BASIC 2001 FALL

- 1. Let S be a subset of \mathbb{R}^n with the distance function $d(x,y) = ((x_1 y_1)^2 + \cdots + (x_n y_n)^2)^{1/2}$ so that $(S, d|_{S \times S})$ is a metric space.
 - a) Given $y \in S$, is $E = \{x \in S : d(x, y) \ge r\}$ a closed set in S?
 - b) Is the set E in part a) contained in the closure of $\{x \in S : d(x,y) > r\}$ in S?

Prove your answers.

- 2. Let $f:(a,b)\to\mathbb{R}$ be continuous and differentiable in $(a,b)\setminus\{c\}$. If $\lim_{x\to c} f'(x)=d\in\mathbb{R}$, show that f is differentiable at c, and f'(c)=d.
- 3. Let T be a linear transformation of the vector space V into itself. If Tv and v are linearly dependent for each $v \in V$, show that T must be a scalar multiple of the identity.
- 4. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable and its second derivative, f'', satisfies $|f''(x)| \leq B$.
 - a) Prove that

$$|2Af(0) - \int_{-A}^{A} f(x)dx| \le \frac{A^3}{3}B$$

b) Use the result of part a) to justify the following estimate:

$$\left| \int_{a}^{b} f(x)dx - \frac{b-a}{n} \sum_{k=1}^{n} f(a + \frac{2k-1}{2n}(b-a)) \right| \le Cn^{-2},$$

where C is a constant that does not depend on n.

- 5. a) Show that, given a continuous function, $f:[0,1] \to \mathbb{R}$, which vanishes at x=1, there is a sequence of polynomials vanishing at x=1 which converges uniformly to f on [0,1].
 - b) If f is continuous on [0, 1], and

$$\int_0^1 f(x)(x-1)^k dx = 0 \text{ for each } k = 1, 2, ...,$$

show that $f(x) \equiv 0$.

6. Let T be a linear transformation from a finite dimensional vector space V into a finite dimensional vector space W. Compute (with proof)

$$\dim (\text{Null } T) + \dim (\text{Range } T)$$

and

$$\dim (\text{Null } T^*) + \dim (\text{Range } T)$$

in terms of the dimensions of V and W. Here T^* denotes the adjoint of T.

7. Let A(x) be a function on \mathbb{R} whose values are $n \times n$ matrices. Starting from the definition that the derivative A'(x) is the matrix you get by differentiating the entries in A(x), show that when A(x) is invertible and differentiable for all x, $A^{-1}(x)$ is differentiable, and

$$(A^{-1})'(x) = -A^{-1}(x)A'(x)A^{-1}(x).$$

8. Suppose $a_n \geq 0$ and $\sum_{n=1}^{\infty} a_n = \infty$. Does it follow that

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n} = \infty?$$

Prove your answer.

9. Suppose $u_n: \mathbb{R} \to \mathbb{R}$ is differentiable and solves

$$u_n'(x) = F(u_n(x), x),$$

where F is continuous and bounded.

a) Suppose $u_n \to u$ uniformly. Show that u is differentiable and solves

$$u'(x) = F(u(x), x).$$

b) Suppose

$$u'(x) = F(u(x), x), u(x_0) = y_0$$

has a unique solution $u: \mathbb{R} \to \mathbb{R}$ and $u_n(x_0)$ converges to y_0 as $n \to \infty$. Show that u_n uniformly converges to u.

- 10. Suppose that $\{\vec{v}_j\}_{j=1}^n$ is a basis for the complex vector space \mathbb{C}^n .
- a) Show that there is a basis $\{\vec{w}_j\}_{j=1}^n$ such that $(\vec{w}_j, \vec{v}_k) = \delta_{jk}$. Here (\cdot, \cdot) is the standard inner product, $(\vec{w}, \vec{v}) = \overline{w}_1 v_1 + \overline{w}_2 v_2 + \cdots + \overline{w}_n v_n$, and $\delta_{jk} = 1$ when j = k and 0 otherwise.
- b) If the \vec{v}_j 's are eigenvectors for a linear transformation T of \mathbb{C}^n , show that the \vec{w}_j 's are eigenvectors for T^* , the adjoint of T with respect to (,).
- 11. Let f be bounded real function on [0,1]. Show that f is Riemann integrable if and only if f^3 is Riemann integrable.
- 12. a) Suppose that $x_0 < x_1 < \cdots < x_n$ are points in [a,b]. Define linear functions on \mathbb{P}^n , the vector space of polynomials of degree less than or equal n, by setting

$$l_j(p) = p(x_j)$$
 $j = 0, \dots, n$

Show that the set $\{l_j\}_{j=0}^n$ is linearly independent.

b) Show that there are unique coefficients c_i such that

$$\int_{a}^{b} p(x)dx = \sum_{j=0}^{n} c_{j}l_{j}(p)$$