FALL 2004 PRELIMINARY EXAMINATION

1A. Show that there is a unique piecewise continuous function y(x) on \mathbb{R} satisfying the two conditions

$$y(x) = \int_0^\infty e^{-2s} y(x-s) \, ds \qquad \text{for } x > 0, \text{ and}$$
$$y(x) = e^x, \qquad \text{for } x \le 0,$$

and find an explicit formula for y(x) for x > 0.

2A. For $c \in \mathbb{Q}$, define $R_c := \mathbb{Q}[x]/(x^3 - cx)$. Let $a, b \in \mathbb{Q}$. Show that the rings R_a and R_b are isomorphic if and only if there exists a nonzero $r \in \mathbb{Q}$ such that $b = r^2 a$.

3A. Let f and g be functions that are holomorphic on all of \mathbb{C} , except that g has an essential singularity at the complex number c. Prove that either f is constant, or the composition $f \circ g$ has an essential singularity at c. (Hint: you may assume the Casorati-Weierstrass Theorem, which states that if a function f has an essential singularity at c, then for any punctured neighborhood N of c on which f is holomorphic, the image f(N) is dense in \mathbb{C} .)

4A. Let A be an $n \times n$ matrix with complex entries. Prove that A is diagonalizable if and only if the following is true: Whenever f is a polynomial with complex coefficients such that f(A) is nilpotent, we have f(A) = 0. (A matrix A is *nilpotent* if $A^m = 0$ for some $m \ge 1$.)

5A. Let $(a_m)_{m\geq 1}$ be a sequence of real numbers satisfying $a_{n+m} \leq a_n + a_m$. Prove that

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_n \frac{a_n}{n}$$

as an element of $[-\infty, \infty)$.

6A. Let n be a square-free positive integer (*i.e.*, n = 1 or n is prime or n is a product of distinct primes). Assume that for every product of primes $pq_1 \cdots q_r$ dividing n, with r > 0, we have $q_1 \cdots q_r \not\equiv 1 \pmod{p}$. Prove that every group G of order n is abelian.

7A. Let D be the open unit disk in \mathbb{C} , and $f: D \to D$ a holomorphic function. Suppose that $f(-\frac{1}{2}) = 0$ and $f(0) = \frac{1}{2}$. Prove that there is only one possible value for $f(\frac{1}{2})$, and find it.

8A. Let \langle , \rangle be a positive-definite Hermitian inner product on a finite-dimensional complex vector space V. Suppose $T: V \to V$ is a \mathbb{C} -linear map such that $\langle Tv, v \rangle = 0$ for all $v \in V$. Prove that T = 0.

9A. Let $f: [0,1] \to \mathbb{R}$ be a continuous function. Show that

$$\lim_{n \to \infty} \int_0^1 f(x) e^{inx^3} dx = 0$$

1B. Let S_n be the group of permutations of $\{1, \ldots, n\}$, and let A_n be the alternating subgroup. Suppose $m \leq n$.

(a) Identify S_m with the subgroup of S_n consisting of elements that fix $m + 1, \ldots, n$. Prove that $A_n \cap S_m = A_m$.

(b) Is it true in general that if $f: S_m \to S_n$ is an injective homomorphism, then $A_n \cap f(S_m) = f(A_m)$? Give a proof or a counterexample.

2B. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a continuous function of compact support (i.e., f vanishes outside some bounded set).

(a) Show that

$$u(x) := \int \frac{f(y)}{|x-y|} \, dy$$

converges, where the integral is over all $y \in \mathbb{R}^3$.

(b) Show that $\lim_{|x|\to\infty} u(x)|x|$ exists.

3B. For which positive integers n does there exist an $n \times n$ matrix A with rational entries such that $A^3 + A + I = 0$?

4B. Evaluate $I(w) := \int_0^\infty \frac{e^{iwt}}{\sqrt{t}} dt$ for every nonzero real number w. You may use the formula $\int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}.$

5B. What is the cardinality of the smallest field F of characteristic 7 such that the equation $x^{18} + x^{17} + \cdots + x + 1 = 0$ has a solution $x \in F$?

6B. Suppose that f(z) is holomorphic on all of \mathbb{C} except for a pole at z = 0. Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{1}{n} e^{2\pi i k/n}\right)$$

exists.

7B. Let $n \ge 1$, and let $M_n(\mathbb{R})$ be the ring of $n \times n$ matrices over the field of real numbers. What is the dimension of the subspace V of $M_n(\mathbb{R})$ spanned by the matrices of the form AB - BA where $A, B \in M_n(\mathbb{R})$?

8B. A C^2 function y(x) for $0 \le x \le 1$, a positive continuous function a(x) for $0 \le x \le 1$, and a real number λ satisfy

$$y''(x) + \lambda a(x)y(x) = 0,$$

 $y(0) = 0,$
 $y'(1) = 0.$

Suppose that y(x) is not identically zero. Prove that $\lambda > 0$.

9B. Prove that every group of order 30 has a cyclic subgroup of order 15.