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Throughout this set of notes, K will be the desired base field (usually Q
or a finite field) and F will denote the splitting field of the polynomial f(x) ∈
K[x]. We will denote the Galois group G = Gal(F/K). We assume here the
basic definitions (normality, separability, etc.) and the Fundamental Theorem
of Galois Theory.

There are several publications that include information about calculating
Galois groups. None, at least not any that I have found, include explicitly
everything that I have put here – especially in the area of calculating the Galois
groups of polynomials over finite fields. I have also left out the general case of
Galois groups of quartic polynomials, since the required process and relevant
cases are lengthy and probably aren’t suited well to a prelim problem.1

Theorem 1: For f(x) ∈ K[x] separable of degree n, G = Gal(F/K) is isomor-
phic to a subgroup of Sn. Moreover, if f(x) is irreducible, then G is isomorphic
to a transitive subgroup of Sn.2

1 The Galois Group of a Quadratic

If K has characteristic 2, then note that K(
√
d) has a splitting field determined

by the roots of

x2 − d = x2 + 2x
√
−d− d =

(
x+
√
−d
)2

,

which is not separable. Hence, the following applies precisely when char(K) 6= 2.

Theorem 2: If f(x) ∈ K[x] has degree 2 and is irreducible over K with
char(K) 6= 2, then G = Gal(F/K) ' Z2.

2 The Galois Group of a Cubic

If f(x) ∈ K[x] is reducible, then we are left with either a quadratic or trivial
extension of K. In either case, f(x) would have a linear factor and hence a

1I’m an idiot.
2A subgroup H ≤ Sn is transitive on Sn iff for all i, j with 0 ≤ i, j ≤ n there is some σ ∈ H

such that σ(i) = j. In this theorem, we have transitivity from the Galois group as applied to
Sn, and hence irreducibility is required. For example, if F = Q(

√
2,
√

3), then the splitting
field, given by f(x) = (x2 − 3)(x2 − 2) has normal subfields and hence the Galois group V4

need not be (in fact isn’t) transitive on S4.

1



rational root in K. Thus, when given a cubic, we first check for a rational root
in K, and reduce to the appropriate case. If f(x) is irreducible over K, then
we have from Theorem 1 that G = Gal(F/K) is transitive on S3. But, the only
transitive subgroup of S3 is A3. Hence, a cubic Galois extension (the splitting
field of a cubic polynomial) may only have a Galois group isomorphic to S3 or
A3.

Since a separable cubic may have only either one or three real roots3, we
consider these cases. If f(x) ∈ K[x] has one real root and a pair of complex con-
jugate roots, we may consider complex conjugation as an order 2 automorphism
creating an order 2 subgroup of G = Gal(F/K). Hence, we know immediately
that any irreducible and separable extension given by a cubic with only one real
root has Galois group S3, since A3 ' Z3 has no subgroup of order 2. Thus, any
cubic over Q[x] with a pair of complex conjugate roots will have Galois group
S3. (We will come back to this idea later for higher degree polynomials.) A
cubic with all roots in R\Q may have S3 or A3 for its Galois group, and so we
need more machinery to make the distinction.

2.1 The Polynomial Discriminant

We will use the notion of the polynomial discriminant to determine the even/odd
structure of the elements of a Galois group when that group is viewed under
Theorem 1 as a subgroup of Sn. Of course, if all permutations inside the Galois
group are even, then the Galois group will be entirely contained inside the
relevant alternating group.

For K a field such that char(K) 6= 2 and f(x) ∈ K[x] separable of degree n
with roots α1, ..., αn in some splitting field F over K, we define:

∆ =
∏
i<j

(αi − αj) and ∆2 = d(f) (hence ∆ =
√
d(f)).

Then d(f) is the discriminant of the polynomial f(x). This, of course, coincides
with the idea of a quadratic discriminant b2 − 4ac learned in precalculus level
algebra4. It is easy to see that d(f) ∈ F . What is potentially more surprising
is that d(f) ∈ K. More importantly, for K = Q with n <∞ we have d(f) ∈ Z.
We will make use of the following:

Theorem 3: For all σ ∈ G = Gal(F/K), σ(∆) = ∆ iff σ is an even permu-
tation, and σ(∆) = −∆ iff σ is an odd permutation.

Hence, if ∆ ∈ K then σ(∆) = ∆ for all σ ∈ G and therefore G is isomorphic
3Notice that separable implies that no root occurs with multiplicity greater than one.
4Although what is usually not realized in precalculus is that the quadratic discriminant is

simply a function of the distance between the roots of the quadratic.
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to some subgroup of An. In general, we have the subfield K(∆) of the splitting
field F corresponding under the Fundamental Theorem of Galois Theory to the
subgroup G ∩An of the Galois group G. This gives the following.

Corollary 4: For K a field with char(K) 6= 2 and f(x) ∈ K[x] irreducible and
separable of degree 3, the Galois group G = Gal(F/K) is A3 iff the discriminant
of f(x) is the square of an element in K. Otherwise, the Galois group is S3.

Notice that this provides another proof that any irreducible cubic in Q[x]
with only one real root has Galois group S3, since the discriminant will be nega-
tive and hence will not be a square in Q. But, notice that positive discriminants
may or may not be squares.

Thus, if we can calculate the discriminant of an irreducible and separable
cubic over a given field with characteristic other than 2, we may calculate the
relevant Galois group. There is a formula for the discriminant of a cubic: If

f(x) = ax3 + bx2 + cx+ d

then we have that

d(f) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

Even if we reduce this to the monic case (a = 1, we may always divide by a ∈ K
and still have a polynomial in K[x]) we have

d(f) = b2c2 − 4c3 − 4b3d− 27d2 + 18bcd.

This is computationally inadequate (namely because it is challenging to re-
member). Notice that the definition of the discriminant is only based on the
difference in roots, which is invariant under horizontal shifts of the cubic itself.
If we replace x by x− b/3 then we have the fields given by

f1(x) = x3 + bx2 + cx+ d

and

f2(x) = (x− b

3
)3 + b(x− b

3
)2 + c(x− b

3
) + d

= x3 +
(
−1

3
b2 + c

)
x+

(
2
27
b3 − 1

3
bc+ d

)
.

will be isomorphic and have the same discriminant. If we set p = (− 1
3b

2 + c)
and q = ( 2

27b
3− 1

3bc+ d) then the discriminant is given by d(f) = −4p3− 27q2.

We therefore remember the formula d(f) = −4p3 − 27q2 and also the trans-
formation x 7→ x− b

3 . This works on an irreducible cubic whenever char(K) 6= 2.
We will deal with finite fields later. For now, we have the following examples.
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Examples:

1. Find the G = Gal(F/Q) where F is a splitting field of x3− 3x+ 1 over Q.

Solution: The Rational Root Theorem implies that x3 − 3x + 1 is irre-
ducible in Q[x]. Since b = 0, we find −4p3 − 27q2 = 81. Hence, the
discriminant is a square in Q, implying that G ' A3.

2. If we change the polynomial in the preceeding example to x3 − 4x + 1
then we find that d(f) = 229, which is not a square in Q and so we have
G ' S3. Notice that both of these polynomials have three real roots.
Thus, we know that whenever an irreducible cubic has a pair of complex
conjugate embeddings that there will be an automorphism given on the
roots by complex conjugation (fixing the real root and having order 2)
and thus the Galois group will be S3. But, this example shows that the
converse of that statement does not hold.

3. Find G = Gal(F/Q) where F is a splitting field of the polynomial f(x) =
x3 + 3x2 − x− 2 over Q.

Solution: By the Rational Root Theorem, f(x) is irreducible over Q[x].
Using the transformation x 7→ x − b

3 we find that f(x) has the same
discriminant as f̂(x) = x3 − 4x + 1 where p = −4 and q = 1. Thus, we
have d(f) = d(f̂) = 229, which again gives G ' S3.

3 Fields of Prime Degree Index

There is a relatively common Galois theory problem for fields of prime index
over Q that shows up on prelims. It can be solved by the following theorem.

Theorem 5: If f(x) ∈ Q[x] is irreducible and separable of prime degree p ∈ Z+

such that f(x) has p− 2 roots in R\Q, then the splitting field F of f(x) over Q
has Galois group Sp.

We shall include the proof of this theorem, since the theorem has been posed
in disguise as a question on several prelims.

Proof: Since f(x) has a single pair of complex conjugate roots, and complex
conjugation represents an order 2 automorphism (and hence a S2 ' Z2 subgroup
in the Galois group), we have that G = Gal(F/Q) when viewed as a subgroup of
S5 contains an order 2 subgroup generated by a single 2–cycle. Since [F : Q] = p
we have from the fundamental theorem of Galois theory that p divides the order
of G. By Cauchy’s Theorem, G contains a p–cycle. Since a p–cycle and a
2–cycle generate Sp, the proof is complete. �
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Examples:

1. Find the Galois group of f(x) = x5 − 25x− 5 over Q[x].

Solution: Notice that df
dx = 5x4 − 25 has two real roots, and therefore

f(x) has one local min and one local max. Since f(−1) > 0 and f(1) < 0,
we know that this quintic has three real roots and one pair of complex
conjugate roots. By the preceeding theorem, the Galois group of the
splitting field is then S5. (Usually on a prelim, you’d run through the
proof of the theorem for this specific case: Show there is a single 2–cycle
and also a 5–cycle.)

4 Extensions of Specific Types

Galois extensions are typically classified according to the structure of the Ga-
lois group of the relevant splitting field. An extension is abelian or cyclic iff
the Galois group corresponding to the extension is abelian or cyclic, respec-
tively. Usually prelim problems dealing with extensions of Q deal with cyclo-
tomic extensions, while extensions over finite fields will always deal with cyclic
extensions. Many prelim problems also ask about radical extensions.

4.1 Cyclotomic Extensions

We call an extension field F of K a cyclotomic extension of order n if it is the
splitting field over K[x] of some polynomial xn − 1 where n ∈ Z+. These often
occur in the context of xn − 1 ∈ Q[x], but may also occur over other fields,
specifically finite fields.

Theorem 6: If K is a field and char(K) = p 6= 0, then for all n,m, e ∈ Z+,
if (m, p) = 1 and n = mpe then (xn − 1) = (xm − 1)p

e

and hence the splitting
fields over K given by these polynomials are isomorphic.

Examples:

1. Let K = F11 be the finite field of 11 elements. Then the cyclotomic
fields generated by x33 − 1 ∈ F [x] and x3 − 1 ∈ F [x] are isomorphic since
33 = 3 · 11.

2. If one wanted to find the splitting field and Galois group of x6 + 2x3 + 1
over F4, the field of 4 elements, then noting that in F4[x] we have

x6 + 2x3 + 1 = x6 − 2x3 + 1 = (x3 − 1)2

where (2, 3) = 1 gives that the desired splitting field is the cyclotomic field
given by x6 − 1 over F2.
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We will use the notation Z∗n to denote the multiplicative subgroup of units
in the cyclic group Zn. Recall that for i ∈ Z we have i a unit in Zn iff (i, n) = 1.
Hence, |Z∗n| = ϕ(n) where ϕ is the Euler-phi function. The following is the main
theorem for determining the structure of Galois groups given by cyclotomic
extensions.

Theorem 7: Given a field K and n ∈ Z+ such that char(K) does not divide
n and F is a cyclotomic extension of K having order n:

1. F = K(ζ) where ζ is a primitive nth root of unity.

2. If char(K) = 0 then G = Gal(F/K) ' Z∗n. Otherwise, G ' H ≤ Z∗n.

3. If char(K) = 0 then [F : K] = ϕ(n). Otherwise [F : K]|ϕ(n).

4. If n is prime, the extension is always cyclic (regardless of field character-
istic).

Thus, if we know the structure of Z∗n, we can completely determine the
Galois group of cyclotomic extensions of Q and restrict the possibilities for
cyclotomic extensions over other fields. The following theorem does precisely
that for extensions of prime order.

Theorem 8: The group Z∗m is given by the following.

1. If p is an odd prime and n ∈ Z+, then Z∗pn ' Zm where m = pn−1(p− 1).

2. If p = 2 and 1 ≤ n ≤ 2 then Z∗pn ' Zm where m = pn−1(p− 1).

3. If p = 2 and n ∈ Z≥3 then Z∗pn ' Z2 ⊕ Z2n−2

4. If m = pα1
1 pα

2

2 · · · p
αk

k for distinct primes pi, then we have

Zm ' Z/mZ ' (Z/pα1
1 Z)× (Z/pα2

2 Z)× · · · × (Z/pαk

k Z)

is an isomorphism by the Chinese Remainder Theorem. Hence, there must
exist an isomorphism on the corresponding unit groups, and we find

Z×m ' (Z/mZ)× ' (Z/pα1
1 Z)× × (Z/pα2

2 Z)× × · · · × (Z/pαk

k Z)×.
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Examples:

1. Often the splitting field of a polynomial has a cyclotomic subextension.
For example, the splitting field of x3 − 2 over Q (we already know how to
calculate this Galois group in several ways) is Q(ζ, 21/3) for ζ a primitive
3rd root of unity. The extension Q(ζ) itself is cyclotomic with Galois
group Z2, while Q(21/3) is an extension of degree 2 that isn’t normal.
Therefore, the Galois group has an order 3 normal subgroup and an order
2 nonnormal subgroup. Hence G ' S3.

2. For cyclotmic extensions of the form given by the splitting field of xm− 1
for composite m, we have several options. For example, consider the
splitting field K of x12 − 1 over Q. We have from the Chinese Remainder
Theorem that

Gal(K/Q) ' Z×12 ' (Z/12Z)× ' (Z/4Z)× × (Z/3Z)× ' Z2 × Z2.

One should notice by now that composite cyclotomic extensions of Q need
not be cyclic, while prime cyclotomic extensions always are. This example
may be computer more directly from subfields, as is done in the following
example.

3. The splitting field of x12−1 over Q can be constructed from subfields over
Q. Notice that x4 − 1 is cyclotomic, and at the same time may be viewed
as the quadratic extension Q(i) with Galois group Z2. The splitting field
of the cyclotomic extension given by x3 − 1 has Galois group Z2 as well.
Since a 3rd root of unity and i generate all 12th roots of unity, we have
F = Q(ζ, i) where ζ is a third root of unity. Since we included a third
root of unity ζ in a cyclotomic (Galois) extension, we have −ζ and the
conjugate of −ζ in Q(ζ). Hence, Q(ζ) = Q(ρ) where ρ is a primitive 6th
root of unity. Therefore, we find that the Galois group is V4 ' Z2 × Z2.

4. The idea used in Example 3 is relatively common. For instance, the split-
ting field of x4 + 1 contains the four roots of −1 in C, and hence is a
subfield of the cyclotomic extension given by a primitive 8th root of unity.
Hence, the desired Galois group will be a subgroup of Z2×Z2. Notice that
a field containing the 4th roots of -1 in C contains ±

√
2±
√

2i. Assing the
two roots with x–component and dividing by the field element 2 shows
that

√
2 is in the field, which we then use to factor

√
2 +
√

2i =
√

2(1 + i).
Since

√
2 and 1 are in the field already, so must be i. Thus, the field

generated by the 4th roots of -1 is identitcal to the cyclotomic extension
given by an 8th root of unity and the Galois group is V4.

5. Find the Galois group for the splitting field K of x1000−1 over Q. Solution:
By the Chinese Remainder Theorem we have

Gal(K/Q) ' Z×1000 ' (Z/4Z)× × (Z/125Z)× ' Z2 × Z100.
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5 Galois Groups Over Finite Fields

This section is broken into two subsections. First, the main theorems about
finite fields are reviewed. Then, several methods for calculating Galois groups
over finite fields are presented.

5.1 In Theory

A key idea here is that the Galois group of a finite extension of a finite field will
always be cyclic. Notice that this implies that (finite) Galois groups over finite
fields are always abelian.

Given a field F , we define the prime subfield of F to be the intersection of all
subfields. If the field in question has characteristic zero, then the prime subfield
is always isomorphic to Q. Any finite field will have order pn for some prime p
and n where p, n ∈ Z+. The prime subfield of a field having characteristic p is
thus Fp ' Zp.

Theorem 9: Any finite subgroup of the (multiplicative) group of units of a
field is cyclic. Mainly, the group F×pn is a multiplicative cyclic group for all
finite fields Fpn .

From this point on, we assume that our fields are finite. The following
automorphism provides the main tools for computing the structure of Galois
groups over finite fields.

Theorem 10: Let F be a finite field of characteristic p and let m ∈ Z+. Then
the mapping

ϕ : F → F defined by ϕ(α) = αp
m

is an automorphism on F . This automorphism (usually in the case of m = 1)
is known as the Frobenius automorphism.

Notice that the Frobenius automorphism fixes elements in the prime subfield,
since |Zp| = p − 1 and hence αp = α for all α ∈ Zp. To see that this is indeed
an automorphism on Fpn for 1 < n < ∞, recall that in a field of characteristic
p we have

(α± β)p = αp ± βp.

If we let m = n where m is the power of p given in the Frobenius automorphism
and n is the dimension of the field Fpn viewed as a vector space over Fp, then
we have our principal result for extensions of finite fields:
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Theorem 11: Let p be a prime and n ∈ Z+. Then F is a field of order Fpn

iff F is a splitting field of f(x) = xp
n − x ∈ Fp[x]. In fact, the smallest field

splitting f(x) is F . Moreover, f(x) is the product of all irreducible polynomials
of degree dividing n in Fp[x].

Notice that a field of order pn has a unit group of size pn−1. Since xp
n−x =

x(xp
n−1−1), every nonzero element in Fpn is seen to be a root of this polynomial.

Therefore, it is relatively intuitive that xp
n − x splits and is separable with pn

roots in Fpn .

Recall that for any prime p and any n ∈ Z+ we may construct a field
having pn elements, and that all fields of order pn are isomorphic. We may
also construct at will irreducible polynomials over arbitrary degree over Fp.
To show that the Galois groups of such extensions5 are cyclic, we prove the
following theorem:

Theorem 12: For Fpn over the prime subfield Fp, G = Gal(Fpn/Fp) ' Zn.
Moreover, if σ ∈ G is defined to be the Frobenius automorphism σ : α 7→ αp,
then G = 〈σ〉.

Proof: Notice that σn is the identity automorphism on Fpn . If some m < n
in Z+ satisfied σk = id then xp

m − x would annihilate all elements of Fpn .
Notice that this is a contradiction since xp

m − x has fewer roots than Fpn has
elements, and is Galois and hence separable. Thus, n is the smallest integer
such that σn = id. By the Fundamental Theorem of Galois Theory, we have
|G| = |Gal(Fpn/Fp)| = n, completing the proof. �

5.2 In Practice

There is a small gap between theory and practice. In general, trying to find the
Galois group of a polynomial over a finite field starts the same as over Q: We
try to factor the polynomial. Since our irreducibility criteria over finite fields
aren’t generally as strong, this typically amounts to the following:

1. Pull out all linear factors.

2. Attempt to factor the remaining polynomial or exploit the Frobenius auto-
morphism in some creative way. This process can only really be explained
by examples.

5Notice that since the relevant fields are splitting fields of separable polynomials that they
are Galois over Fp ' Zp for some prime p.
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Examples:

1. Determine the splitting field of the polynomial x5 + 2x4 + 5x2 +x+ 4 over
F11 and its Galois group.

Solution: By brute force, we find that x − 9 = x + 2 is a root of this
polynomial in F11[x]. By long division, we find that

x5 + 2x4 + 5x2 + x+ 4 = (x+ 2)(x4 + 5x+ 2),

and so our problem is now to compute the Galois group of f(x) = x4 +
5x+2 over F11. We already know that for all α ∈ F11\{2}, α is not a root
of f since it isn’t a root of the original polynomial, but we should verify
that 9 isn’t a repeat root. In fact it isn’t a root of f , and so we are left
with two possible situations:

(a) If f(x) is irreducible in F11[x], then we have a degree 4 extension
since x114 − x will split any irreducible polynomial in F11[x] having
degree dividing 4. In this case, the Galois group is Z4.

(b) If f(x) factors as two quadratics, then x112 − x will split both, and
the Galois group is thus Z2.

Since the polynomial has nonzero terms between the degree 4 and constant
term, it is not efficient to use long division. (See the next example.) We
try to factor as follows: Assume x4 + 5x+ 2 = (x2 + ax+ c)(x2 + bx+ d),
and then we work through the corresponding equivalences. For example,
we know cd = 2 mod 11. This results in the factorization

x4 + 5x+ 2 = (x2 + 5x+ 1)(x2 + 6x+ 2).

Hence, the splitting field is given by x112 − x and is F112 , giving that the
Galois group is Z2.
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