FALL 2006 PRELIMINARY EXAMINATION SOLUTIONS

1A. Compute

$$
\lim _{x \rightarrow 0} \frac{d^{4}}{d x^{4}} \frac{x}{\sin x}
$$

Solution: By Taylor's formula,

$$
\sin x=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+o\left(x^{5}\right)
$$

Therefore

$$
\begin{aligned}
\frac{x}{\sin x} & =\frac{1}{1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+o\left(x^{4}\right)} \\
& =1+\left(\frac{x^{2}}{6}-\frac{x^{4}}{120}+o\left(x^{4}\right)\right)+\left(\frac{x^{2}}{6}+o\left(x^{2}\right)\right)^{2}+o\left(x^{4}\right) \\
& =1+\frac{x^{2}}{6}+\left[\frac{1}{36}-\frac{1}{120}\right] x^{4}+o\left(x^{4}\right) .
\end{aligned}
$$

Thus,

$$
\lim _{x \rightarrow 0} \frac{d^{4}}{d x^{4}} \frac{x}{\sin x}=4!\left[\frac{1}{36}-\frac{1}{120}\right]=\frac{2}{3}-\frac{1}{5}=\frac{7}{15}
$$

2A. Let

$$
A=\left(\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right)
$$

Compute

$$
e^{A}:=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}
$$

Solution: The matrix A has eigenvalues 2 and 1 with eigenvectors $(2,1)$ and $(1,1)$ respectively. Therefore

Observe that

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{-1}
$$

$$
e^{C B C^{-1}}=\sum_{n=0}^{\infty} \frac{\left(C B C^{-1}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{C B^{n} C^{-1}}{n!}=C e^{B} C^{-1}
$$

Therefore

$$
e^{A}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
e^{2} & 0 \\
0 & e
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
2 e^{2} & e \\
e^{2} & e
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
2 e^{2}-e & -2 e^{2}+2 e \\
e^{2}-e & -e^{2}+2 e
\end{array}\right)
$$

3A. Let U be a connected open subset of \mathbb{C} containing -2 and 0 . Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function whose Taylor expansion at 0 is $\sum_{n \geq 0}\binom{2 n}{n} z^{n}$. Prove that $f(-2) \in$
$\{1 / 3,-1 / 3\}$. (Note: The original version of this problem had an error: $\{3,-3\}$ instead of $\{1 / 3,-1 / 3\}$.)

Solution: We claim that $f(z)^{2}=(1-4 z)^{-1}$. Since a holomorphic function on a connected open set is determined by its values on any nonempty open subset, it suffices to prove $f(z)^{2}=(1-4 z)^{-1}$ in a neighborhood of 0.

One way to do this is to expand $(1-4 z)^{-1 / 2}$ using the binomial theorem, and check that it agrees with $\sum_{n \geq 0}\binom{2 n}{n} z^{n}$. But this assumes that we guessed the formula $(1-4 z)^{-1 / 2}$.

A more motivated solution is to find a differential equation satisfied by $f(z)$ (in a neighborhood of 0). Rewrite the series as

$$
f=\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{n!}(2 z)^{n},
$$

where $(2 n-1)$!! denotes the product of all odd positive integers up to $2 n-1$. The series satisfies the 1st order differential equation:

$$
z \frac{d}{d z} f=2 z\left(2 z \frac{d}{d z}+1\right) f
$$

It can be rewritten as

$$
\frac{d f}{d z}=\frac{2 f}{1-4 z}
$$

which is not hard to solve:

$$
\int \frac{d f}{f}=\int \frac{2 d z}{1-4 z}, \text { or } \ln f=-\frac{1}{2} \ln (1-4 f)+\text { const }
$$

i.e. $f=C(1-4 z)^{-1 / 2}$. The value $C=1$ is found from $f(0)=1$.

Now $f(-2)^{2}=(1-4(-2))^{-1}=1 / 9$, so $f(-2) \in\{1 / 3,-1 / 3\}$.
4A. Let R be a finite commutative ring without zero-divisors and containing at least one element other than 0 . (As usual, rings are associative with 1.) Prove that R is a field.

Solution: Let $a \in R, a \neq 0$ and let $f: R \rightarrow R$ be $f(x)=a x, x \in R$. Then f is one-to-one since there are no zero-divisors in R. Then f is onto since R is finite. Thus there exists a unique $x_{a} \in R$ such that $a x_{a}=a$. Let us show that x_{a} plays the role of unity in R. Indeed, for every $b \in R$ there is a unique $x_{b} \in R$ such that $b=a x_{b}$. We have $b x_{a}=a x_{b} x_{a}=a x_{a} x_{b}=a x_{b}=b$. So $x_{a}=1$. For each $0 \neq b \in R$ there is a unique b^{\prime} with $b b^{\prime}=1$. Thus $b^{\prime}=b^{-1}$.

5 A . Let $C^{0}[0,1]$ be the vector space over \mathbb{R} consisting of continuous functions from $[0,1]$ to \mathbb{R}. Show that the linear operator $T: C^{0}[0,1] \rightarrow C^{0}[0,1]$ defined by

$$
(T f)(x):=\int_{0}^{x} f(y) d y
$$

has no nonzero eigenvectors.
Solution: Suppose that $f \in C^{0}[0,1]$ and $\lambda \in \mathbb{R}$ satisfy $T f=\lambda f$. By the fundamental theorem of calculus, $T f$ is differentiable, and its derivative is $(T f)^{\prime}=f$. Therefore $\lambda f^{\prime}=f$. Solving this differential equation (e.g. by separation of variables), we find that if $\lambda=0$ then
$f=0$, while if $\lambda \neq 0$ then $f=C e^{x / \lambda}$. But we observe that $(T f)(0)=0$, so in the case when $\lambda \neq 0$ we have $C=0$. Either way, $f=0$. Thus T has no nonzero eigenvector.

6A. Let p be prime. Prove that the polynomial $f(x)=x^{p}-x+1$ is irreducible over the field \mathbb{F}_{p} of p elements.

Solution: Let α be a zero of f in some field extension of \mathbb{F}_{p}. Because of the identity $(x+y)^{p}=x^{p}+y^{p}$ in characteristic p, we have $f(x+1)=f(x)$. By induction, $f(x+a)=f(x)$ for all $a \in \mathbb{F}_{p}$. In particular, $f(\alpha+a)=f(\alpha)=0$. Thus the p elements $\alpha+a$ for $a \in \mathbb{F}_{p}$ are all the zeros of $f(x)$.

Suppose $f(x)=g(x) h(x)$ for some monic polynomials $g, h \in \mathbb{F}_{p}[x]$. Then $g(x)=\prod_{i \in I}(x-$ $(\alpha+i))$ for some subset $I \subseteq \mathbb{F}_{p}$. The sum of the zeros of g is in \mathbb{F}_{p}, so

$$
(\# I) \alpha+\left(\sum_{i \in I} i\right) \in \mathbb{F}_{p}
$$

Thus $(\# I) \alpha \in \mathbb{F}_{p}$. Since f is irreducible, $\alpha \notin \mathbb{F}_{p}$, so $\# I$ must be divisible by p. In other words, $\# I$ is 0 or p, so the factorization is trivial.

7A. Prove that for every $a \in \mathbb{C}$ and integer $n \geq 2$, the equation $1+z+a z^{n}=0$ has at least one root in the disk $|z| \leq 2$.

Solution: 1) If $a=0$, the problem is trivial.
2) Let $a \neq 0, b=\frac{1}{a}$. Consider

$$
\begin{equation*}
b+b z+z^{n}=0 . \tag{1}
\end{equation*}
$$

Let z_{1}, \ldots, z_{n} be the roots of (1).
a) If $|b| \leq 2^{n}$ then there is z_{i} such that $\left|z_{i}\right| \leq 2$, since otherwise we would have $|b|=$ $\left|z_{1} \ldots z_{n}\right|>2^{n}$.
b) Let $|b|>2^{n}$ and let $f(z)=b(1+z)+z^{n}, g(z)=b(1+z)$. Then $|f(z)-g(z)|=$ $\left|z^{n}\right|=2^{n}<|b|=|b|(|z|-1) \leq|b(1+z)|=|g(z)|$ if $|z|=2$. By Rouché's Theorem, the function f has as many roots inside the circle $|z|=2$ as does the function $g(z)$. But $g(z)$ has one, namely $z=-1$. Hence f also has one inside $|z|=2$.

8 A . Let \mathbf{Z} denote the ring of integers and consider the linear map $\mathbf{Z}^{3} \rightarrow \mathbf{Z}^{3}$ defined by the 3×3-matrix

$$
A=\left(\begin{array}{ccc}
6 & 9 & 12 \\
6 & 9 & 12 \\
12 & 18 & 24
\end{array}\right)
$$

Compute the structure of the three abelian groups $\operatorname{kernel}(A)$, image (A), and cokernel $(A)=$ $\mathbf{Z}^{3} /$ image (A). In particular, in each case determine whether the group is free abelian. If yes, give a basis.

Solution: We perform elementary row and column operations to diagonalize the matrix A :

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right) \cdot A \cdot\left(\begin{array}{rrr}
-1 & -3 & -2 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Both transformation matrices have determinant one, so they are invertible over the integers. Hence image, kernel and cokernel can be computed from the transformed matrix. We find

$$
\operatorname{image}(A) \simeq \mathbf{Z}^{1}, \quad \operatorname{kernel}(A) \simeq \mathbf{Z}^{2}, \quad \operatorname{coker}(A) \simeq \mathbf{Z}^{2} \oplus \mathbf{Z} / 2 \mathbf{Z}
$$

We see that the column vector $(3,3,6)^{T}$ is a basis for image (A). The last two columns of the right transformation matrix give the basis $\left\{(-3,2,0)^{T},(-2,0,1)^{T}\right\}$ for $\operatorname{kernel}(A)$.

9A. Let k be a field such that the additive group of k is finitely generated. Prove that k is finite.

Solution: First suppose that k has characteristic 0. A subgroup of a finitely generated abelian group is also finitely generated, so if the additive group of k is finitely generated, then so is the additive group of \mathbb{Q}. But the additive group generated by a finite list of rational numbers $a_{1} / b_{1}, \ldots, a_{n} / b_{n}$ is contained in the integer multiples of $1 /\left(b_{1} \cdots b_{n}\right)$, so if p is a prime larger than $\left|b_{1} \cdots b_{n}\right|$, then $1 / p$ is not in this group. This contradiction shows that k cannot have characteristic 0 .

Let p be the characteristic of k. Then k is a vector space over the field \mathbb{F}_{p} of p elements. Now, to say that k is finitely generated as an additive group is the same as saying that it is finite-dimensional as an \mathbb{F}_{p}-vector space. If $d=\operatorname{dim}_{\mathbb{F}_{p}} k$, then $\# k=p^{d}$, so k is finite.

1B. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Assume that $\left|f\left(z^{2}\right)\right| \leq 2|f(z)|$ for all $z \in \mathbb{C}$. Show that f is constant.

Solution: By induction on n we have that $\left|f\left(z^{2^{n}}\right)\right| \leq 2^{n}|f(z)|$.
(proof: $n=0$ says $\left|f\left(z^{1}\right)\right| \leq 1|f(z)|$; if this is true for n then: $\left.\left|f\left(z^{2^{n+1}}\right)\right|=\left|f\left(\left(z^{2^{n}}\right)^{2}\right)\right| \leq 2\left|f\left(z^{2^{n}}\right)\right| \leq 2\left(2^{n}\right)|f(z)|\right)$.

Let $M=\max \{|f(z)|:|z|=2\}$. Let $R_{n}=2^{2^{n}}$. If $|w|=R_{n}$ then $w=z^{2^{n}}$ for some z of length 2 , and so $|f(w)| \leq 2^{n}|f(z)| \leq 2^{n} M$.

For each integer $m \geq 1$, by Cauchy's inequalities for the circle about 0 of radius R_{n}, $\left|f^{(m)}(0)\right| \leq\left(2^{n} M\right) /\left(R_{n}\right)^{m} \leq M\left(2^{n-2^{n}}\right)$. But as $n \rightarrow \infty$, this converges to 0 . So $f^{(m)}(0)=0$ for all $m \geq 1$, and the power series of f is constant.

2 B . Let $C^{0}[0,1]$ be the vector space over \mathbb{R} consisting of continuous functions from $[0,1]$ to \mathbb{R}. Show that the functions $1, x, x^{2}, \ldots$ are linearly independent in $C^{0}[0,1]$.

Solution: Suppose that a finite linear combination $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$ is equal to zero in $C^{0}[0,1]$, where $c_{0}, \ldots, c_{n} \in \mathbb{R}$. This means that $p(x)=0$ for all $x \in[0,1]$. We need to show that $c_{0}=\cdots=c_{n}=0$. Pick any $n+1$ distinct points $a_{1}, \ldots, a_{n+1} \in[0,1]$. Since $p\left(a_{1}\right)=0$, we have $p(x)=\left(x-a_{1}\right) q(x)$ where q is a polynomial of degree $n-1$. Since $p\left(a_{2}\right)=0$ and $a_{2}-a_{1} \neq 0$, we have $q\left(a_{2}\right)=0$, so the polynomial q is divisible by $x-a_{2}$. Continuing, we find that the polynomial p is divisible by $\left(x-a_{1}\right) \cdots\left(x-a_{n+1}\right)$, and since the latter polynomial has degree $n+1$, this is possible only if $p=0$.

3B. Let $f: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. For $x \in \mathbb{R}$, define

$$
g(x):=\max \{f(x, y): y \in[0,1]\}
$$

Show that g is continuous.

Solution: Given $a \in \mathbb{R}$, let $A=[a-1, a+1] . K=A \times[0,1]$ is compact, so f restricted to K is uniformly continuous. Given $\epsilon>0$, let $\delta>0$ be such that for all $x, z \in A,|x-z|<\delta$ implies for all $y \in[0,1], \quad|f(x, y)-f(z, y)|<\epsilon$.

So for $x, z \in A$, if $|x-z|<\delta$, then $g(x)<g(z)+\epsilon$
(proof: Let y be such that $f(x, y)=g(x)$; so $|f(x, y)-f(z, y)|<\epsilon$, and $g(x)=f(x, y)<$ $f(z, y)+\epsilon \leq g(z)+\epsilon)$.

By symmetry, for $x, z \in A$, if $|x-z|<\delta$ then $|g(x)-g(z)|<\epsilon$. So g is continuous at a.
4B. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial. Suppose there is a field extension F of \mathbb{Q} containing a root a of $f(x)$ such that F does not contain any cube root of a. Show that $f\left(x^{3}\right)$ is irreducible over \mathbb{Q}.

Solution: Let $n=\operatorname{deg} f$. Let b be a root of $f\left(x^{3}\right)$ in some field extension of \mathbb{Q}. So b^{3} is a root of $f(x)$. Since $f(x)$ is irreducible over \mathbb{Q}, the fields $\mathbb{Q}(a)$ and $\mathbb{Q}\left(b^{3}\right)$ are isomorphic via an isomorphism that sends a to b^{3}. Thus $\mathbb{Q}\left(b^{3}\right)$ contains no root of the polynomial $x^{3}-b^{3}$. Since this is a cubic polynomial, this implies that $x^{3}-b^{3}$ is irreducible over $\mathbb{Q}\left(b^{3}\right)$. Thus $\left[\mathbb{Q}(b): \mathbb{Q}\left(b^{3}\right)\right]=3$. Since $f(x)$ is of degree n and irreducible over $\mathbb{Q},\left[\mathbb{Q}\left(b^{3}\right): \mathbb{Q}\right]=n$.

So $[\mathbb{Q}(b): \mathbb{Q}]=\left[\mathbb{Q}(b): \mathbb{Q}\left(b^{3}\right)\right]\left[\mathbb{Q}\left(b^{3}\right): \mathbb{Q}\right]=3 n=$ the degree of $f\left(x^{3}\right)$. Thus $f\left(x^{3}\right)$ is the irreducible polynomial of b over \mathbb{Q}.

5B. Let f and g be entire functions such that

$$
\int_{|z|=1} \frac{f(z)}{(\sin z)^{m}} d z=\int_{|z|=1} \frac{g(z)}{(\sin z)^{m}} d z
$$

for all positive integers m. Prove that $f=g$.
Solution: Suppose $f \neq g$. Let $h(z)=f(z)-g(z)$, so

$$
\int_{|z|=1} \frac{h(z)}{(\sin z)^{m}} d z=0
$$

Since h is not identically zero, we may take $m=1+\operatorname{ord}_{z=0} h(z)$. Then $h(z) /(\sin z)^{m}$ has a simple pole at $z=0$ and is holomorphic elsewhere in $|z| \leq 1$, so the residue theorem gives

$$
\int_{|z|=1} \frac{h(z)}{(\sin z)^{m}} d z \neq 0
$$

a contradiction.
6B. Let G be a nonabelian group of order 21. Find the largest positive integer n with the property that whenever G acts on a set S of size n, some element of S is fixed by every element of G.

Solution: Finite G-sets are finite unions of transitive G-sets, and each transitive G-set is of the form G / H for some subgroup H (namely, H is the stabilizer of a point in the G-set). Hence an integer n does not have the property if and only if there is a sequence of proper subgroups of G whose indices sum to n. The possibilities for the index of a proper subgroup of G are 3,7 , and 21 (consider Sylow subgroups, and the trivial group). Thus we seek the largest n that is not a sum of integers each of which equals 3 , 7 , or 21 . The set of such
sums consists of numbers of the form $3 k$, numbers of the form $3 k+1$ that are at least 7 , and numbers of the form $3 k+2$ that are at least 14 , so the largest n that is not such a sum is 11 .

7B. Let X and Y be metric spaces, and let f_{1}, f_{2}, \ldots be continuous functions from X to Y. Suppose that the sequence $\left\{f_{n}\right\}$ converges uniformly to a function f. Show that f is continuous.

Solution: Let $\epsilon>0$ and $x \in X$ be given; we must find $\delta>0$ such that $d\left(x, x^{\prime}\right)<\delta$ implies $d\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon$. Since the sequence $\left\{f_{n}\right\}$ converges uniformly to f, there exists n such that for all $x \in X$ we have $d\left(f_{n}(x), f(x)\right)<\epsilon / 3$. Since f_{n} is continuous, there exists $\delta>0$ such that $d\left(x, x^{\prime}\right)<\delta$ implies $d\left(f_{n}(x), f_{n}\left(x^{\prime}\right)\right)<\epsilon / 3$. In particular, $d\left(x, x^{\prime}\right)<\delta$ implies that

$$
\begin{aligned}
d\left(f(x), f\left(x^{\prime}\right)\right) & \leq d\left(f(x), f_{n}(x)\right)+d\left(f_{n}(x), f_{n}\left(x^{\prime}\right)\right)+d\left(f_{n}\left(x^{\prime}\right), f\left(x^{\prime}\right)\right) \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

8B. Let A be an $n \times n$ Hermitian matrix and B an $n \times n$ positive definite (complex) matrix. Prove that there is an invertible complex $n \times n$ matrix S such that $S^{H} A S$ is diagonal and $S^{H} B S=I$. (Here S^{H} denotes the conjugate transpose of the matrix S.)

Solution: Since B is positive definite there is a unitary V such that $B=V D V^{H}$ where D is diagonal with positive diagonal. Let $Q=V(\sqrt{D})^{-1}$. Then $Q^{H} B Q=(\sqrt{D})^{-1} V^{H} B V(\sqrt{D})^{-1}=$ I. Then $Q^{H} A Q$ is Hermitian hence there is a unitary U such that $U^{H}\left(Q^{H} A Q\right) U=\Lambda$ is diagonal. Set $S=Q U$. We have $S^{H} B S=U^{H} Q^{H} B Q U=I$ and $S^{H} A S=U^{H} Q^{H} A Q U=\Lambda$.

9B. Let z_{0}, z_{1}, \ldots be a sequence of complex numbers such that $z_{n+1}=1+1 / z_{n}$ for all $n \geq 0$. Prove that the sequence is convergent.

Solution: Let $f(z)=\frac{z+1}{z}$. Then the equation $f(z)=z$ has two solutions

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} .
$$

Let

$$
w=\frac{z-\alpha}{z-\beta}, z=\frac{\beta w-\alpha}{w-1} .
$$

Then

$$
\frac{f(z)-\alpha}{f(z)-\beta}=\frac{z+1-\alpha z}{z+1-\beta z} .
$$

Use $\alpha+\beta=1$ and $\alpha \beta=-1$,

$$
\frac{z+1-\alpha z}{z+1-\beta z}=\frac{\beta z+1}{\alpha z+1}=\frac{\beta}{\alpha} \frac{z-\alpha}{z-\beta}=\frac{\beta}{\alpha} w .
$$

Therefore if $z_{n+1}=f\left(z_{n}\right)$, then $w_{n+1}=\gamma w_{n}$, where $\gamma=\frac{\beta}{\alpha}$. Since $|\gamma|<1$,

$$
\lim _{n \rightarrow \infty} w_{n}=0
$$

that implies

$$
\lim _{n \rightarrow \infty} z_{n}=\alpha
$$

for any z_{0}, except $z_{0}=\beta$. If $z_{0}=\beta$, obviously the limit is β.

