.

Tr 0

Note that for 6 € [0, 7],

eiRexp(iG)‘ _ e—Rsin(O) <1.

92



Thus by the bound |e*| < el?l, our integrand is dominated by e. Also as R — o0, the same bound shows that
the integrand tends pointwise to e® = 1 (except at § = 0 and 6 = 7), so by dominated convergence,

f(z)dz — im as R — .
T'r
By Cauchy’s applying Cauchy’s theorem to a contour joining the two semicircles, we have
R
0=2 f(z)dz + (2)dz + f(z)dz,
-r Yr T'r

and taking the limit as r — 0 and R — o0 gives

@ 7
f flx)dr =i-(e—1).
0 2
Finally, the imaginary part of this is the desired value.

Problem 11. Let Q = {(z,y) € R? : 2 > 0,y > 0} and let u be subharmonic in 2, continuous in €,
such that
uz,y) < |r+ayl,

for large (z,y) € Q. Assume that
u(z,0) < az, u(0,y) < by, zy=>0,

for some a,b > 0. Show that
u(r,y) < ar+by, (v,y)e.

Solution. We use the Phregman-Linedléf method. Fix € > 0 and, writing (z,y) = re?, define

-3 36
d(z,y) = ax+ by + er’?cos (87T + 2) .

Note that er®/? cos (== + 30) is the real part of the function f(z) = —e(e~"/*2)3/2, which is single-valued
and analytic in 2, so ¢ is harmonic in  (because ax + by is clearly harmonic). Thus, since u is subharmonic
in Q, we know that v := u — ¢ does not have any local maximum in €.

We want to show that v(x,y) - —o0 as r — o0 in Q. Note that since for (x,y) € Q we have 0 € (0, 7/2), we
have —37/8 4+ 30/2 € (—37/8,3n/8) and thus cos(—3m/8 + 30/2) > cos(37/8) =: 6 > 0. So as r — o, by the
hypothesis that u(z,y) < r for r sufficiently large, we have

—3r 30

v(z,y) = u(zr,y) —axr — by — er®? cos ( +

< r— 3/2 _, _
3 2) r — eor 0

as 7 — 0. Thus we can pick an R large enough so that v(z,y) < 0 for all r > R. We also know from the
other hypotheses that on the x-axis,

-3 360
v(2,0) = u(z,y) — az — er¥? cos (; ¥ 2) =0

and similarly on the y-axis v(0,y) < 0. Thus we can now apply the maximum principle to v on the bounded
region {(z,y) € Q : r < R}, and since v < 0 on the boundary, we conclude that v < 0 throughout the entire
region, and thus by choice of R, v(z,y) < 0 for all (x,y) € Q. This means that

-3 30
u(x,y) < ax+ by + er®?cos (87T + 2>
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for each (z,y) € Q, and since € is arbitrary, we conclude that u(z,y) < ax + by for all (z,y) e Q. O

Problem 12. Find a function u(z,y) harmonic in the region between the circles |z] = 2 and |z — 1] =1
which equals 1 on the outer circle and 0 on the inner circle (except at the point where the circles are tangent
to each other).

Solution. Let Q@ = {z € C: |z] < 2,|z — 1| > 1} be the original region. We want to conformally map
Q) to a region on which such a function can easily be found and then pull it back. The map z — 1/(z — 2)
sends € to the strip {z € C: —1/2 < Re(z) < —1/4}, with the circle |z| = 2 going to the line Re(z) = —1/4
and the circle |z —1| = 1 going to the circle Re(z) = —1/2. So we are looking for a harmonic function v which
satisfies v(z) = 0 when Re(z) = —1/2 and v(z) = 1 when Re(z) = —1/4. The function v(z) = Re(4z + 2)
clearly satisfies this and is harmonic because it is the real part of an analytic function. Therefore the function

u(z) = v(zlg> - Re(ﬂ“) ) Re(zzz2>

is a harmonic function on Q with the desired properties. [
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15 Spring 2016

Problem 1a. Let )
Ki(z) = (4rt)™32e71o7/4 2 e R? ¢ >0,

where |z| is the Euclidean norm of R3. Show that the linear map
f o R ), DE) - IR

is bounded uniformly in ¢ > 0.

Solution. Throughout this problem, we use the symbol < to denote an implied constant which does
not depend on f, = or t. For any x € R3, we calculate

_ 1/3 . 2/3
e @] < ot [ ew (Gle-u?) 1wl < o ([ rwPar) ([ e (G- a))

by Holder’s inequality. Making the change of variables z = ¥2(x — y) in the last integral, we get
) 2/3

1A ( | ew (—
2/3

3
=t flls ((J exp(—(u/Vt)?) du) ) by Tonelli’s theorem
R
Il e (Vat)? < ISl s -

Thus Ht1/2 (K = f)HLOO < |||l 3, so we see that f ~— tY/2(K;* f) is a bounded linear operator whose operator
norm is bounded uniformly in ¢ > 0. O

SlS

z

Vi

A

125, % ) ()|

A

Problem 1b. Prove that t"/?[|K; * f|| .. — 0 ast — 0, for f € L3(R®).

Solution. We know that C.(R3), the set of continuous functions with compact support, is dense in L3(R).
If g € C.(R?), then we have

er @) < [ 1Kita =y < llolly [ 1Ko =l dy < gl

where again the implied constant here does not depend on ¢. Thus we have t'/2 ||K; # g||;.. — 0 ast — 0
for all g € C.(R?).

Now let f be any function in L3(R3). Let the linear operator ¢; : L3(R?) — L*(R3) be defined by

ou(f) = V2K, = f).

Recall that in part (a) we showed that there is a constant C, independent of ¢, such that || (f)]] 0 < C||f]] 5
for all f € L3. Fix e > 0. By density, we can pick g € C..(R?) such that ||f — g||;s < ¢/2C. Since we have
proved the result for functions in C.(R?®), we can now pick a § > 0 such that for all t <6, ||¢+(9)]|; < €/2.
Then we conclude that for any ¢t < § we have

€
K fllge = oe(Dllpe < Noe(@)l e+ 16(f — 9l < 3 HCOIf =gl < e
This shows that lim;_,qtY/2 ||K; * f||,.. = 0 for any f e L3(R%). O

Problem 2. Let f € L'(R). Show that the series

51
Zlﬁf(x—\/ﬁ)

n=
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converges absolutely for almost all x € R.

Solution. Let

0
We show that S (z) dx is finite for every integer M, which is enough to conclude that g(x) < oo for
almost every z € [M M + 1], which in turn implies that g( ) is finite almost everywhere, which is exactly
what we need to prove.

%\

]VI+1

For a fixed integer M, we have

M+1 M+1 OC 0 1 M+1
fM 2)de = j \f]f il = B, e vald

by the Monotone Convergence Theorem, and after changing variables we get
M+1 o M+1—y/n
1
g(@)de = ) — 1f(y)] dy.
J Z NNV

M n=1

For each integer k, there are 2k + 1 integers n such that k < 4/n < k + 1. For each of these integers n, we
have [M —\/n,M +1—+/n] < [M —k —1,M + 1 — k]. Thus the above sum is bounded by

0 1 [M+1-k M+1-k
Skt [l < 32 [ wnans [ swra] < olsi
el M—k—1 M—k— 1 M—k

M+1

Thus we conclude that §, " g(z) < o0, so g(x) is finite almost everywhere. [

Problem 3. Let f € L}, .(R) be real-valued and assume that for each integer n > 0, we have

1
n
for almost all € R. Show that for each real number a > 0 we have

fx+a) = f(z)

for almost all x € R.

Solution. Let E be the (measure zero) set of x € R™ that do not have the property of the hypothesis.
Define F' = (J,co(£ + p). This is a countable union of measure zero sets so it also has measure zero. If
a = 0, the result is obvious, so let a > 0 be fixed. By the Lebesgue differentiation theorem, we know that

1 x4+
fa+a)—f@) = lim = J (Fly +a) — f()) dy.

for all  outside of some measure zero set G. We show that f(x + a) — f(z) = 0 for all z outside of G. It is
enough to show that for any interval [b, c],

ch(y +a)dy > ch(y) dy,
. s = [ 1
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We can write a in binary as

l\')‘b

LR
—1 =1 kj
where {k;} is some sequence of integers (not necessarily distinct, because there could by many 1s at the

beginning). Let ay = Z;v:;[ 1/k;. For any y ¢ F and any N, we know that y + ay ¢ E by construction of
F. Therefore we have f(y + an) = f(y + an—1 + 1/kn) = f(y + an—1). By induction and the fact that
y +an ¢ E for each N, we see that f(y + an) = f(y) for all N. Therefore, since F' has measure zero, this

means ctan C c
| tway = | swravas = [ sway
b+an b b

Defining fx(5) = F(U)X(b+ anctan] (), We see that

JR In(y)dy > J:f(y) dy

Since fn — fX[b+a,c+q] POINtWise as N — o0 and |fn| < |f|x[p,c+q] for all N, and [f[X[p,c4q] is integrable,
by the Dominated Convergence Theorem we conclude that

J fX [b+a,c+a] J- f
b+a

Thus we conclude that f(z + a) — f(x) = 0 for all = for which the Lebesgue differentiation theorem applies
to the function z — f(z + a) — f(z), which is almost all ze R. O

Problem 4. Let V; be a finite-dimensional subspace of the Banach space V. Show that there exists a
continuous projection P : V — Vi, i.e., a continuous linear map P : V — V; such that P? = P and the range
of P is equal to V7.

Solution. Let {ei,...,e,} be a basis for V. Without loss of generality we may assume that ||e;|| =
for each j. For a fixed j, we know that span{e;};.; is a closed subspace of V. Thus by the Hahn-Banach the-
orem, there is a linear functional f; € V* such that f;(e;) = ||e;|| = 1 and f;(x) = 0 for all x € span{e; };;.
Now define the map P : V — V; by
n
= 2 fi@)e;
j=1

It is clear that Im(P) < Vi by construction, and since each f; is linear, P is also linear. We see that P is
continuous because

[Pz — Pyl = (r—y

2 Yl llesll < (ilfyll)lleyl-

=1

Finally, for any v € Vi, we write v = vie; + ... + vy,e, and note that
n
Pv = Z fi(vier + ... + vpen)e 2 vje; =

This implies both that P? = P and that V; < Im(P), so Im(P) = V4. Thus P is the desired map. [
Problem 5. For f € C°(R?) define u(z,t) by
. _sin(t
u(x,t) = f e”'fsm|(€||€|)f(§) d¢, zeR? t>0.
R2
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Show that lim¢ o ||u(-,t)||; 2 = o0 for a set of f that is dense in L?(R).

Solution. We claim the desired result holds for all f in the set
S = {fel?: hr%\f(xﬂ = 0}.

Define in(tlé])
gt(g) = |€| (5)7

then we see that
we) = [ e G@ds — G,

Therefore by Plancherel we have

e sin<t|£|>)2 ) <sin<t|e|>>2 )
ol = gl = s = | ( DY P e > LW%)) LD i rigyae

2
[ (“’5') s = ¢ [ 7O de
B(O,x/2t) \ [§] B(0,r/(2t))

> M (BOR/C) - min [FOF 2 min [fE),

3%

which goes to o0 as t — oo for f € S.

Now we need to show S is dense in L?. Fix f € L? € > 0. Let g(z) = |z|7%2 - xpo1)(z) € L*(R?).
Pick a continuous function ¢ with ||f — ¢||;. < € and let h = ¢ + €g. It’s clear that h € S and we have

f =Rl < IIf =0l +llegllp < e +lgllL2)-

So S is dense in L2. O

Problem 6. Suppose that {¢,} is an orthonormal system of continuous functions in L?([0,1]) and let

S be the closure of the span of {¢,}. If sup cg (o} % is finite, prove that S is finite dimensional.

Solution. We consider S as a subspace of L2([0, 1]) equipped with the L? norm on [0, 1]. The sup condition
on S tells us that there exists a constant M such that for any f € S, ||f||,» < M||f||;2. For a fixed
x € [0,1], note that the map f +— f(z) is a linear functional on S and that

[f@)] < [[fllpe < MLz,

which shows that this is in fact a bounded linear functional on S. Since S is a closed subspace of the Hilbert
space L%([0,1]), S is also a Hilbert space by itself, and thus by the Riesz representation theorem we know
that there exists a function g, € S such that f(z) = (f, g, for all f € S. Moreover, notice that

lgoll72 = <9900 = lgz@)| < llgallpe < Mllgallze

which implies that ||g;||;. < M for each x € [0, 1].

Now let {f1,..., fn} be any orthonormal set in S. By Bessel’s inequality, for each z € [0, 1] we have

N N
2 2
M? = ||gw||L2 = Z |<fnagx>| = Z ‘fn(x”z
n=1 n=1

Integrating both sides from 0 to 1 we obtain
N 1 N
2
M= Y| @l = YIS = N
n=170 n=1
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This shows that any orthonormal set in S can contain no more than M? elements, which implies that
dim(S) < M2 O

Problem 7. Determine

0 .a—1
xr
f dx
0o T + z

Solution. Pick the branch of log with the positive real axis cut out and integrate

for 0 < a <1 and Re(z) > 0.

fw) = we ! _ exp((a — 1) log(w))

w+z w—+ 2

along a “Pac-Man” contour with a circle of radius € around 0, a large semicircle of radius R, and an angle of
a away from the positive real axis. The integrals over the circles go to 0 in the limit and the two integrals
along the straight paths combine in the limit as o — 0 to give

0 ta—l
1-— 2mi dt.
(1= exp(zria)) |
Then calculate the residue at w = —z, it’s equal to (—2)*~! (this is well-defined because since Re(z) > 0,

—z does not lie on the positive real axis). So we conclude that the answer is

f@ ot 2wz

o t+z 1 —exp(2mia)’

Problem 8. Let f, : H — H be a sequence of holomorphic functions. Show that unless |f,| — o
uniformly on compact subsets of H, there exists a subsequence converging uniformly on compact subsets of
H.

Solution. By Marty’s Theorem, we know that the family {f,} is either a normal family or tends uni-
formly to o0 on every compact set if and only if the spherical derivatives

R
) = TGP

are uniformly bounded on every compact set. So suppose that f,, does not tend uniformly to o0 on every
compact set. Then if we show that {f,} is a normal family, it implies that {f,} has a subsequence that
converges uniformly on all compact sets. So it suffices to show that the quantites p,,(z) above are uniformly
bounded on compact sets.

Define () —i
gn(z) = m

Then each g, is a holomorphic function H — D. In particular, the family {g,} is uniformly bounded on all
of H, so {g,} is a normal family. Thus we know that the quantities

|97 (2)]
1+ gn(2)?

are uniformly bounded on compact subsets of H. Now we have the calculation

£ ()
PG o HIACT I TG
TP~ 1+ G T L@+ P LGP T REP T
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This shows that p,(z) must also be uniformly bounded on compact subsets of H and thus {f,} is a normal
family, so we are done. [

Alternate solution. Without using Marty’s theorem (it’s not such a standard result).

Let g, be defined as in the first solution, so that g,, : H — D is holomorphic. Fix a compact set K < H. The
gn are uniformly bounded, so there is a subsequence g,, converging uniformly to another function g on K.
Let vy = gp,. First suppose that g # 1 anywhere on K. Then, since g(K) is compact (g is continuous as a
local uniform limit of continuous functions), |g(z) — 1| is bounded away from 0 for z € K. Therefore, letting

—i(g+1)

/= (g—1) "~

we have for any z € K

[fni(2) = f(2)] =

oe(2) + 1 g<z>+1’_ ) =9() | g(2) — (o),

w(z) =1 g(z) -1 (v (2) = D(9(z) = 1)

which shows that f,, — f uniformly on K. This is the “subsequence converging uniformly on compact
subsets of H” part of the problem.

On the other hand, now assume that g(zp) = 1 for some zy € K. We want to show that in fact g is
identically 1 and v — 1 uniformly on K. Fix a conformal map T : D — H with T'(0) = 2 and let hy = vioT.
Let

Z+ hk(O)
1+ hy(0)

be an automorphism of D taking 0 to hi(0). Let up = 1/;,;1 o hy so that we have hy = 1 o u; where
ug : D — D is holomorphic and satisfies u(0) = 0. Since T' is conformal, to show vy — 1 locally uniformly
it is enough to show hy — 1 locally uniformly. It’s enough to show hy — 1 uniformly on the closed ball
B(0,r) for 0 < r < 1. By the Schwarz lemma, we have u,(B(0,r)) € B(0,7), so to show hy — 1 uniformly
on B(0,r) it’s enough to show 1, — 1 uniformly on B(0,r). This is true because for any z € B(0,r) we have

Yr(z) =

||

W (2) — hi(0)] = (1= () < —22— (1 [ha(0)?)

1+ i (0)z] 1—r

which tends to 0 uniformly for z € B(0,7). So we have shown hy — 1 locally uniformly on D, which shows
v — 1 locally uniformly. It then follows that

(=) (ve +1)
Ve — 1

fnk =

tends locally uniformly to co.

So far we’ve only shown that a subsequence of the f,, tends locally uniformly to co. But the argument
above can be applied to any subsequence of the f, to conclude that any subsequence of the f,, has a further
subsequence converging locally uniformly to oo, which implies that f,, — oo locally uniformly. [

Problem 9. Let f: C — C be entire and assume that |f(z)| = 1 when |z| = 1. Show that f(z) = C2™ for
some integer m > 0 and C' € C with |C| = 1.

Solution. We know that f is not identically zero, so the zeros of f are isolated and thus f has only
finitely many zeros inside ). Denote them by ai,...,a,, where each root is listed as many times as its
multiplicity. Define

n
zZ—a;
B(z) := L,
() H 1—ajz
Jj=1 :
Notice that B is a function which is analytic in D, has exactly the same zeros as f in DD, and satisfies

|B(z)| =1 for all |z| = 1. Thus f/B and B/f are two nonvanishing analytic functions in D which have mod-
ulus 1 on dD. By the maximum modulus principle, we conclude that |B/f| < 1 and |f/B| < 1 throughout
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D, which implies that |f/B| = 1 throughout D, which by the open mapping theorem implies that f/B must
be equal to a constant C' with |C| = 1 on all of D.

So we can write

for all z € D. Since f is entire, by the uniqueness of analytic continuations we know that B must also be
entire. But notice that if any a; is nonzero, then B has a pole at @;, which would be a contradiction. So we
must have all a; = 0 and thus B(z) = 2™ for some integer m. Since we know f(z) = CB(z) = Cz™ for all
z € D, since both sides are entire functions this implies that f(z) = Cz™ for all ze C. O

Alternate solution. This solution is basically just a worse version of the first one, but it uses the re-
flection principle so it’s cool.

The fact that |f| = 1 on the unit circle essentially allows us to use the reflection principle. But we need to
get rid of the roots at 0 first. More concretely:
Let m be the order of vanishing of f at 0 and let g(2) = 2™ f(z). Then g is entire, g(0) # 0, and we still
have |g(z)| = 1 for all |z| = 1. We can write this as 1 = g(2)g(z) = g(2)g(1/Z) for |z| = 1. The function
- (11 = is analytic in a neighborhood of the unit circle (because ¢g(1/Z) does not vanish on the unit circle)

and agrees with g on the unit circle. Therefore since the unit circle has a limit point, by uniqueness of
analytic continuation we have

g(z) = — for all z # 0.
9(1/z)
Taking z — o0, we see that lim, ,, g(z) = 1/¢g(0) < o because g does not vanish at 0. So g is bounded,
but it’s not necessarily entire because zeros of g inside D reflect to poles outside of D. Let aq,...,a,, be the

zeros of g inside DD, counted with multiplicity. Then

(z—1/ay) - (2 — 1/an)

(z—a1) - (z—ap)

z—g(2)

is bounded and entire, so it must be a constant. Therefore we conclude

(z—a1) - (z—ap)

(z—1/a1) - (2 — 1/ag)’

but since f is entire, it can’t have any of those poles, so it also can’t have any of the corresponding zeros, so
flzy=Cz". O

flz)=0Cz"

Problem 10. Does there exist a function f(z) holomorphic in the disk |z| < 1 such that lim |1 [f(z)| = 0?7
Either find one or prove that none exist.

Solution. No such function exists. Suppose f had that property. Then in particular f is not identi-
cally zero, so f has ounly finitely many zeros ri,...,r, € D (where roots are listed as many times as their
multiplicity). Let g(z) = f(2)/(z —71)--- (2 — rn). Then g is a function which is holomorphic and nonva-
nishing in D, and since (z — r1)--- (2 — r,,) does not tend to o as |z| — 1, we still have that |g(z)] — o
as |z| — 1. Since g is nonvanishing, 1/g¢ is also holomorphic in D and |1/g(z)| — 0 as |z| — 1. But apply-
ing the maximum principle to 1/g, we see that |1/g| can’t have any local maximum inside D, and since it
extends continuously to be identically zero on dD, this implies that 1/¢g must be identically zero on all of
D, which is a contradiction because g is a holomorphic function on ID. Thus no such function f can exist. [

Problem 11. Assume that f(z) is holomorphic on |z| < 2. Show that




Solution. Let M be the max in question, and let v be the counterclockwise contour around the unit
circle. By the ML inequality

< 2w M.

Lf(z)—idz

On the other hand,
1
J f(z) — = dz=0—-2mi = —2mi.
. z

Therefore 27 < 2w M, hence the result. O

Alternate solution. I think these two solutions are essentially equivalent but this one feels less like a
trick.

Suppose instead that |f(z) — 1/z| < 1 for all |z|] = 1. Let C be the unit circle. The idea is that the
image of C under 1/z has winding number —1 around the origin, and if f(z) is always less than 1 away from
1/z, then f should also wind C around the origin —1 times, which is bad.

By assumption we have |zf(z) — 1| < |z| = 1 for all z € C. So the image of C' under zf(z) is contained
in B(1,1), which implies it has winding number 0 around the origin. Therefore by the argument principle,
zf(z) has no zeros inside D, which is impossible if f is analytic. Alternatively, one can apply Rouche’s
theorem to the inequality |zf(z) — 1| < |z| = 1 to conclude that zf(z) has the same number of zeros in D as
the constant function 1, which is zero (the first argument given here is essentially just a proof of Rouche’s
theorem). [

Problem 12a. Find a real-valued harmonic function v defined on the disk |z] < 1 such that v(z) > 0
and lim,_,; v(z) = o0.

z+1
z—1

z+1
z—1

Solution. Define v(z) = log - 1‘. It is clear that v(z) — o as z — 1. To see that v is harmonic

242 — 1) is a well-defined analytic

in D, note that the map z — 1 is nonvanishing on D, so z — log (

function on D, and v(z) = Re <log (if} - 1)), s0 v is harmonic in D. To show that v(z) > 0 on D, note

that z — 2= — 1 is a conformal map from D to {z € C : Im(z) < —1}, so

Z’1—1‘>1forallzell))and

z+1 z+1
thus v(z) > 0. O
“Alternate” Solution Simply define v(z) = — log | Zgl} . On the disc, 251 is nonzero and holomorphic, so

z—1
2

v(z) is harmonic. It is also non-negative since < 1 for |z| < 1. The blowup near 1 is clear.
Problem 12b. Let u be a real-valued harmonic function in the disk |z| < 1 such that u(z) < M < o
and lim,_,; u(re?®) < 0 for almost all §. Show that u(z) < 0.

Solution. For any 0 < r < 1, w is harmonic on the closed disk |z| < r. So for any 0 < s < 1, we
can use the Poisson integral formula to write
; 1 (™ 72— (rs)? ;
u(rse’®) = — —— " ___u(re'®) dg. 2
( ) 21 Jo  |rei —rsei?|2 (re'®) do (2)
For a fixed s and 6, define
r? — (rs)?

_ i}
C rei — 7"sew|2u(7n62 ):

9r(¢)

We see that g, is bounded on [0, 27] because « < M on all of D by hypothesis and |re’® —rse?|? is bounded

away from 0 because s < 1. So say that |g.(¢)] < A for all ¢ € [0,27]. Therefore we can apply Fatou’s
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lemma to the functions A — g,.(¢) to get

27 2
J liminf(A — g,(¢))d¢ < liminf | (A — g,(9))do,

0 r—1 r—1 0

which implies that
27 2
f limsup g (¢) d¢ = limsup J 9:(¢) do.

0 r—1 r—1 0
So taking the limsup as 7 — 1 on both sides of equation (1) yields, since u is continuous on D,
) ) 27 27 27 1— 52 )
u(se’®) = limsupu(rse’?) = lim supj gr(P)do < f limsup g,(¢) dp = f e gz limsup u(re'®) do.
r—1 r—1 0 0 r—1 0 |ez — set ‘ r—1

By hypothesis, the integral on the far right is an integral of a function which is < 0 almost everywhere, so
we have u(se?’) < 0. This argument holds for any 0 < s < 1 and any 6 € [0,27], so we conclude that u < 0
onD. [0
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16 Fall 2016
Problem 1. We consider the space L!(u) of integrable functions on a measure space (X, M,pu). For
feLt(u) let

loll, = [ lg(ola

be the corresponding L'-norm. Suppose that f and f,, for n € N are functions in L*(u) such that

(i) fn(x) = f(x) for u-almost every z € X and

() [[fally = 1Al
Show that then ||f, — f||; — 0.

Solution. Note that the function |f| + |f.| — |f — fn| is nonnegative for all n (this just follows from
the triangle inequality). Then we apply Fatou’s lemma to get

[tmint 051+ 152l =15 = o < gmint (0514 Ul =15 = Ful e

Since f,, — f pointwise almost everywhere, the left side of the above inequality reduces to

2J|f\du-

Since ||fnll 2 — || f]l 1 as n — oo, the right side reduces to

2 [ 1$1d—timsup [ 17 = £l di.

n—0o0
Together these imply that
limsupJ|f - fn‘ dp < 0,

n—o0

which implies that ||f — fn||;1 = 0asn—o. O

Problem 2. Let p be a finite positive Borel measure on R that is singular to the Lebesgue measure.
Show that

lim —u([x —netr]) = 400

r—0+ 2r

for p-almost every = € R.

Solution. Let A be Lebesgue measure on R. It suffices to show that

lim Mz =1z +7r])

=0
r—0+ p([z —r,x +r])

for p-almost every = € R. Since A and p are singular, write R = A U A° where A(4) = 0 and p(A°) =0. Tt
suffices to just look at x € A because p(A°) = 0. Define

E, = {xeA:limsupW>l}.
root Mz —rx+r]) "k

To prove the desired result it suffices to show that p(Ey) = 0 for each fixed k. Fix € > 0. By the regularity
of Lebesgue measure, let V' be an open set with Fr, € V and A(V) < e. By definition of Fy, for each x € Ej,
there is an open interval I(z) = (x — r(z),r + r(z)) such that

A (z) _ Mz —r(z),z +r(@)])
p(I(x) — pllz —r(@),z +r(z)])

WV

?

| =

>
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and 7(z) may be chosen small enough so that I(z) < V for each . Then (J,.p, (1/5)I(z) is a covering of
Ej. by open intervals, so by the Vitali covering lemma, we can pick a countable subcollection {(1/5)I(x,)}
which is pairwise disjoint and satisfies

p(E) < Y p(wn) < kY AMI(zn)) = kA(U I(xn)> < kAV) < ke

Since p(Ey) is independent of €, we may take e — 0 and conclude that p(Ey) = 0, so we are done. [

Problem 3a. If X is a compact metric space, we denote by P(X) the set of all positive Borel mea-
sures g on X with u(X) = 1. Let ¢ : X — [0,00] be lower semicontinuous function on X. Show that if u
and p, are in P(X) and p,, — p with respect to the weak-star topology on P(X), then

J(bd,u < hmi(ng.¢d/ln-

Solution. Since ¢ is lower semicontinuous, we can write it as a monotonically increasing limit of con-
tinuous functions, and since ¢ > 0 we may also take these continuous functions to be nonnegative. So say
that 0 < fr / ¢ as k — o. Then, by definition of weak-* convergence of measures and applying the
Monotone Convergence Theorem twice, we have

J(bdu = lim .[fk dpy = lim lim | fxdu, < liminf lim Jfk A, = liminfj¢dun.

k—o0 k—00 n—00 n—ow k—o n— o0
The interchange of the limits with the inequality is justified by the following statement:
Let {an,k}ﬁkzl be nonnegative numbers such that lim,_,o @y, and limg_,o an,, both exist for each fixed
k and n respectively, limy_,o limy, o apr exists, and for each fixed n, a, is increasing in k. Then
limg o0 limy, o0 G < liminf,, o0 limp o0 ap -

Proof: Define

b, = lim anx c, = lim ap L := lim cg.
k—oo n—00 ’ k—o0

Fix € > 0. Let K be big enough so that cx > L — €. By the increasing condition, we have b,, > a,, x for
each n. Therefore

liminf b, > liminfa, x = cxk > L —e
n—0oo n—0o0

Since liminf, .o b, does not depend on ¢, we conclude that liminf, . b, > L. O

Problem 3b. Let K < R? be a compact set. For e P(K), define

1
E(p) = J J — du(x) du(y)-
W = | | e dutw
Show that the function E : P(K) — [0, 0] attains its minimum on P(K) (which could possibly be infinity).
Solution. See Spring 2013 # 4

Problem 4. Let L' = L!([0,1]) be the space of integrable functions and L? = L?([0,1]) be the space
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of square-integrable functions on [0,1]. Then L? = L. Show that L? is a meager subset of L'., i.e., L? can
be written as a countable union of sets in L' that are closed and have empty interior in L*.

Solution. Write

L? = G {feLl:r|f|2<N} —: En.
1 0

N=

To show that L? is a meager subset of L', it suffices to show that each Ey is closed and nowhere dense with
respect to the L' norm. To show Ey is closed, let fi be a sequence in Ey and suppose that f, — f in the
L' norm. This implies that a subsequence converges to f almost everywhere, so by relabeling if necessary
we may just assume that f; — f almost everywhere, so also |fx|?> — |f|?> almost everywhere. Therefore by
Fatou’s lemma we have

1 1 1
J If> = f liminf |fz]? = liminff Ifel> < N,
0 0 k—o0 k—o0 0

so f € En. Thus Ey is closed.

To show Ep is nowhere dense, fix f € Ey and € > 0. It suffices to find a function g such that g ¢ Ey
and ||g — f||;1 < e Define g(z) = f(z) + ez~ /2. Tt is clear that g ¢ Ex because if g were in L2, then z~1/2
would also be, which is a contradiction. It is also clear that

1
lo=flls = | oo = 2,
0

so we are done. [

Problem 5. Let X = C([0,1]) be the Banach space of real valued continuous functions on [0, 1] equipped
with the sup norm. Let A be the Borel o-algebra on X. Show that A is the smallest o-algebra on X that
contains all sets of the form

St B) = {feX: f(t)e B}

for t € [0,1] and B a Borel subset of R.

Solution. First we show that each set of the form S(¢, B) is actually a Borel set in X. Note that for
each ¢, the evaluation map ¢; : X — R given by f — f(t) is a bounded linear functional on X because
|£(®)] < |If]lx- Therefore ¢; is a continuous function X — R, and since S(t, B) = ¢; '(B) where B is a
Borel set in R, we see that S(¢, B) must be a Borel set in X.

Let F denote the o-algebra generated by the sets of the form S(¢, B). To show that F = A, it suffices
to show that every closed neighborhood in X is in F. So fix g € X and € > 0. We need to show that
E:={feX:||f—gllx <e€}is an element of F. For any ¢ € Q n [0, 1], define B, := [g(q) —€,9(q) + €.
It is clear that B, is a Borel subset of R. Now we claim that

E = (] S(aBy.

qeQn[0,1]

Proving this is enough to conclude that F is an element of F, so this will finish the problem.

If f e E, then ||f —glly < € so in particular |f(g) — g(q)| < € for every ¢ € Q n [0, 1], which implies
that f(q) € B, for every ¢, so f is an element of the set on the right side of the above equation. Con-
versely, let f be an element of the right side and suppose that f ¢ E. Then we have |f(z) — g(z)| > €
for some z € [0, 1], and since f and g are both continuous, we can find a rational number ¢ near x such
that |f(q) — g(q)] > €, which contradicts the assumption that f € S(gq, B;). Therefore we conclude that
E = (Nyeqno] 5@ By) € F, so we are done.  [J
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Problem 6a. Consider the Banach space ¢! consisting of all sequences u = {z;} in R with

0
lullp = Y, losl < o
i=1

and the Banach space ¢* consisting of all sequences v = {y;} in R with

W]l = suplys| < oo.
€N

There is a well-defined dual pairing between ¢! and £* given by
0
<U,’U> = Z TiY;
i=1

for u = {x;} € ¢! and v = {y;} € £*°. With this dual pairing, £* = (¢})* is the dual space of ¢!.
Show that there exists no sequence {u,} in ¢! such that ||u,||, > 1 for all n and (u,,v) — 0 for each
ve L™,

Solution. Let {u,} be a sequence in ¢! satisfying ||u,||,, = 1 for all n. We can assume by scaling that
|{un||;n = 1 for each n because scaling the sequences down can only decrease (u,, v) for any v € £*. Suppose
that (u,,v) — 0 as n — oo for all v € £*. We will get a contradiction by constructing a sequence v € £*
such that {(u,,v) is bounded away from zero infinitely often.

First note that by letting v be the sequence which has a 1 in the jth spot and 0 everywhere else, we
know that (u,); — 0 as n — oo for each fixed j. Also note that since ||u,||,, = 1 for each n, necessarily
l|tn | <1 for all n. Now, for any fixed € € (0,1/2), we can do the following construction:

Pick J; to be large enough so that

Z |(U1)J| > 1—e

jE[l,Jl]
Now, since we know that (u,); tends to zero in each slot individually, pick Ny to be large enough so that

€

max(‘(uN1)1|7 ceey |(’LLN1)J1 |) < ﬁ
Then we see that
DU Nyl < /2,
jG[l,Jl]
so we may pick Jy such that
D lun)sl > 1—e
jE[J1+1,J2]
Now pick Nj to be large enough so that
€
max(‘(uf\b)l'? R |(U‘N2)J2|) < E

We may repeat this process indefinitely, and so we obtain a sequence {Ny} and a sequence {J} such that

for each k
D luw)l > 1—e
JE[Je+1,Jk41]

Now, letting s(z) denote the function which is 1 if x > 0 and —1 if 2 < 0, define the sequence v € {* by

(v); = s((un,);) when je [Jy+1, Jpt1].
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Note that each (v); is an entry of some u,, so we have ||v|[,.. < 1. By construction, for each k we have
D (uny)i(w); = Do luw)il > 1—¢
Je[Jx+1,Jx+1] jelJe+1,J511]
s0

un,vy = D ()i Y ()W) = ==l Y ((uw)il > 1-26

JelJk+1,Jk+1] JE[Je+1,Jk41] JE[Je+1,Jk41]

Therefore, picking (for example) € = 1/3, we see that (up, ,v) is bounded away from zero for every k, which
is our contradiction. [ (Note: I would really prefer a nicer, non-constructive solution)

Problem 6b. Show that every weakly convergent sequence {u,} in ¢! converges in the norm topology
of /1.

Solution. Suppose that u, — u weakly in ¢'. This means that ¢(u,) — ¢(u) for every bounded lin-
ear functional ¢ € (£1)*, and by the given dual pairing this means that {(u,,v) — (u,v) for every v € £*,
ie. {u, —u,vy — 0 for every v € £*. Suppose that u, did not converge to u in the norm topology on
¢'. Then there is a subsequence u,, and a § > 0 such that ||u,, —ul|,, = ¢ for all k. Replacing u,, —u
with (1/6)(un, — u) if necessary, we may assume that ||u,, —u|[,, = 1 for all k. But we still must have
{tp, —u,vy — 0 for every v € £*°, which contradicts part (a). Therefore we must have u, — u in the norm
topology on ¢'. [

Problem 7a. Let H be the space of holomorphic functions f on D such that

f F(2)PdA(z) < oo.
D

Here integration is with respect to Lebesgue measure A on D. The vector space H is a Hilbert space if
equipped with the inner product

(fogy = j F(2)3(2) dA(2)

for f,g € H. Fix zp € D and define L, (f) = f(z0) for f € H.
Show that L., : H — C is a bounded linear functional on H.

Solution. It’s obvious that L,, is a linear functional. For zy fixed, let § > 0 be small enough so that
B(zp,6) € D. Then for any f € H, we have by the mean value formula

1 1 1
L = Wl = |2 [ o) < g | e1aae) < o [ el
1 1/2 1/2
< ) (JD 12 dA(Z)> (J;D|f<z)|2 dA(z)> by Cauchy-Schwarz
< — Il

Vmé?

so L, is a bounded linear functional. [

Problem 7b. Find an explicit function g,, € H such that

LZO(f) = f(Zo) = <fvgzo>
for all f e H.
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Solution. Note that such a g,, exists for each z9 € D by the Riesz representation theorem. First we

claim that the set
+1
{en(z) =42 z"}
T

is an orthonormal basis for H. It’s easy to compute directly using polar coordinates that it’s an orthonormal
set. To show it’s a basis, it’s enough to show that {f,e,) = 0 for all n implies f = 0. We compute

1 /27
(fren) — C(n)f F(FA() = C(n) f Fre®)yrm+e=ind g gy,
D 0 Jo
The Cauchy integral formula gives

 flre)

6
it 1) re'” df.

F™(0) = c<n>f

0

Combining these two we can observe that

(freny = Cn) j P2 ) dr = C(n) ) (0).

(C(n) is a constant in terms of n that is different from line to line). This implies that {f, e,y = 0 implies
f(0) = 0. Therefore because holomorphic functions have power series expansions, {f,e,) = 0 for all n
implies f = 0. This shows that the e, form an orthonormal basis for H.

Now we determine ¢,,. For z € D we have

a0
gzo(z) = <gzoagz> = Z <gzoaen><gzaen> by Parseval
n=0
© ©
= Z <enagzo><enagz>
n n=0

& 1
= Z Z()Z = (1 — ZQZ)2

n=0

Problem 8a. Let f be a continuous complex-valued function on D which is holomorphic on D and f(0) # 0.
Show that if 0 < r < 1 and inf|,|—, |f(2)| > 0, then

1 27 )
2—.[ log‘f(rew)| dod = log|f(0)].
™ Jo

Solution. Let r be such that inf|;|_, |f(2)| > 0. Since f is not identically zero, it has only finitely many

zeros inside the disc |z| < r. Denote them by ay, ..., a,. Define the function
[z —a1) r(z—ap)
9(=) = (T2—6l12> (TQ—anz '
We know that |g(z)| = 1 for all |z| = r and ¢ has the same zeros as f and no poles in |z| < r. Therefore
the function f/g is a nonvanishing holomorphic function on |z| < r with |f(2)/g(z)| = |f(2)| for |z| = r.

Since it is nonvanishing we know that it has a holomorphic single-valued logarithm, so log|f(z)/g(%)| =
Re(log(f(2)/g(z))) is harmonic in |z| < r. Therefore we can apply the mean value property to log|f/g| to
obtain

f(0) - ’f ‘

1 27 )
_ _ 1 6 .
g(())‘ o 27TJ;) og’f(re )‘ do
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We compute

e

= log|f(0 |—

Since each |a;| < r, we have log|a;/r| < 0 and therefore

1 [ ,
log [£(0)] < 2—j log‘f(rele)|d9. O
™ Jo

Problem 8b. Show that |[{6 € [0,2n] : f(e"’) = 0}| = 0, where |E| denotes the Lebesgue measure of E.

Solution. Let E = {0 € [0,27] : f(e?) = 0}. Suppose that |E| > 0. Since D is compact, we know

that f is uniformly continuous on D. Fix ¢ > 0. Then we know that there is some r. > 0 such that
|f(r.e?)| < € for every 6§ € E. We can also say |f| < M on D. Now we have the following estimate:

27
f log ’f(reew)’ df = f log ‘f ree’ ’ de + J log ‘f(reew)‘ df < |E|log(e) + 27 log(M).
0 c

But since f(0) # 0, we can pick e > 0 small enough so that the right side above is smaller than 27 log |f(0)|,
but part (a) says that we must have Sg” log | f(re?)| d = 2mlog|f(0)| for any r > 0, so this is a contradic-
tion. [

Alternate Solution. Since f is continuous on the compact set D, we can say |f| < M. Thus log|f]|
takes values in [—c0, M]. Let g,.(0) = M — log|f(re?®)|. Then each g, for 0 < r < 1 takes values in [0, 0],
so we can apply Fatou’s lemma:

21 2m
f liminf g,(0)df < liminf [ g.(6)do

r—1 r—1 0

2m 2m
2nM — J limsup log | f(re?)|df < 27xM — lim supf log | f(re®)| df

r—1 r—1

r—1

2m
f log|f(e)|do = limsupf log |f(re®)|df = 2mlog|f(0)] > —oo
0 0

by part (a). But if F had positive measure, then the integral on the left side would be —c0, a contradiction.
O

Problem 9a. Let p be a positive Borel measure on [0,1] with u([0,1]) = 1. Show that the function
f defined as

£ = [ etauty
[0,1]
for z € C is holomorphic on C.

Solution. For h; € C with |hg| — 0 we have

1 it eihkf -1
RUCHR) =) = [ et

ihpt _ 1 d .
lim & — =~ = (e”z> (0) = it.

k—o0 hk dz

Thus for fixed 2, the magnitude of the integrand is bounded by 2sup; 1 |e?#t| < oo for k large enough. By
dominated convergence, we have

Notice that

/ _ .y izt
fi(z) = J[o,1] ite* du(t).
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Note that all functions in question are continuous, and hence Borel measurable, so applying dominated
convergence was justified. [

Alternate solution. We are motivated by the fact that if f is holomorphic it should have f'(z) =
Sé ite**t du(t). We estimate, for a fixed z,

! 1

1
’iteiZt dﬂ(t)‘ _ ‘J (ei(erh)t _ eizt o ’iht@iZt) dﬂ(t)

0 h 0

1
LuGen =) - |
1 ! izt iht .
< WL le| |e (14 iht)| du(t).

We can pick || to be small enough so that |e’** — (1 + iht)| < C |liht|> = Ct2|h|? for some absolute constant
C. Then we have

1

L o ) — 2 (Mool el [ — el
LuGEm - | CIn? [ (@) dute) < ceal [ dutoy = cea,

. 1
ite'* du(t)‘ < —
0

=l
which tends to 0 as |h| — 0, so we conclude that f'(z) = Sé itetdu(t). O
Problem 9b. Suppose that there exists n € N such that

limsup | f(2)|/|z|" < o

|z|—>00

Show that then p is equal to the Dirac measure dg at 0.

Solution. By the given condition, we have for large |z| that |f(z)| < C|z|™ for some constant C. Since f is
polynomially bounded and holomorphic, f must in fact be a polynomial.
For z real,

()] < j 6 du(t) < 1.
[0,1]

But a polynomial which is bounded on the real line must be constant. Since f(0) = 1, we have f(z) =1 for
all z.

For real z, we must therefore have equality in the rightmost inequality above. This occurs only if e**" is
real, outside a subset of [0, 1] with measure 0. However e**! is real only for ¢ an integer multiple of wk/z. It
follows that the set of multiples M, of wk/z has p-measure 1 for all z. But M, and M /3. intersect only at
0, so we must have x({0}) = 1. (Is there a nicer way to finish off the problem?)

izt i

Alternate solution. Using the same argument from above, we know that f is a polynomial of degree
n and the derivatives of f are given by f\)(z) = Sé(it)je”t du(t). Since it’s a polynomial of degree n, the
(n + 1)st derivative is identically zero, so

1
J tn+1eizt d/,é(t) =0
0

for all z € C. If u is not a point mass at 0, then p(0,1] > 0, so by continuity, u[d, 1] > 0 for some § > 0.
Then taking z = —¢ we have

1 1
0 = f t" et du(t) = f t"Fletdu(t) = 6" tteSufs,1] > 0,
0 s

a contradiction. [

Problem 10 a. Consider the quadratic polynomial f(z) = 2?2 — 1 on C. We are interested in the iter-
ates f™ of f for n € N. Find an explicit constant M > 0 such that the following dichotomy holds for each
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point z € C: either (i) |f™(z)] — o0 as n — o or (ii) |f™(z)| < M for all n € Ny.

Solution. We take M = 2. For |z| > 2, we have

F&) =122 1
1
I P
zZ
1
> (1= 1) 14
]
>3
= —|Z|.
2

Thus if |z| > 2, we have f(z) > 2-(3/2)". So if |f¥(2)| is greater than 2 for some k, then |f"(z)| — o
as k — oo. In particular if (i) does not hold, then (ii) must hold. It is clear that (i) and (ii) cannot hold
simultaneously. [

Problem 10b. Let U be the set of all z € C for which the first alternative (i) holds and K be the set
of all z € C for which the second alternative (ii) holds. Show that U is an open set and K is a compact set
without “holes”, i.e., C\K has no bounded connected components.

Solution. For k € N, let Uy be the set of all z € C where |f*(z)| > M. Then Uy is the preimage of
an open set, and hence open. By part (a) we have that U is the union of the sets Uy, so U is open.

It is immediate that K is closed, since K is the complement of U. Any element z in K must satisfy
|z| < M, so K is compact.

Suppose that S was a bounded connected component of U. By part (a) we have that f*(x) < M for all
x € K, and hence for all 2 € dS. But then the maximum principle implies that f*(z) is bounded by M for
all x in S. Thus (i) is not satisfied, and so = ¢ U, which is a contradiction. [

Problem 11 a. Suppose f : C — C is a holomorphic function such that the function z — g(z) = f(z)f(1/2)
is bounded on C\{0}. Show that if f(0) # 0, then f is constant.

Solution. Let |g(z)| be bounded by M. Since f(0) # 0, there is a constant m > 0 such that |f(z)| > m on
a d-neighborhood of 0. For |z| < 4, we then have

M = f(2)f(1/z) = mf(1/z).

So f(1/z) < M/m for |z| < §, and hence f(z) is bounded for |z| > 1/4. It follows that f is bounded and
therefore constant. [

Problem 11 b. Show that if f(0) = 0, then there exists n € N and a € C such that f(z) = az™ for
all z e C.

Solution. Let n be the order of f’s zero at 0. Then we can write f(z) = 2"h(z) where h is holomor-
phic and h(0) # 0. Note that h(z)h(1/z) = f(2)f(1/2) = g(z) for z # 0. By part (a) h(z) = a identically for
some constant a, and then we have f(z) = az". O

Problem 12a. Let U < C be an open set and K < U be a compact subset of U. Prove that there
exists a bounded open set V with K € V € V < U such that 0V consists of finitely many closed line
segments.

Solution. Since K is compact and U€ is closed, we have dist(K,U¢) = § > 0. Tile the complex plane
with squares of side length §/100. Let Q be the family of all squares @ such that dist(Q, K') < ¢6/10. This
is a finite family because K is compact and therefore bounded. Then let V' be the interior of UQEQ Q. This

is clearly a bounded open set such that K € V € V < U, and 0V just consists of finitely many edges of
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squares. [

Problem 12b. Let f be a holomorphic function on U. Show that there exists a sequence {R,} of ra-
tional functions such that R,, — f uniformly on K and none of the functions R,, has a pole in K.

Solution. Let the set V' be as in the previous part. For any z € K, by the Cauchy integral formula

we can write N
1 1
flz) = — de - 7ZJ‘ Md
2mi Joy w — 2 2mj:1 g, W2

where each v; is a straight line and they all have the same length. We parametrize each of these integrals
and write

and we know that |7;(t)| = ¢ for some constant ¢ and all j.

We want to show that the above integral can be approximated uniformly in z € K by its Riemann sums.
Fix € > 0. By construction of the set V, we know that |v;(t) — 2| is bounded away from zero uniformly for
z € K and t € [0,1], and therefore, since everything involved is continuous, we know that there is a § > 0
such that |t; — ta| < ¢ implies

FOiE));(t) (5 (t2))7;(t2)
v5(t1) — = v (t2) — 2

< €

for every z € K. So for each j, let {0 =1t;0 <t;1 <...<t;n() = 1} be a partition of [0, 1] with mesh size
less than §. Then we have, for any z € K,

MY M) ,
UG ]’ 75 (5.4) f(y(®)) ) S (t5,0))7; (t5,4)
JZ1 ; e (i —tji-1) Z me O dt — ;1 %(tj}i)_jz (t;

)ty FOu@)i@)  fr(t,)7;(E.0)
I (W_z )

Fa@ @) f s .0))7;(t50)
Y (t) — 2 v (tji) — =

M

—~

=1 j,i—1

<.
<.

tii

N M(j) N M(j)
<EZ dt<ZZ (tji—tji1) < Ne.
j=1 i=1 oo

Finally, notice that the big double sum in the first term is exactly a rational function in z which only has
poles on the lines «;, which are all outside of K, so this gives us the desired result. [

tji—1
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17 Spring 2017
Problem 1. Let K < R be a compact set of positive measure and let f € L*(R). Show that the function
F(z) = iJ flz+1t)dt
1K Jxe
is uniformly continuous on R. Here | K| denotes the Lebesgue measure of K.

Solution. We calculate

|F(z) — F(y)| = I1(|UKf(:v+t)dt—fo(y+t)dt‘ - If1<UK_ f(t)dt_L_ f(t)dt’
> Iz s e — ari — oty = Mlze s e oo
< TR ey FO1E < SEEEMUE = DA —0) = TN — (@ = u)AK)

where A denotes the symmetric difference of two sets and A is Lebesgue measure.

Fix € > 0. Let h =  —y; we want to estimate the measure of (K —h)AK. Since K is compact, there is a set
V which is a finite union of disjoint open intervals such that K € V and A(V\K) <e. Say V=1 u...UT,.
We have

(K — h)AK

(K = h)\K) v (K\(K — h))
(V=m)\V) u (VAK) v (VA(V = h)) v (V = h)\(K = R))
(V =h)AV) v (VAK) u ((V = W)\(K = h)).

N

Since V is a finite union of disjoint open intervals, it is clear that

AV = h)AV) < 20|,

Therefore we have A\((K — h)AK) < 2¢ + 2n|h|. So for any z,y € R satisfying v — y| < 5.5, we have
@)~ F)| < ety @ - ypar) < Mlee
K| K]

Since n is a parameter depending only on € and the set K, this shows that F' is uniformly continuous on R.
O

Problem 2. Let f, : [0,1] — [0,%0) be a sequence of functions, each of which is non-decreasing on
the interval [0, 1]. Suppose the sequence is uniformly bounded in L?([0,1]). Show that there exists a subse-
quence that converges in L*([0,1]).

Solution. Let M be a uniform upper bound for ||f,||,2. Since each f, is nondecreasing, we get the

bound 0 < f,(¢) < \/% for ¢ € [0, 1]. In particular note that for fixed ¢, f,(t) is restricted to a compact set.

Therefore the standard diagonalization argument allows us to construct a subsequence f,, which converges
on [0,1] n Q.

We claim that f,, converges pointwise a.e. as k — co. For a rational ¢, let a, be the limit of the sequence
frr(q). Note that aq < ay for ¢ < ¢/, since each f,, is nondecreasing. For r € R let L, = SUp, <, Gq and
U, = infy~, ay. Observe that the intervals (L,, U,) are all disjoint, so at most countably many of them are
nonempty. The interval is empty exactly when L, = U,., so this equality holds for almost every r. But when
L, = U,, the sequence f,, (r) converges to this value. This establishes pointwise a.e. convergence.

Let f be a function on [0, 1] such that f,, — f pointwise a.e. We have |f,, (t) — f()] < \/% for almost

every t. Since \/% lies in L'([0, 1]), Dominated Convergence implies that f,, — f in L'.

Note that there are no issues of measurability to worry about; an increasing function is continuous a.e.
(in fact everywhere except possibly on a countable set) and therefore measurable.
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Problem 3. Let C([0,1]) denote the Banach space of continuous functions on the interval [0, 1] endowed
with the sup-norm. Let F be a o-algebra on C([0,1]) so that for all = € [0, 1], the map defined via

Lo(f) = f(=)

is F-measurable. Show that F contains all open sets.

Solution. Since C([0,1]) is separable, every open set is a countable union of open balls, so it suffices
to show that F contains every open ball. And every open ball is a countable union of closed balls, so it
suffices to show F contains every closed ball. Fix g € C([0,1]), € > 0, and let

E = {feC(0,1]): [|f —gllp= < €}
be a closed ball. For each ¢ € Q n [0, 1], let

Ey = {FeC([0,1]): [f(9) —9(a)| < €}
Note that each E, € F because E, = L;'(B(g(q),¢€)) and B(g(q),€) is a Borel set in C. Now we claim that

E = ()E,

qeQ

First, if f € E, then |f(z) — g(x)| < ||f —gll = < € for all z € [0,1], so clearly f € E, for every ¢, so
E < (\,eq Eq- Conversely, suppose f € E, for every ¢. If we had f ¢ E, then we would have |f(z) —g(z)| > €
for some x € [0, 1], but since |f — g| is continuous and Q is dense, this would imply the existence of ¢ € [0, 1]
with |f(q) — g(q)| > ¢, a contradiction. So E' = (1,cq Ey, which expresses £ as a countable intersection of
elements of F,so Ee F. O

Problem 4. For n > 1, let a, : [0,1) — {0,1} denote the nth digit in the binary expansion of z, so
that
x = Z ap(z)2™" for all z € [0,1).

n=1

(We remove any ambiguity from this definition by requiring that liminf a, (z) = 0 for all z € [0,1).) Let
M([0,1)) denote the Banach space of finite complex Borel measures on [0, 1) and define linear functionals
L, on M([0,1)) via

1
Lo(p) = | an(o)duto).

0
Show that no subsequence of the sequence L,, converges in the weak-* topology on M ([0,1))*.

Solution. Let L,, be any subsequence of the L,. To show that L,, is not weak-# convergent, it suf-
fices to find some p € M ([0,1)) such that {L,, (x)}7_, is not a convergent sequence in C. Let

0
b = Z(k mod 2) - 27",
k=1

i.e. bis the number in [0, 1) whose nth digit in binary is equal to 1 if n = ny, for some odd k, and 0 otherwise.
Now let u = &, be the point mass measure at b. Clearly e M([0,1)), and we have

1

L) = [ an (@) dn(o) = a ) = kmod 2
0

S0 {Ly, (1)}, is not a convergent sequence, so {Ly, } does not weak-* converge. [J

Problem 5. Let du be a finite complex Borel measure on [0, 1] such that

1
i(n) = J XN du(x) — 0 asmn — o0.
0
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Let dv be a finite complex Borel measure on [0, 1] that is absolutely continuous with respect to du. Show
that
v(n) - 0 asn — .

Solution. Since dv is absolutely continuous with respect to du, by the Radon-Nikodym theorem there
is a function f = Z—Z e L'(du) such that

1 1
v(n) = J 2T dy(z) = J 2™ f () dp(z).
0 0

Fix € > 0. Since dy is a finite Borel measure on a compact metric space, we know that the set of continuous
functions is dense in L!(du) with respect to the L' norm, so let g be a continuous function satisfying
I|f —gll,1 < e We also know that trigonometric polynomials are dense in the set of continuous functions
with respect to the sup norm, so let P be a trigonometric polynomial such that ||g — P||;. < e. Writing
P(z) = ZTIX:_N a,e2™™Me e calculate

1 N 1
lim | e P(z)du(z) = lim Z an, J 2T g (2) = 0
=—N 0

n—0o0 0 n—0o0

by hypothesis. Thus, as soon as n is big enough so that

JeQW"mP(Jﬁ)du(x) <,
0
we have
1
o(n)] = f 27N £(2) dp(x)
1 1 1
< f 27 (f(z) — g(a)) dyu(x)| + j 27N (o) — P(x)) du(x)| + f 27N (1) dyu(x)
< e+f0 (@) - g(a) du(z) + f l9(z) — P(2)| du(z)

< e+ e+ epf0,1],

which shows o(n) - 0asn —o. O

Problem 6. Let D be the closed unit disc in the complex plane, let {p,} be distinct points in D and
let 7, > 0 be such that the discs D,, = {z : |z — pn| < rp,} satisfy

1. D, € Dy
2. D, nD,, = if n# m;and
3D, < 0.

Prove X =D\, D, has positive area.

Solution. Let f(z,y) = )2 xp,(#,y). Also let u(z) = >)° | Xx(p,) () where 7 denotes projection onto
the real axis. We have . .
f u(z)de = 2273 < ©
-1 i=1

by hypothesis, so we conclude that u(z) < oo for a.e. © € (—1,1). For a fixed z, u(x) counts the number
of the D; that intersect the line Re(z) = z. Since the D; are closed disjoint discs, u(z) < oo implies that
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the portion of the line Re(z) = = not contained in any of the D; has positive (one-dimensional) Lebesgue
measure. Let m(z) denote the one-dimensional measure of the portion of the line Re(z) =  not contained
in any of the D;. Then the area of X is given exactly by Sl_l m(x) dz, and since m is a non-negative function

which has a positive value for a.e. x € (—1,1), this implies that 51_1 m(z)dx >0. O

Problem 7. Let f(z) be a one-to-one continuous mapping from the closed annulus
{1<|z| < R}

onto the closed annulus
{1 <z| < S}

such that f is analytic on the open annulus {1 < |z| < R}. Prove S = R.

Solution. Let A = {z:1 < |z|] < R} and B = {z : 1 < |z|] < S}. We know that f maps JdA to ¢B,
so by composing f with an inversion if necessary we may assume that f maps the unit circle to itself. Since
f is a nonvanishing analytic function in A, log|f| is harmonic in A and extends continuously to 0A, and
satisfies log | f(z)| = 0 on |z| = 1 and log|f(z)| = log(S) on |z| = R. Since A is a region on which the Dirichlet

log(S)

log(R) '

problem can be solved, log|f| is uniquely determined by its boundary values. Since z — log|z] -
another harmonic function on A with the same boundary values, we conclude that

log £(2)| = logl=| 15

for all z € A. Therefore we have |f(z)| = |2®| where « :=log(S)/log(R). Since f(z) and z* are both analytic
functions in the slit annulus A := A\[—R, —1], this implies that f(z) = C2* for some |C| = 1 (this is proven
by applying the maximum principle to f(z)/z* and 2%/f(z)). But we know that f analytically continues to
all of A, so by uniqueness of analytic continuation, z® must also, which implies that « is a positive integer.

But if a > 2, then z® is not one-to-one on A, so we must have a = 1 and therefore log(R) = log(S), so
R=5S5 0O

Problem 8. Let ay,...,a, be n > 1 points in the disc D (possibly with repetitions), so that the func-
tion
n
_ 1—[ z— aj
e 1—-ajz

has n zeros in D. Prove that the derivative B’(z) has n — 1 zeros in D.

Solution. First assume that B(0) # 0 # B’(0) and that B has no repeated roots. One can calculate

that
B () & 1- |aj|2 Y (1= a5 ) [T (2 = @) (1 = 2)
(2) Z (z—a;)(1 —ajz) N H;L=1(Z —a;)(1 —a;z) '

Since we assume B has no repeated roots, the zeros of B’/B are precisely the zeros of B’. Note that B’/B
is a rational function with a numerator of degree 2(n — 1), so it has 2(n — 1) total zeros. With a lot of
calculation, one can verify the identity

BUE) _ .B()

B(1/7) B(z)"

This shows that for z # 0, B'(z) = 0 if and only if B'(1/Z) = 0. Since we assumed neither B nor B’ vanish
at 0, this implies that the zeros come in pairs {z,1/Z}. Exactly one member of each pair is inside D and the
other is outside D, so since there are 2(n — 1) total zeros of B’, it must have n — 1 zeros inside D.

For the general case, it is a theorem that if B is any function of the given form with n factors, then there
is a sequence By, of functions of the given form, each with n factors, satisfying (a) By, — B uniformly on D,

117



(b) Bi(0) # 0 # B;,(0), and (c) By has no repeated roots. To see why this is true, note that £== converges

uniformly on D to 15 wa— B. Therefore this is also true for products of functions of that form. Also

note that By(0) and Bj,(0) are continuous functions of the roots ai,...,a,. Therefore by just taking the
original function B and perturbing its roots by sufficiently small amounts, we can guarantee that the new
function has all of the desired properties and is still uniformly close to B.

So by the first part of this problem, we know that each By has exactly n — 1 roots in . Since the
convergence is uniform on D, we also know that Bj, — B’ uniformly on D. Since each By, has absolute value
1 on dD, we then have that By /Bj converges uniformly to B’/B on D, so by the argument principle

B’ B,
Zeros o 1n = — az = 1m — az = 1m Zeros o L 111 = n— 1.
i fBinD d li ko lim (# f By, in D 1. O
oD B k—o0 oD Bk k—o0

Problem 9a. Let f(z) be an analytic function in the entire complex plane C and assume f(0) # 0.
Let {a,} be the zeros of f, repeated according to their multiplicities. Let R > 0 be such that |f(z)| > 0 on
|z| = R. Prove

1 27 ) R
%f log | f(Re™)| do = log|f(0)| + Z log —-
0

lan|<R |an]

Solution. Since f is not identically zero, there are only finitely many a,, satisfying |a,| < R. Define
R(z —ay,)
9= = ] v
| <R R? —ay,z

Note that in the disc |z| < R, g has the same zeros as f, no poles, and |g(z)] = 1 for |z| = R. Therefore
f/g is a nonvanishing holomorphic function in |z| < R, and |f/g| = |f| on the boundary |z| = R. Therefore
log|f/g| is a harmonic function in |z| < R, so we apply the mean value formula to obtain

f(O) . 1 2 f(Re'LG) B 1 27 y
log g(O)‘ = 9 . log’gmew) 0 = %L log]f(Re )|d9.
We also have
0 R0 —ay,
log i;(((];’ = log|f(0)] - 2 log % = log|f(0)| + Z log o

lan|<R lan|<R

so combining this with the above equation gives the desired result. [

Problem 9b. Prove that if there are constants C' and X such that |f(2)| < Cel#” for all z, then

( 1 )/\Jre

O ()
|an|

for all e > 0.

Solution. Let N(R) = #{n : |a,| < R}. Applying part (a) with 2R in place of R we get

2m
%L log|f(2Re’)|df = log|f(0)|+ ), log <2R) < log|f(0)[+ D] log (2R> < log|f(0)|+N(R)log(2).

lan|<2R |an] lan|<R |an]

By the hypothesis on the growth rate of f, we also have

1 27 .
%J log [f(2Re™)|d0 < (2R)* + log(C),
0
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so combining the two estimates gives (2R)* + log(C) = log|f(0)| + N(R)log(2), which implies that

(2R)* —log(C) —log | f(0)]
log(2)

for some constant K and R sufficiently large. Let M be big enough so that the above estimate holds whenever

R > 2M-1 Tt suffices to show that
1 Ate
3 () .
lan|=2M-1 2]
for any € > 0. We estimate

2. 22 ) -2

|an|=2M-1 r=M 27=1<]a, |<2"

N(R) < < K(2R)

0] o0 o0
N(2T) (2T+1))\ 2 +e€ —€e\T
< W<KZW:K2 2. (27) < o O
r=M r=M r=M

Problem 10. Let ay,...,a, be n > 1 distinct points in C and let Q@ = C\{a,...,a,}. Let H(Q) be
the vector space of real-valued harmonic functions on © and let R(Q2) € H(Q2) be the space of real parts of

analytic functions on . Prove the quotient space g((g)) has dimension n, find a basis for this space, and

prove it is a basis.

Solution. We claim that the functions f; = log|z — a;| form a basis for this space. We will work with
a homology basis ~1,...,7, for €, consisting of small counterclockwise circles around each point. For a
function u € H(Q) be arbitrary, we let *du = —u,dz + u,dy denote the conjugate differential for u. Recall
that the periods of *du with respect our homology basis are defined to be the real numbers S%_ u. (See section
6.1 in Ahlfors.)

The harmonic function a(z) = log |z| defined on C\{0} has conjugate differential df, and so the period of
*da on a counterclockwise circle about the origin is 27. Alternatively one can see this by setting f = a, —ia,
(which is analytic) and then writing fdz = da + @ * da. The differential da is exact, and we can compute
that f(z) = % Thus the integral of i * dv around a counterclockwise circle is 27¢, and we again get a period
of 27. Note that the period of *da around any cycle homologous to 0 is 0, since the integral of fdz around
such a cycle is 0. Therefore by translating, we see that the period of *df; along -y; is 2md;;.

If u € R(Q) then u has a harmonic conjugate v and *du = dv, which is exact. Thus each period of u is
0. If > | a; f; € R(Q2), then it must have period 0 about each cycle. By linearity of periods, this can only
happen if each a; is 0. So our f;’s are independent.

Let g € H(Q?) be arbitrary, with *dg having periods p; on 7;. Set

1 n
g=9—§i;pz‘fi,

so that =dg has period 0 on each ;. We claim that § lies in R(2), which will imply that the f;’s span. Indeed
we have that =dg is exact and so we may integrate *dg to obtain a harmonic conjugate for §g. More precisely,
set f(z) = Uy — ity. Then fdz = du + i * du is exact on Q and so f has an anti-derivative F' = U + iV on
Q. It’s easy to verify that U and u agree up to constants, so V' is a harmonic conjugate for u.

Problem 11. Let 1 < p < o0 and let U(z) be a harmonic function on the complex plane C such that

J |U(x +iy)[Pdxdy < oo.
RxR

Prove that U(z) =0 for all z = 2 + iy € C.

119



Solution. Let g be the conjugate exponent, so 1/p + 1/¢ = 1. Since U is harmonic on all of C, for

any r > 0 and any z € C we have the mean value property

— J U(z + iy) dz dy.
r
B(z,r)

By Holder’s inequality we have

1 1/p
|U(2) \U x +iy)|dedy = B(z,r)|U(z + iy)|P dx dy 1dzdy
7rr2 r?

B(z,r)

1/q

1/p
2)1/a
(‘J |U(z + iy)|P de dy < orPta=t) — cp2/p

7rr2

for some constant C' < c0. This holds for any r > 0, so we can take r — o0 and conclude that U(z)
(because —2/p < 0). O

Problem 12. Let 0 < @ < 1 and let f(z) be an analytic function on the unit disc D. Prove that if

1f(2) = f(w)] < Clz —w|®

for all z,w € D and some constant C' € R, then there is a constant A = A(C) < oo such that

1f'(2)] < AQ [z

Solution. Fix z € D. Then for any r > 0 we have

1
 _dw =0
sz|=r (w - 2)2 v 7

so by the Cauchy integral formula we can write

o ) fw) -~ fG)
f(Z)_jwdr( I ju;zr 2 -

w — z)?

Therefore taking absolute values inside we get

If'(2)] < 27‘(7‘-%- sup |f(2) — f(w)] < 277TCTO‘ = 27Crt.

r lw—z|=r

1-|z|
2

This is true for any r for which B(z,r) € D, so pick r = , then we get

IF'(z)] < AQ—|z)*"t O
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18 Fall 2017

Problem 1. Suppose f : R — R is non-decreasing. Show that if A € R is a Borel set, then so is f(A).

Solution. Let F = {A < R : f(A) is Borel}. It suffices to show that F is a o-algebra containing all
closed intervals. It’s clear that ¢ € F. Since f is non-decreasing, it is continuous except for at most
countably many jump discontinuities. Thus f(R) is a countable union of intervals, so it’s Borel, so R € F.
Suppose A € F. Note that f(A) and f(A°) have at most countably many elements in common and that
fR) = f(A) U f(A°), so we can write f(A°) = f(R)\f(A) U (countable set), so f(A°) is Borel and thus
A° e F. Finally, if Aq, Ay,... € F, then we have f({JA») = f(4,), so it’s Borel, so [ JA, € F. Thus F
is a o-algebra. If [a,b] is a closed interval, then by the same argument as above, since f is non-decreasing,
f([a,b]) is an at most countable union of intervals, so it’s Borel. Therefore F contains all closed intervals so
we’re done. [

Problem 2. Let {f,} denote a bounded sequence in L?([0,1]). Suppose the sequence also converges
almost everywhere. Show that then {f,} converges in the weak topology on L2([0,1]).

Solution. Say that ||f,||;,2 < M for all n and that f,, — f almost everywhere. Then also |f,|?> — |f|?
almost everywhere, so by Fatou’s lemma we have

J|f|2 = fliminf\fﬂ2 < liminff|fn\2 < M?,
n—0 n— oo

so also f € L? and ||f]|;> < M. To show that f, — f weakly in L?, we need to show that ¢(f,) — ¢(f)
for every ¢ € (L?)*, and by LP-L? duality, this is the same as showing that § f,g — { fg for every g € L%
Fix g € L? and € > 0. Since [g|? is integrable, let § > 0 be such that A(E) < & implies {,|g]|? < € (here A
denotes Lebesgue measure). By Egorov’s theorem, we can find a set E < [0, 1] such that f,, — f uniformly
on E° and A(E) < 0. Let n be big enough so that |f, — f| < ¢/||g||,2 on E°. Then we have

[tna =t = [ 1= sal+ [ 1fag=s0l = [ tallta =11+ | tallfa 1
1/2 1/2 1/2 1/2
<(fr) (fu=re) o ([ ar) (] - 12)
1/2 1/2
<e1/2<f 4(|fn|2+|f|2)> gl (j 62/||g|iz>
[0,1] [0,1]

< 61/2(8M2)1/2 +e.
This shows that {|f,g — fg| — 0 as n — oo, which implies the desired result. O

Problem 3. Let {u,} denote a sequence of Borel probability measures on R. For n € N and z € R
we define

Fo(z) = pn((=o0,2]).

Suppose the sequence {F,,} converges uniformly on R. Show that then for every bounded continuous function
f R — R, the numbers

ijm e

converge as n — 0.

Solution. Let F denote the set of linear combinations of characteristic functions of disjoint intervals of
the form (a,b], where a may be —oo and b may be oo. First we show the result holds for elements of F. Let
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g= Z]kv=1 QkX(ag,by]- Lhen we have (with the convention that F,(oc) = 1 and F,(—) = 0)

‘Jgdpm - Jgdﬂm‘ =

<

M=

N
ag(Fn(br) — Fu(ar)) — Z g (Fm(br) — Frn(ax))
k=1

B
Il

1

=

k| ([ Fn(br) = Fi (bi)| + | (bk) — Fr(ag)]) -

k=1

Fix € > 0. Since the sequence {F,} converges uniformly, pick n,m big enough so that ||F,, — Fp|| » <
€/(2>] |ok|). Then the above estimate implies that for all such n,m, we have |§gdu, — §gdum| < €. So
the numbers {S gdu,} form a Cauchy sequence in R and therefore converge. This establishes the result for
elements of F.

Now let f be any bounded continuous function R — R. On any compact interval, f can be approxi-
mated in the L™ norm by functions in F. So just work on a compact interval that is big enough so that
almost all of the mass of the p, is inside that interval (this can be made precise using the fact that the Fj,
converge uniformly on R, but I don’t have time to write it down right now). Fix € > 0 and pick g € F such
that ||f — g||,» < €. Then for n, m big enough, we have

deunffdum1 < deunjgdun +UgdunJgdum‘+Ugdumedum‘

< (1= sldin+ [15 = gldun +¢
< en(R) + € (R) + € = 3e,

which establishes the desired result. O

Problem 4. Consider the Banach space V = C([—1,1]) of all real-valued continuous functions on [—1,1]
equipped with the supremum norm. Let B = {f € V : || f||,~ < 1} be the closed unit ball in V. Show that
there exists a bounded linear functional A : V' — R such that A(B) is an open subset of R.

Solution. Define A : V — R by

AC) = - f_olf<a:>dx+ | fa)de

It is clear that [A(f)| < 2]|f]|,« for all f € V, so A is a bounded linear functional. Since A is continuous
and B is a connected set, A(B) is a connected subset of R and is therefore an interval. We claim that A(B)
is the open interval (—2,2).

Let f, be the function which is equal to —1 for € [—1,—1/n], equal to 1 for = € [1/n,1], and linear
on [—1/n,1/n]. Note that each f, € B, and we calculate A(f,) = 2 —1/n. Since A(B) is an interval in R,
this implies that (—2,2) € A(B). We now just need to check that A never achieves the values +2. But note
that we have |[A(f)| < Sl_l |f(z)] dx < 2. But the second inequality is strict for all f which are not identically
+1. Since A(+1) = 0, this shows that in fact the strict inequality |A(f)| < 2 holds for all f € B, so we
conclude that A(B) = (-2,2). O

Problem 5. Suppose f : R — R is a bounded and measurable function satisfying f(z + 1) = f(z)
and f(2x) = f(z) for almost every « € R. Show that then there exists a constant ¢ € R such that f(z) = ¢
for almost every x € R.

Solution. Let Z be the measure zero set of bad points for which the given property doesn’t hold. Let
Z be the set of all points in R which are reachable from a point in Z by a finite sequence of the operations
z—xz+1,z—x—1 2z, or x — x/2. Then Z is just a countable union of translates and dilates of Z,
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SO Z also has measure zero. We will show that f is constant on the complement of Z. By construction of
Z, for any x ¢ Z we have 27" (2"z + 1+ 2"m) = +m + 27" ¢ Z for all integers n, m. Let @Q be the set of
numbers of the form m + 27" for n,m € Z.

Let xg,yo ¢ Z and fix € > 0. Since f is bounded, it is locally integrable. Therefore by the Lebesgue
differentiation theorem we can pick r > 0 such that

1

To+T Yo+r
> | f(t)dt‘ < 1f(yo)—1f f(t)dt‘ <

To—T 271 Yyo—T

‘f(xo) -

Also, since f is bounded we can find § > 0 such that for any set A = R, A(A) < § implies §, [f(¢)|dt < er
(here X\ denotes Lebesgue measure). We can pick a number ¢ € @ such that |(zg + ¢) — yo| < /2. Then,
since f(t+ q) = f(t) for all t ¢ Z, which is almost every ¢, we have the estimate

xo+T Yo+r ro+q+T Yyo+7
L f f(t)dt—%J f(t)dt' ! f f(t)dt—f f(t)dt‘
Yo—T

2r To—T 2r ro+q—r Yo—T

1

> f®)dt| < /2.

f[ﬂfo +q—r,z0+q+r]Alyo—r,y0+7]

So combining the above three inequalities with the triangle inequality gives |f(zo) — f(yo)| < (2+1/2)e, and
taking € — 0 shows that f(z¢) = f(yo), so f is constant on the complement of Z. [

Alternative Solution. Let E be the measure zero set on which f(z) # f(2x). Then f(z) = f(2z)
for all x € E¢, and so f(2Fz) = f(x) for all € E° and k € N. Since we are only trying to show that f
is constant almost everywhere, we can discard E. So, we can suppose f(2Fx) = f(x) for all . Moreover,
f(z +1) = f(x) for almost all x means f can be considered as a function on S' = R/Z = [0,1). As a
bounded measurable function on S', f is in L'(S"), and so has Fourier coefficients f(k) for all k € Z. An
elementary theorem says that L'(S!) functions are determined by their Fourier coefficients. Therefore, to
show f is constant, it is enough to show that every nonzero Fourier coefficient of f vanishes (since then f
will have the same Fourier coefficients as the constant function z — £(0)).

Now, for any k € N, and any n € Z,
~ 1 .
fo = [ sy i
0

1
:f f(zkz)efln'niz dx
0

ok
_ 2—k f(y)e—27rin27ky dy
0
2k _1

1
— 9k Z J f(y)6727rin2_k(y+j) dy
=0 -0

1
ok
:Ck,n'Q_kJ fly)e™ ™2 Y dy,
0

where ¢y, is the constant
2k _1

P
Chom = Z 67271'1712 J
Jj=0

But, if n27% is not an integer, then

. —k k .
(6—271'2112 )2 -1 e—27rzn -1 0
Chn = 7 Tomin2k 1 e—2mm2k _1
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and so f(n) = 0 in this case. But if n # 0, then of course there is some k € N with n2=% ¢ Z. Consequently
f(n) =0if n # 0, which completes the proof. [

Problem 6. Let f € L?(C). For z € C we define

o(2) = L |f (w)] dA(w)

weC:|lw—2z|<1} |Z - ’LU‘

where dA denotes integrations with respect to Lebesgue measure on C. Show that then |g(z)| < oo for almost
every z € C and that g € L*(C).

Solution. Let C = S|u\<1 ru @A(u) < 0. We have

ul

. TR £ L i auchy-Schwarz

<@ fu) z|<1 \W—Z| dAw).

Therefore we can estimate

< CL | f(w)|2 L_w|<1 % dA(z) dA(w) by Tonelli

,w|

< Clifllzee <
This shows both that |g(z)| < oo for almost every z € C and g € L?(C). O

Problem 7. Prove that there exists a meromorphic function f on C with the following properties.
1. f(2) = 0if and only if z € Z.
2. f(z) = if and only if z — 1/3 € Z.
3. |f(z+iy)| <1forall zeR and all y € R with |y| > 1

sin(7mz)

Solution. Let f(z) = %m It’s clear that f is meromorphic with f(z) = 0 if and only if z € Z and
f(z) = oo if and only if z — 1/3 € Z. Now we just estimate

i) — exp(imz) — exp(—imz) |exp(inz)| + | exp(—inz)]
AWl = | SimG - 13) —exp(Cin(z —13)| < Toxplim(z — 1/3)) — [exp(—in(z — 1/3))]
exp(—my) + exp(my)

< 2 when |yl >1. O

_ (
(

lexp(—7y) — exp(7y)|

Problem 8. Show that a harmonic function u : D — R is uniformly continuous if and only if it admits the
representation

27 0
u(z) = L Re(e. +Z) f(e®)do, zeD,

27 J, e — 2z

with f : dD — R continuous.
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Solution. It is a standard fact that u is uniformly continuous on D if and only if it admits a continu-
ous extension to JdD. First suppose that u admits a continuous extension to ¢D. Then the Poisson integral
formula is exactly the representation

2w 6
u(z) = L Re <e, +Z> u(e') do
0

on e — 2

(To prove the Poisson integral formula, you simply apply the regular mean value formula to u composed

with the conformal map w — 1“:;” and simplify the change of variables. Not sure if proving that would be

required for this problem or not).

Conversely, suppose u has the above representation. We just need to show that the continuous function
f: 0D — R continuously extends u. Fix €% € o). We need to show that u(z) — f(e'?%) as z — €% in D.
Fix € > 0. Pick §; such that |§ — 6| < &, implies |f(e?) — f(e?)| < € (by continuity of f). Also, since 0D
is compact, let M = maxge[o,2x] |f(e?)]. Now we can pick § > 0 to be small enough so that

; 1— |z e + 2 €
—e'| <4 d |#—0y| =61 imply ———— =Re < —.
|z =™ and | ol =01 imply e — 2|2 el — 2 2M

Then for all |z — €| < §, we have the estimate (using the fact that Soﬁ |119 ‘ZL‘Q df = 2x for any z € D)

21 27
f 1.7 |Z‘2 f(eze)doff 1'* |Z|2 f( z@o)de‘

o 7P o [0 =P

1
2

L7 R oy - ey an
om Jo  Je® —z?

<2 J L |of d0+f 2M df
< = € —
21 \ Jjo—oo|<s, €0 — 2|2 |0—60|>5: 2M

% (27 + 27) = 2e.

This shows that u(z) — f(e?) as z — €' so f is a continuous extension of u to D and we are done. [

Ju(z) = fe™)] =

N

N

Problem 9. Consider a map F : C x C — C with the following properties.
1. For each fixed z € C the map w — F(z,w) is injective.
2. For each fixed w € C the map 2 — F(z,w) is holomorphic.
3. F(0,w) = w for we C.
Show that then
F(z,w) = a(z)w + b(z)
for z,w € C, where a and b are entire functions with a(0) = 1, 5(0) = 0, and a(z) # 0 for z € C.

Solution. Define G(z,w) = %. We claim that G(z,w) = w for all z,w. Then we can just
take a(z) = F(z,1) — F(2,0) and b(z) = F(z,0) and we will be done. By the injectivity condition, the
denominator of G(z,w) is never 0, so for each fixed w, z — G(z,w) is an entire function. Also note that
G(0,w) = w and that G(z,0) = 0 for all z and G(z,1) = 1 for all z. So the desired condition is verified
for w = 0,1. Fix w # 1. Then by the injectivity condition, if G(z,w) = 1 for any z, then w = 1, and if
G(z,w) = 0 for any z, then w = 0. So z — G(z,w) is an entire function that misses both 0 and 1, so by
Picard’s little theorem, z — G(z,w) is constant. Then the fact that G(0,w) = w implies that G(z,w) = w
for all z, so we are done. [

Problem 10. Let {f,} be a sequence of holomorphic functions on I with the property that

= Z | fn(2) ?
n=1

N
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for all z € D. Show that the series defining F(z) converges uniformly on compact subsets of D and that F
is subharmonic.
Solution. Since f,, is holomorphic, |f,|? is subharmonic. Therefore each gy := 25:1 |fn]? is also sub-
harmonic, and we have that gy increases monotonically to F' pointwise. Notice that if subharmonic were
replaced by harmonic, we would be done automatically by Harnack’s Principle. The following argument is
just a modification of the proof of Harnack to work for subharmonic functions, where we rely heavily on the
fact that F is bounded and that the gy are partial sums rather than general subharmonic functions (it’s
not true in general that an increasing limit of subharmonic functions converges locally uniformly to another
subharmonic function).

First, suppose we knew that gy — F' locally uniformly on . Then since each gy is continuous, F' also
is, and for any disc B(zp,r) € D, we have

27 27
Pleo) = Jim av(o) < Jim 5o | an(ao+re)dd = 5o | PG+ re)as
by the monotone convergence theorem (or by uniform convergence on compact sets). So F' is continuous and
satisfies the sub mean value property, so it is subharmonic.
Now we show local uniform convergence. Fix a compact set K € D and ¢ > 0. By compactness, there
is a radius r > 0 such that B(z,7) € D for any z € K. Also by compactness, we can cover K with finitely
many balls B(wy,7/2) U ... v B(wg,r/2). For any z € K,

- I T o T io
e [ (o) o (5o = o

again by the monotone convergence theorem (this is where we need the fact that F' is bounded). So let N
be large enough so that

L7 (P (o 5e™) = an (2 + ) a0 <
max — zj + =€) — zj + =e .
12525 27 g 1Ty IN\FIT g ‘
Now for any M > N, gp — gn = ZT]‘L/[:NH |fn|? is still a positive subharmonic function (this is where we

need the fact that the gy are partial sums). Therefore it satisfies the “sub Poisson integral formula” (regular
Poisson integral formula but with a < instead of =). For any z € K, we have z € B(z;,r/2) for some j, so
we apply the sub Poisson formula on B(z;,r) to obtain

1 27

r2 — |z — 2|2 < ;
| il (gM(zj +re') — gn(zj + re’e)) do

gu(2) = gn(2) 21 Jo (25 + ret?) — z|?

r+lz—z] 1 12”

< -
= r—lz—zj| 21 Jy

(93 = gn)(z; +re'”) do

r+r/2 1 (P i
< C— F— ; ) do 3e.
p—r 27TJ0 ( gn)(z; + e’ < 3e

This shows that the sequence gy is uniformly Cauchy on K and therefore converges uniformly to F' on K,
so gy — F locally uniformly on D and we are done. [

Problem 11. Let f : D — C be an injective and holomorphic function with f(0) = 0 and f/(0) = 1.
Show that then
inf{ju] :w ¢ fD)} < 1

with equality if and only if f(z) = z for all z € D.
Solution. We analyze the situation when inf{|lw| : w ¢ f(D)} > 1. Then D < f(D), and since f is

injective, it has a holomorphic inverse g : D — D on the disk. It’s clear that g(0) = 0 and ¢’(0) = 1, so
by the Schwarz lemma (and the fact that ¢’(0) = 1) we must have g(z) = z. Thus f(z) = z as well. The
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original statement follows.

Problem 12. Let f, g, and h be complex-valued functions on C with

f = goh

Show that if A is continuous, and both f and g are holomorphic, then & is holomorphic as well.

Solution. Let B (for bad) be the set of points z for which ¢’(h(z)) = 0. For z € C\B, we can find an
analytic local inverse gal for g on a neighborhood of U of h(z). Thus on U, we can write h = g(}l o f, which
implies that h is analytic at z. So h is analytic on C\B.

Since ¢ is non-constant, we must have ¢’(z) = 0 only on a discrete set. Furthermore, h is continuous, so
in fact B is discrete. But h is continuous so by Riemann’s theorem on removable singularities, A must be
analytic.

Remark. It’s not true in general that the preimage of a discrete set under a continuous function is also
discrete (a constant function is a counterexample), so that step takes a bit more work. Let Z denote the
zeros of ¢’ and suppose that h~1(Z) has a limit point. Take a convergent sequence z, with {h(z,)} S Z, so
it’s discrete. The set {h(z,)} can’t be infinite, because its also discrete, so the limit would have to be infinity,
but z, converges to a non-infinite limit zo,, which is impossible by the continuity of h. So {h(z,)} is a finite
set, meaning that there is some subsequence {z,, } converging to z,, on which h is constant. But then f is
also constant on {zy,, }, and since f is holomorphic this implies f is a constant, which is a contradiction.

19 Spring 2018
Problem 1. Suppose f € L'(R) satisfies

flx+h) - fz)

5 dr = 0.

lim sup J
h—0 R
Show that f = 0 almost everywhere.

Solution. Let F(x) = {*  |f(t)|dt. We then consider the difference quotient

F(x + h) — F(z)
—

o[ e mi- i
[ |feen=s0

h
<
R

fE+h)— )
h

By hypothesis, this last quantity tends to 0 as h — 0. So F' is differentiable with derivative 0, and is therefore

constant. It follows (by continuity from below) that {; | f(¢)|dt = 0, and so f = 0 a.e.

<

‘ dx.

Alternate solution. Let F(z) = sto f(¢)dt. Since f is integrable, by the Lebesgue differentiation theorem
we have that for a.e. = € R,

F(x—l—h)—F(m).

z+h
f(z) = lim 1J+ f@t)dt = lim

h—0 h h—0

127



So for any two Lebesgue points x > y, we have

— _ T+h T
1(0) 0] = oy [P F R < [ e [
Yy )
_ o | [F S R) - f() o fE+h) —f@) |
= %11% L hdt’ < hrfrbljngR hdt‘ = 0.

So f is constant a.e., and since f is also integrable we must have f =0 a.e. [

Problem 2. Given f € L?(R) and h > 0 we define

(a)

(b)

Q- [ ML fe )
R
Show that
Q(f,h) =0 forall fe L*(R) and all h > 0.
Show that the set

E = {fe L*R):limsupQ(f,h) <1}
h—0

is closed in L?(R).

Solution.

(a)

It suffices to show that

fR 2f(@)2dz > | F@)(f(x+h) — fo - h))da.

R

Indeed by Cauchy-Schwarz

J]Rf(ﬂﬁ)(f(ngr h) = f(z = h))dz < |[f]ly - |[f(z + h) = fz =R,
< g - (1 + D)l + [[f (2 = h)lly)

= [I£1lz (1f1l2 + [1£112)
=2|If15,
as desired.
Let g(z) = 2f(z) — f(x + h) — f(x — h). Note g € L?. Using the form of Plancherel that says

{fr9) = <J?7 §>, we can rewrite

O ) JR 2f<u>—eihuf}<;>— M FW) T du = JR 222t | fa|” .

Now let f, be a sequence in F with f, — f in L2. By passing to a subsequence if necessary, we may
also assume that f,, — f almost everywhere. By Plancherel we albo have fn — f in L2, and by passing
to a further subsequence if necessary we can also assume fn — f almost everywhere. Then by Fatou’s
lemma, since 1 — cos(hu) = 0 for all h,u, for each n we have

>

— 2 cos(hu) 2 — 2 cos(hu)

. 2 =~ | o = |2
1> hI}ILl_S)BlpJR 2 fn(u)’ du > hin_}glfJR W2 fn(u)‘ du
9 _ 2
> fliminfM fn(u )’ du = qu fn(u)‘ du.
R h—0 h? R
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Then by applying Fatou’s lemma again, this time in n, we have

JRUQ’f(u)‘Q du = JRliminqu

n—0o0

2
u? fn(u)‘ du < 1,

2
fn(u)’ du < liminf
R

n—o0

2
0 u > u? ‘ f (u)‘ is integrable. Note we have the estimate

2 —2cos(hu) u22 — 2cos(hu) < 52

K2 (hu)?

2—2 cos(t)
12

for all h,u € R because t — is bounded by 5 for all real ¢. Therefore we have

2 — 2 cos(hu) ’J?

h2
for all h, u € R, where the function on the right is integrable, so by the dominated convergence theorem
we have
N . 2—=2cos(hu) |~ .|? . 2 —2cos(hu) |2, |2 .
2
o o] = oy o = g [ 220 st

so f € E and thus E is closed in L2. O

Problem 3. Suppose f € L'(R) satisfies

lim su JJ drdy < oo.
o r Iw*y\2+ 2 Y

Show that f = 0 almost everywhere.

Solution. By applying monotone convergence to the limit (after using Tonelli’s theorem to convert the
double integral into an integral over R?), we have

f |f(x)f ()Idmly<OO
wle |z -y

If f is not zero almost everywhere, then f has a Lebesgue point a with |f(a)| > 0. We have

[ e e [ [ e (5 [ o)

By the Lebesgue differentiation theorem, the right side tends to f(a)? as 7 — 0%. On the other hand, the
left-most integral must tend to 0, since the integrand is in L' (in fact LllOC is enough). This is a contradiction,
so we must have f =0 a.e.

Problem 4.
(a) Fix 1 < p < c0. Show that

[ [Mfl(z,y) = S L ) flx+hy+€)dhdl

is bounded on LP(R?).
(b) Show that

(A, f](y) — ﬁf_ f_ St by 0 dhde

converges to f a.e. in the plane as r — 0.
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Solution.
(a) For g : R — R, let

T

1
Mg(z) := sup — lg(x + h)|dh
>0 2r —r

be the usual maximal operator. For z € R, define f.(y) := f(z,y). Since f € LP(R?), f, € LP(R) for
a.e. x € R (this is proved by Tonelli’s theorem). Therefore by the usual Hardy-Littlewood maximal
theorem, we have

f M) dy < j o ()P dy

for a.e. « € R. Now, for each y € R, define g, (x) := M f5(y). Tonelli’s theorem and the above inequality
show that g, € LP(R) for a.e. y e R:

[ ([t ac) ay
[[1:wP s = 1116 <

Therefore using Hardy-Littlewood again we have

[gpar < [lg@p i

for a.e. y € R. Now note that we have

1 (7 1 (*
[Mf](z,y) < sup— sup — |f(:c + h,y +¢)|d¢dh by Tonelli
r>0 2r —r p>0 2[)

f M, ()P dy de

A

T

1
= sup — | M foyn(y)dh

So by the above work we conclude that
[[en@prasds < [[1sg,@pdzdy < [[lg@Pddy < 15w O

(b) We mimic the proof of the Lebesgue differentiation theorem. Define

Tf(y) = f f f+hoy+ O dhde,  Ti(ry) = lmswT,f(.y).

It suffices to show that Tf = 0 a.e., and for that it suffices to show that for any fixed a > 0,
M(z,y) : Tf(z,y) = a} = 0 (where A denotes 2-dimensional Lebesgue measure). Fix o > 0 and € > 0.
Note that the desired result is obviously true for continuous functions. Since continuous functions are
dense in LP, write f = g + u where g is continuous and ||u||,;, < e. The operator T, is subadditive, so
T.f <T,g+ T,u, and taking r — 0 gives that Tf < Tu.

We now estimate the quantity )\{(x y) : Tu(z,y) = a}. Notice that

Tru(z,y) < 4r3f J (Jlu(z,y)| + |u(z + hyy + 0)|) dhdl < |u(z,y)| + [Mu](x,y).

So {(z,y) : Tu(z,y) = a} € {(z,y) : |u(z,y)| = «/2} U{(x,y) : Mu(x,y) = a/2}, which implies that

M@ y) : Tu(z,y) = o} < M(z,y) : |u(z,y)| = a/2} + M(z,y) : Mu(z,y) > /2}
el [IMullz,
(a/2)p — (a/2)P
€PoP (PP OP

S —+ - where C' is the constant from part (a) on the boundedness of f — [Mf].
o a

by Chebyshev’s inequality
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Since T'f < Tu, we also have M(z,y) : Tf(z,y) = a} < FZ—? + % Now the left side does not
depend on €, so we can take e — 0 and conclude that A\{(x,y) : Tf(z,y) = a} =0. O

Problem 5. Let u be a real-valued Borel measure on [0, 1] such that

f L au) =0

o T+t

for all x > 1. Show that pu = 0.

Solution. Let S denote the real span of the functions of the form i for z > 1 in C([0,1]). We ap-

ply Stone-Weirstrass to show that S is dense in C([0,1]). For xg # z1 > 1, we have

1 1 1 1
o+t x4+t m—x0 \To+t x1+t)’

which lies in S. We also have that 1 ) .

. —
x+t x+t+e (z+1t)?

uniformly on [0,1] as ¢ — 0. Thus ﬁ lies in S for ¢ > 1. Therefore the product of any two elements

in S lies in S. This implies that S is closed under multiplication. Indeed if f and g lie in S then we have
sequences f; — f and g; — g uniformly with f;, g; € S. Since f and g are bounded on [0, 1], we have that
figi — fg uniformly, and so fge S.

Hence S is an algebra. It’s clear that S separates points, and that there is no point zy such every function
in S vanishes at zo. Thus S = C([0,1]).

So we have that Sé f(#®)du(t) = 0 for all fin S, and by density for all f in C([0,1]). Note that p is a

finite measure, otherwise Sé 2%” would be either oo or —oo. By the Riesz representation theorem, we must
have p = 0.

Remark. We used a slighly non-standard (although well-known) version of Stone-Weirstrass here. It’s
easy to avoid this, and instead show that the constant function 1 lies in S. For instance, the functions %th
converge uniformly to 1 on [0,1] as @ — .

Alternate Solution. Let aj = Sé t*du(t). For x € (0,1) we have

1y T, 1/ o X " y
0= fo 1z + Fnt) = J 1+ () = JO <§0(1)kthk 1) du(t) = ;O(fl)’“akz’“ ,

0

where swapping the order of summation and integration can be justified by Fubini-Tonelli, after noting that
u is finite (to prove Fubini-Tonelli for signed measures, one looks at a Jordan decomposition and applies
Fubini separately to each piece). This latter sum is a power a series in & which is identically 0 for = € (0, 1),
so each ay must equal 0. By taking linear combinations of the aj, we see that {p(z)du(t) = 0 for any
polynomial p. But polynomials are dense in C([0,1]), and so g = 0 by the Riesz representation theorem.

Problem 6. Let T denote the unit circle in the complex plane and let P(T) denote the space of Borel
probability measures on T and P(T x T) denote the space of Borel probability measures on T x T. Fix
u,v € P(T) and define

M = {yePTxT): J j f(:v)g(y)dv(x,y):Lf(ff)du(w)- j 9(y) dv(y) for all f,g€ C(T)

TxT

Show that F': M — R defined by

F(y) = ﬂ sin? <9§¢> dy(e®, e'?)

TxT
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achieves its minimum on M.

2
functions of the form f(6)g(¢) where each f,g € C(T). So by definition of M, F(v) is actually independent
of 7, so F is constant on M and therefore obviously achieves its minimum. [

Solution (trick). Note that sin’ (u> = 2(1 — cosfcos¢ + sin@sin¢), which is just a sum of three

Alternate solution (idea generalizes to other similar problems). Let I = inf,cas F((y). Let v,
be a sequence of measures in M such that F'(,) — I as n — oo. Since T x T is compact, one version of
the Riesz representation theorem says that the space of complex Borel measures on T x T is isomorphic to
C(T x T)*, and the operator norm of a measure is its total variation. Therefore P(T x T) is a subset of
the unit ball in C(T x T)*. By the Banach-Alaoglu theorem, this unit ball is weak-* compact, and since
C(T x T) is separable, it is actually sequentially compact. Thus there is a subsequence {7,,} that weak-s
converges to some complex Borel measure «y in the unit ball of C(T x T)*.

We claim that + is the minimizer of F. We need to verify that v € M and that F(v) = I. Note that v
is a probability measure because

(T x T) JJldv = linécjjld%‘ =1
TxT TxT

by weak-# convergence because 1 is continuous. To show that v € M, let f,g € C(T) be fixed. Then the
function (z,y) — f(z)g(y) is in C(T x T), so by weak-* convergence we have

Hf y)dy(z,y) = lim Hf y) dyn(z,y) Jf ) du(z f 9(y) dv(y).

TxT TxT

Thus v € M. To show that F(vy) = I, just note that sin? (97%) is also continuous on T x T, so weak-x

convergence implies F(y) = lim, o0 F(y,). O

Problem 7. Let FF : C x C — C be jointly continuous and holomorphic in each variable separately.
Show that z — F\(z, z) is holomorphic.

Solution. Let (a,b) € C2. Since z — F(z,b) is holomorphic, by the Cauchy Integral Formula

F(a,b) = LJ Mdz.
2m ))o—g)=ry, 20

Similarly, for each z, the function w — F(z,w) is holormophic, so

1 F
F(z,b) = f F(z,w) duw.
27i lw—bl=ry W—b

o ! tet) | g
F(a,b) = (2mi)2 flz—alm (z—a) qul)—b|T2 (w—10b) d 1 dz.

Now, because F is continuous on C?, Fubini’s theorem allows us to rewrite this iterated integral as a
multiple integral:
1 F
F(a,b) = 72J‘ wdwdz,
(271—2) T1 ><T2 (Z - a) ('LU - b)
where Ty = {|z — a| = r1}, To = {Jw — b|] = ro}. Thus,

Therefore,

10=Fen) = o [ e
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Since F' is continuous on the compact set T7 x T5, we can now simply differentiate under the integral sign
to see that f is holomorphic. (Note: this proof actually shows that F is holomorphic on C2, i.e. has a
convergent power series in two variables.) [

Problem 8. Determine the supremum of

Ju
ox

0.0
among all harmonic functions u : D — [0, 1].

Solution. The answer is 2/w. Since D is simply connected, any such u is the real part of an analytic
function f =u+iw:D — S :={2€ C:0 < Re(z) < 1}. Adding a pure imaginary constant doesn’t change
anything, so we can assume f(0) is real. We have f' = u, + iv,, so we want to bound Re(f'(0)). Since we
can pre-compose f with a rotation without changing the absolute value of f’ or changing the codomain of
f, this is the same as bounding | f’(0)|. This shows that the desired supremum is the same as the supremum
of |f'(0)| over all f: D — S holomorphic with f(0) € R. Let f be such a function. Let T': S — D be the

conformal map given by

_exp(imz) —i
T = exp(imz) + i

Let o = T'(f(0)) and let (2) = == be the automorphism of D that sends a to 0. Then g =4 oT o fisa

1o
holomorphic function D — D with g(0) = 0. So by the Schwarz lemma we have |¢'(0)] < 1. Now we compute
1
lg'(O)] = ["@IT (DI (0)] = WlT’(f(O))l\f'(O)l = [T'(f(0)II£(0)]

2 T

exp(im/(0)) o
2i + 2i Im(exp(iT f(0)))| ~ 2

" | (explirf(0)) + 92
because exp(imf(0)) lies on the top half of the unit circle because f(0) € [0, 1]. Therefore we conclude

L= g > ZIf ),

which shows that 2/7 is an upper bound for the desired quantity. Now taking

1) = 1) = e (TEE)).

X 1—2z

where the log here is well-defined because “2 € H for all z € D, it’s easy to calculate that |f(0)| = 2/x, so
it must be the supremum and it’s actually attained. [

Problem 9. Consider the formal product
[e¢] z
1
I (1+> (1—5).
ol n n
(a) Show that the product converges for any z € (—00,0).

(b) Show that the resulting function extends from this interval to an entire function of z € C.

Solution.
(a) For z € (0,00) we have
— 1\ %
1- 214 2« (1+)
n n n

by Bernoulli’s inequality (or simply by looking at the generalized binomial expansion of the term on
the right). Thus each term in the product lies in (0,1]. So the partial products form a decreasing
sequence of positive real numbers and therefore the product converges.
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(b) MISSING

Problem 10. Let C* = C u {0} be the Riemann sphere and let @ = C*\{0,1}. Let f : Q@ —> Q be a
holomorphic function.

(a) Prove that if f is injective then f(Q2) = Q.

(b) Make a list of all such injective functions f.

Solution. Part (a) follows from part (b) by just examining the list of all possible functions and observing
that each of them is surjective. For part (b) we first consider the same problem on a modified region
Q= C*\{0,0}. Let g : Q — Q be injective and holomorphic. First we show that the injectivity implies
that when considered as a function on all of C*, g has at worst simple poles at 0 and o (i.e. g has either a
removable singularity or a simple pole at 0 and ). Essential singularities are impossible by the big Picard
theorem. To show that higher order poles are impossible, suppose g has a pole of order > 2 at 0 (the
argument for oo is the same). Then 1/g has a zero of order > 2 at 0. Let 7 be a small circle around the
origin; then the argument principle says that (1/¢)() winds twice around 0. Thus there is a neighborhood
U of 0 such that (1/¢)(v) winds at least twice around every point of U, and by the argument principle again,
this means that g achieves every value in U at least twice inside of . This contradicts g being injective
unless it happens to be the case that every value in U is achieved by g at one point with multiplicity 2. But
this is impossible because if g(z9) = wo with multiplicity 2, then ¢’ vanishes at zo. So if the above situation
happened, then ¢’ would be identically zero on (¢')~!(U), which is an open set, so by uniqueness of analytic
continuation this would imply that ¢’ is identically zero, which is also a contradiction. Thus we conclude
that g has at worst simple poles at 0 and 0.

Therefore we have the representation g(z) = a/z+b+ cz for some a, b, c € C. But note that by hypothesis,
g(z) isnever 0 for z € Q2. The equation a/z+b+cz = 0 always has a nonzero, non-infinite solution if a # 0 # ¢,
so we must have a = 0 or ¢ = 0. And in either case, we must then also have b = 0 to avoid achieving 0. So
the only possible functions g are g(z) = az and g(z) = a/z with a # 0.

Now let f : & —  be injective and holomorphic. This induces an injective holomorphic function
g=T71fT:Q — Qwhere T(z) = 2/(z + 1) is an automorphism of C* sending 0 to 0 and o to 1. Therefore
by the above we have

9(z) = _fEE+1) az or L.
fz/(z+1)) =1 z
After simplifying everything and changing variables w = z/(z + 1) we find that the only possibilities for f
are w—1 w

(a—Dw+1’ flw) = 14+ —————— for some a # 0.

flw) = 1+ (a—Dw-—a

Since az and a/z are both surjective as maps Q — Q, and we got the possibilities for f by composing with
conformal maps, it’s clear that both of these possibilities are surjective as maps from 2 — Q. [

Comment Instead of using the big Picard theorem as above, we can cite the much simpler Casorati-
Weierstrass theorem.

Problem 11. For R > 1 let Ag be the annulus {1 < |z| < R}. Assume there is a conformal mapping
F from Apr, onto Ag,. Prove that R; = Rs.

Solution. See Spring 2017 #7.

Problem 12. Let f(z) be bounded and holomorphic on the unit disc D. Prove that for any w € D we
have

fw - 1 TG A,

T Jp (1 —Zw)?
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where dA(z) means integration with respect to Lebesgue measure.

Solution. Consider f as an element of the Bergman space A2(D) := {f D — C holomorphic : § | f(2) W2dA(2) < oo}.

This is a Hilbert space with inner product
S = | s A

[ee]
and orthonormal basis {z — ”T‘Hz”} (It’s easy to check that these are actually an inner product and
=0

orthonormal basis). For each fixed w enID), we first show the map f — f(w) is a bounded linear functional
on A%. We have

1/2
sl = |——— feaac)| < (| FEPAAR)) < 1l
x (PTIM) B(w,(1-w|)/2) B(w,(1-w|)/2)

where the equality is by the mean value property of holomorphic functions and the first inequality is by
Cauchy-Schwarz. Thus f — f(w) is bounded, and it’s clearly linear.
Thus by the Riesz representation theorem, for each w € D there is a function g,, € A% such that

fw) = (frgu) = fou)gT(z)dA(z)

for all f e A%. So we just need to show that g, (z) = By definition of the functions g,,, for any z

1
m(l—wz)?"

we have
O [
9w (2) = {gu, gy = Z {Ggw,eny{g.,eny by Parseval (where {e,} is the orthnormal basis mentioned above)
n=0
= ns Yw nyY9z/) = n - 1 = —/———. [
7;0@ Guy{€ns gz 7;06 nZ::oW n+ T

Alternative Solution

If w = 0 this is the mean value property for analytic functions, so assume w # 0. Let

dz = dzx + idy, dz = dx — idy;

then
dzZ A dz = 2idz A dy.
Also let
99 _1(% %\
0z 2\ oz 0y
o9 _1(% %
0z 2\ oz oy
for any function g. Then
0y 0g Jg dg .
dg_&xdx+(7d aZdz—i-ad.

Now, since f is analytic, we have

2 { /(2) }_ wf(z)

1—wz (1 —wz)?’
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Thus, the 2-form in the integrand equals

where F' is the 1-form

oS
w(l — wz)
Therefore, by Stokes’ theorem,

f f dxAdy i dF—L 1 f(z)dz
(1—wz) 27 Jp C2mi )y 2miw Jup 1 —wZ

1 zf(2) 1

— ALY PO —
2miw Lszw : wwf(w) f(w),

by the Cauchy integral formula.

In general, if f : D — C is analytic and bounded, let f,.(z) = f(z) for 0 < r < 1. Then f, is analytic
on the larger disc D(0,1/r) and hence by the above

fr(w)=lf : @) a.

v 1—wz)?

By continuity, f.(w) — f(w) as r — 1. Moreover, f, — f pointwise on D, and since f, f, are bounded, the
dominated convergence theorem implies

) = iy o) = iy [ P aa = L[ I g,

r—17 Jp (1 —wz)? T Jp (1 — wz)?

136



20 Fall 2018

Problem 1. Let {f,} be a sequence of real-valued Lebesgue measurable functions on R, and let f be another
such function. Assume that

(a) fn — f Lebesgue almost everywhere

(b) §|z|| fn(z)| dz < 100 for all n, and

(c) §|fn(@)]? dz < 100 for all n.

Prove that f, € L' for all n, that f € L', and that || f, — f||;: — 0. Also show that neither assumption (b)
nor assumption (¢) can be omitted while making these deductions.

Solution. To show that f,, € L', note that

1/2
n| = n nl X n2 21/2 n x C
ij flmu |+flx>1|f| < (fmu ) +j| 2llful@)] < C < o

for some constant C' independent of n by hypotheses (b) and (c). Now to show that f € L!, note that by
Fatou’s lemma we have

J\f| = Jliminf\fﬂ < liminfj\fn| < C < .
n—0o0 n—0o0

Now we show f,, — f in L'. First we need two “uniformity” estimates:

|z] 1
[ A
1/2
[ 1l < migye ( fE|fn|2) < m(B)2.

where the implied constant is independent of n in both. By the same Fatou’s lemma argument, the above
estimates also hold for f. Let € > 0. Let R be big enough so that S|$‘>R | fr| < € for all n and S|w|>R |f] <e.

By Egorov’s theorem, there is a set E € {|z| < R} on which f,, — f uniformly, and by the second estimate
above we may pick m(E°) to be small enough so that §,. [ful,§;. [fn| < €. Then we have

| IS B WS E WA

beR | fal + J|;E>R fl+ JE |fo = fl+ JE | fnl + JE £

e+ | 15— 11

N

A

Taking n — o0, since we have uniform convergence on F, gives

limsup |f, — f] < 4e.

n—0o0

This holds for any € > 0, so the result follows. [

Problem 2. Let (X, p) be a compact metric space which has at least two points, and let C'(X) be the
space of continuous functions X — R with the uniform norm. Let D be a dense subset of X and for each
y € D define f,, € C(X) by f,(x) = p(z,y). Let A be the subalgebra of C'(X) generated by the collection
{fy :ye D}.

(a) Prove that A is dense in C'(X) under the uniform norm.

(b) Prove that C(X) is separable.

Solution. (a) By one version of the Stone-Weierstrass theorem, it’s enough to check that A separates
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points (for all x # y € X there exists f € A with f(z) # f(y)) and is nonvanishing (for all € X there exists
f e Awith f(z) # 0). Both of these are easily verified because X has at least two points by hypothesis. For
separating points, given = # y let f = f,. For nonvanishing, given = let f = f, for any y # z. O

(b)

Problem 3. Let (X, p) be a compact metric space and let P(X) be the set of all Borel probability measures
on X. Assume ji, — p in the weak-+ topology on P(X). Prove that u,,(E) — pu(E) whenever E is a Borel
susbet of X such that u(E) = u(E°), where FE is the closure and E° is the interior.

Solution. Applying the portmanteau theorem twice, since E° is open and F is closed, we have

w(E°) < liminf pu,(E°) < liminfu,(E) < limsupu,(E) < limsupu,(E) < p(E)

n—a0 n—0 n—o0 n—o0

But by hypothesis, u(E°) = pu(E), so every inequality in the chain is actually an equality. Since u(E) also
necessarily fits somewhere in between pu(E°) and p(F), which are equal, we conclude

liminf p, (F) = limsupp,(F) = p(E). O

n—w n— oo

Problem 4. Let T be the unit circle in the complex plane and for each « € T define the rotation map
Ry : T — T by Ry(z) = az. A Borel probability measure p on T is called a-invariant if u(Rq(F)) = p(E)
for all Borel sets £ < T.

(a) Let m be Lebesgue measure on T. Show that for every o € T, m is a-invariant.

(b) Prove that if « is not a root of unity, then the set of powers {a™ : n € Z} is dense in T.

(c) Prove that if « is not a root of unity, then m is the only a-invariant Borel probability measure on T.

Solution. Throughout, we identify T with the interval [0,1) in the natural way, so “« is not a root of
unity” is replaced by “«a is irrational”.

(a) When viewed as a map on [0,1), Ry (z) = z+a (mod 1). We know that Lebesgue measure is translation
invariant, so R, is measure preserving when considered as a map [0,1) — R. But in the case where E < [0, 1)
has R, (E) n[1,0) # &, R, (E) may be reassembled as a subset of [0,1) by just translating R, (E) n [1, o0)
to the left by 1, which still preserves Lebesgue measure. Thus R, preserves m. [

(b) Method 1. It’s enough to show {na : n > 0} is dense in T. Since « is irrational, the orbit con-
tains infinitely many distinct points. Therefore by the pigeonhole principle, for every € > 0 there exist some
n < m such that |[no — mal|; < € (||-||; denotes “mod 1”7 distance). Therefore the rotation « — (m — n)a
is a rotation by less than €, so {j(m — n)a : j = 0} is a subset of the orbit such that every point of T is at
most € away from some j(m — n)a. Such subsets exist for any € > 0, so the orbit is dense. [

(b) Method 2. It’s enough to show {na : n > 0} is dense in T. In fact we show a stronger result
which is the equidistribution theorem, i.e. for any 0 < a <b <1,

ta < <
lim #{n:a < na < b}

m N = b—a.

For any f € L1(T), set
| N1
Axt = 5 2 fa), 1) = | fam.
N n=0 T
The first step is to show that for f € C(T), Axf — I(f) as N — oo. It’s easy to see that this property is

linear and behaves well under L* approximation, so since trig polynomials are dense in C(T), it’s enough
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to show that this result holds for f(z) = exp(2mikz) for any k € Z. We calculate directly
N—
1 1N k=0 1 k=0
ANf = X 27'('7,]{}04 = A7) l—exp(2miNka =
N g N { 1—e)1c);()(27rika)) k#0 Ok(l/N) k#0
because exp(2mika) # 1 for all k # 0 because « is irrational. Thus

1 k=0
Iim A = = I(f).
Aim Nf = {0 k20 (f)

To finish the proof, we want to apply this convergence to the characteristic function x[44), but it’s not
continuous, so we have to approximate. Take sequences f, gi of continuous functions satisfying 0 < g, <
X[ap] < fr < 1 with fx and gi both converging Lebesgue almost everywhere to X[4,,). Then we have

Angr < ANXfap] < Anfre,  T(ge) < I(X[ap) < I(fi)-
Taking N — oo then gives

I(gr) < hmianNX[a,b] < limsupANX[a,b] < I(fr),
N—w© N—x©

and by the Dominated Convergence Theorem taking k — oo gives

I(Xap) < lminf Ayxpep) < limsup Anxpae) < I(X[ap)),

N—
so they are all equal, as desired. This finishes the proof because limy o, AnX[q,5) is exactly the expression

on the left side and I(x[q,p]) is exactly the expression on the right side of the desired equation. [

(c) Method 1. It’s enough to show that { fdu = { f dm for all f e C(T). Write

| 1@ duta) - [ sGrame) = [ (5@ = 1)) du) = [ [(7e) = 1o+ ) dm(e) du(o)
| @ = @+ 2 duta)

where the last equality is by Fubini and the second to last equality is by the translation invariance of m.
So it suffices to show that {(f(z) — f(z + 2))du(xz) = 0 for each fixed z € T. By the density from part
(b), there is a subsequence njo — z as j — 0. Thus since f is continuous and T is compact, we have
f(z +nja) — f(z + z) uniformly over x € T as j — oo. Therefore, since we are assuming p is invariant
under rotations by «, we have

[t = s+ N dut@) = [ 1@ dut@) - [ £+ 2 dute) = [ 1+ ns0) duta) = [ o +2) duta)

for every j, and taking j — oo makes the right side equal to 0 because the convergence is uniform and f is
continuous. [

(c) Method 2 (motivated by ergodic theory). Suppose « is irrational. Then if f is a trig polyno-
mial, the same direct calculation from part (b) shows that

N—
Anf(x Z (z + na) ﬁdem

as N — oo for any fixed « € T. Let u be any R,-invariant measure. Then since trig polynomials are bounded,
the Dominated Convergence Theorem gives

Javsto [ (1) o - frm
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But since p is R,-invariant, the left side is equal to { f du for all N. Thus { fdu = § f dm for all trig poly-
nomials f, and by density they are equal for all f € C(T), so by the Riesz representation theorem p =m. O

Problem 5. Let {f,} be a sequence of continuous real-valued functions on [0,1] and suppose f,(x) con-
verges to another real valued function f(x) at every z € [0, 1].

(a) Prove that for every € > 0 there is a dense subset D, < [0, 1] such that if z € D, then there are an open
interval I 3 x and a positive integer N, such that for all n > N, sup,cr [fn(y) — f(y)| < e

(b) Prove that f cannot be the characteristic function xgn[o,17-

Solution.

Problem 6. Let f € L?(R) and assume the Fourier transform satisfies ‘f(g)‘ > 0 for Lebesgue almost

every £ € R. Prove the set of finite linear combinations of the translates f,(z) = f(z — y) is norm dense in
L?(R).

Solution. See Spring 2012 # 6.

Problem 7. Let f(z) be an analytic function on the entire complex plane C such that the function
U(z) =log|f(#)| is Lebesgue area integrable. Prove f is constant.

Solution. See Spring 2013 # 7.

Problem 8. Let D be the space of analytic function f(z) on the unit disc D such that f(0) = 0 and
§p |/ ()] dz dy < oo.
(a) Prove D is complete in the norm

A1l = UD /(=) da dy) " :

(b) Give a necessary and sufficient condition on the coefficients a,, for the function f(z) = 3} -, anz" to
belong to D.

Solution. (a) Let f, be a Cauchy sequence in D. Then by definition, f; is a Cauchy sequence in L?(D).
Since L? is known to be complete, there is some g with f, — ¢ in L?*(D). We need to show that g is
holomorphic, and for this we use the standard trick. Fix 0 < r < 1, then for any |z| < r and any f € D we
have

()] =

1/2
J F(w) dA(w) <f F(w)| dA(w) <, (f |f'<w>|2dA<w>> < 1fllp
B(z,(1-7)/2) B(z,(1-1)/2) B(z,(1-1)/2)

so | £/]] (Bo) <r ||fllp- Thus, since f, is a Cauchy sequence in D, f is a uniformly Cauchy sequence

on B(0,r). Since L* (B (0, r)) is complete, we see that f/ converges uniformly to some limit function on

B(0,7). This holds for any 7 < 1, so f/ has a locally uniform limit on D. But since f/, — g in L?(D), it
has a subsequence converging pointwise to g, so in fact f;, — g locally uniformly on I, which implies g is
holomorphic. Let G be the unique primitive of g with G(0) = 0. Then [|f, — Gllp = || f;, — gllp2p) — 0, so
D is complete. [

(b) We have f'(z) = >,-; nanz"~'. Write this as f/(re®) = 3 _; na,r"~'e'™D? and then we have

|f/(7,,ei0)|2 _ Z ﬂkanTan+k_26i(n_k)67
n,k=1
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SO

1 27
j If'(2)|?dedy = f J Z nkapapr™ 21RO 1 40 dr
D o Jo
1

n,k=1
J;)

1
f Z n?|an>r**'dr by orthonormality
0

n=1

n,k=>1

1
2 n? |an|2f r?"~1dr by the Monotone Convergence Theorem
0

n=1

% Z nlan)? .

n=1

. e 2
Thus a necessary and sufficient condition is that >, _, nla,|” < oo.

Problem 9. Consider the meromorphic function g(z) = —mz cot(nz) on the entire plane C.
(a) Find all poles of g and determine the residue of g at each pole.

27
nkapapr"TFL f ¢'"=F)  hecause the series converges uniformly on compact sets
0

b) In the Taylor series representation Y., arz® of g(z) about z = 0, show that for each k > 1
k=0

2
asr = Z 57 -
n2k

n=1

Solution. See Spring 2013 # 11.

Problem 10. For —1 < 8 < 1 evaluate

ve] mﬁ
f .
0 1+$2

Solution. See Spring 2014 # 11.

Problem 11. An analytic Jordan curve is a set of the form I' = f({|z| = 1}) where f is analytic
and one to one on an annulus {r < |z| < 1/r}, 0 < r < 1. Let C* = C u {00} be the Riemann sphere, let
N < o, and let Q € C* be a domain for which 02 has N connected components, none of which are single
points. Prove there is a conformal mapping from €2 onto a domain bounded by N pairwise disjoint analytic

Jordan curves.

Solution.

Problem 12. If o € C satisfies 0 < |a| < 1 and if n > 1, show that the equation e*(z — 1)" = « has
exactly n simple roots in the half plane {Re(z) > 0}.

Solution.
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