
PRELIM EXAM. Fall–2009

Problem 1A.
Let p(k) be a degree n polynomial with complex coefficients defined by

p(k) = p0 +

(
k

1

)
p1 +

(
k

2

)
p2 + · · ·+

(
k

n

)
pn.

Define

f(z) =
∞∑

k=0

p(k)zk.

Find the radius of convergence of the power series, prove that f(z) is a rational function
restricted to the disk of convergence, and give a formula for f(z).

Solution: We have (
d

dz

)n
1

1− z
=

n!

(1− z)n+1
.

Since 1
1−z

=
∑∞

k=0 zk for |z| < 1, we also have for |z| < 1

n!

(1− z)n+1
=

(
d

dz

)n ∞∑
k=0

zk =
∞∑

k=0

k(k − 1) · · · (k − n + 1)zk−n =
n!

(1− z)n+1
.

We may rewrite this as
zn

(1− z)n+1
=

∞∑
k=0

(
k

n

)
zk.

Thus,

f(z) =
∞∑

k=0

n∑
j=0

pj

(
k

n

)
zk =

n∑
j=0

pj

∞∑
k=0

(
k

n

)
zk =

n∑
j=0

pj
zj

(1− z)j+1
,

which is a sum of rational functions, and is therefore rational. The series converges to this
rational function in the disk |z| < 1, and the rational function has a pole on its boundary at
z = 1 (unless all pj = 0). Thus the convergence radius R = 1 if not all pj = 0 (and R = ∞
otherwise).

Problem 2A.
Prove that no polynomial p(a, b, c, d) in four variables over C has the property that when

p is evaluated on the entries of a 2× 2 matrix A =

[
a b
c d

]
, the result is an eigenvalue of A,

for all A.

Solution 1: Assuming the opposite, we arrive at the absurd conclusion that
√

z is a poly-
nomial in z; namely p(0, z, 1, 0)2 = z for all z ∈ C.



Solution 2: Suppose p always evaluates to an eigenvalue of A. Then q = tr(A)−p = a+d−p
evaluates to the other eigenvalue, hence

pq = det(A) = ad− bc.

We claim that det(A) is an irreducible polynomial, and therefore either p or q must be
constant, contradicting the eigenvalue property (note that q has the same property). One
way to prove that ad−bc is irreducible is as follows. Since ad−bc is homogeneous quadratic,
its only possible factorization is as a product of linear forms λ · µ. Since no term of ad− bc
is the square of a variable, none of the four variables occurs in both λ and µ. Since none
of the variables divides ad − bc, each of λ and µ must have at least two terms, and hence
exactly two terms. But this would force λ · µ to have four terms.

Problem 3A.
Find ∫

|z|=2

1

cos z
dz,

where the integral is taken with respect to the counterclockwise (positively oriented) param-
eterization of the circle |z| = 2.

Solution: The integral must be invariant under changing z to −z, as this fixes the contour,
but this change of variable also changes the sign of the integrand, so the integral is zero. It
is also possible to do this question by adding up the residues at ±πi/2.

Problem 4A.
Let p, n be positive integers with p prime. Let G = GLn(Fp) be the group of invertible

n × n matrices over the field with p elements. Let U ⊂ G be the subgroup consisting of
upper triangular matrices with all diagonal entries equal to 1. Prove that every p-subgroup
of G is conjugate to a subgroup of U .

Solution: By Sylow’s theorems it suffices to show that U is a Sylow p-subgroup of G. The
above-diagonal entries of a matrix X ∈ U may be chosen arbitrarily in Fp, so U has order

p(n
2). The order of G is

(pn − 1)(pn − p) · · · (pn − pn−1) = p(n
2)(pn − 1)(pn−1 − 1) · · · (p− 1),

whose p-power factor is clearly p(n
2), as desired. The formula for the order of G can be

derived as follows. We may choose the rows of a matrix Y ∈ G in succession, where the k-th
row is arbitrary, provided it does not belong to the (k − 1)-dimensional subspace spanned
by the previously chosen rows (note that this procedure preserves the inductive hypothesis
that the chosen rows are linearly independent). This gives pn − pk−1 choices for the k-th
row. Now take the product over k from 1 to n.



Problem 5A.
Is it possible to find two closed and connected subsets A and B in R2 such that

A + B = {(x1 + x2, y1 + y2) ∈ R2 | (x1, y1) ∈ A, (x2, y2) ∈ B}

is not closed?

Solution: Yes; take A to be the x-axis and B to be one of the components of xy = 1, so
that A + B is an open half-plane (y > 0 or y < 0).

Problem 6A.

For n ≥ 1, prove that an +
1

an−1 +
1

· · ·+
1

a1 +
1

a0

=
∆n

∆n−1

,

where ∆n =

∣∣∣∣∣∣∣∣∣∣
a0 1 0 . . . 0
−1 a1 1 . . . 0
. . . . .
0 . . . −1 an−1 1
0 . . . 0 −1 an

∣∣∣∣∣∣∣∣∣∣
.

Solution: Using the cofactor expansion with respect to the last row, we find that ∆n =
an∆n−1 + ∆n−2. Dividing by ∆n−1, we get:

∆n/∆n−1 = an +
1

∆n−1/∆n−2

.

The required result follows by induction on n since it obviously holds for n = 1.

Problem 7A.
If f is a meromorphic function which has a pole of order 1 at z0 show that

f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

can be extended to a holomorphic function at z0.

Solution: If f(z) = az−1 + holomorphic, then f ′ = −az−2 (1 + z2 × holomorphic),
f ′′ = 2az−3 (1 + z3 × holomorphic), f ′′′ = −6az−4 (1 + z4 × holomorphic). Therefore
f ′′′/f ′ = 6z−2 + holomorphic, and f ′′/f ′ = −2z−1 + z × (holomorphic), so
(f ′′/f ′)2 = 4z−2 + holomorphic. The result follows from this.



Problem 8A.
Find the number of elements a in the ring R = Z/6464 Z such that a = x5 for some

x ∈ R.

Solution: By the Chinese Remainder Theorem, R ∼= (Z/64 Z) × (Z/101 Z). Since 101 is
prime, the multiplicative group (Z/101 Z)× is cyclic of order 100. Its subgroup of fifth powers
has order 20. Including 0, this gives 21 fifth powers in Z/101 Z. The multiplicative group
(Z/64 Z)× has order 32. Since 32 is coprime to 5, every element of (Z/64 Z)× is a fifth power.
The non-invertible elements of Z/64 Z belong to the ideal (2), hence their fifth powers belong
to (25). This shows that the only non-invertible fifth powers in Z/64 Z are {0, 32}, giving a
total of 34 fifth powers in Z/64 Z. Hence there are 21× 34 = 714 fifth powers in R.

Problem 9A.
Show that

lim
n→∞

(
1 +

z

n

)n

= ez

uniformly on compact subsets of C.

Solution: Since log(1 + u) is holomorphic for |u| < 1 and has Taylor expansion at 0 is∑
k≥1(−1)k+1uk/k, we infer for |u| ≤ 1/2 that

| log(1 + u)− u| ≤ C|u|2

for some constant C. If n > 2N and |z| ≤ N this gives
∣∣log

(
1 + z

n

)
− z

n

∣∣ ≤ CN2n−2 and∣∣log
(
1 + z

n

)n − z
∣∣ ≤ CN2n−1. On the other hand, since |

∑
k>0 ak/k!| ≤

∑
k>0 |a|k/k!, we

have |ea − 1| ≤ e|a| − 1. Hence if n > 2N and |z| ≤ N we find∣∣∣(1 +
z

n

)n

− ez
∣∣∣ = |ez| ·

∣∣∣elog(1+ z
n)

n
−z − 1

∣∣∣ ≤ eN ·
(
eCN2n−1 − 1

)
so that limn→∞

∣∣(1 + z
n

)n − ez
∣∣ = 0 uniformly for |z| ≤ N .



Problem 1B.
Find the real values of β for which the following limit exists and is finite:

lim
R 7→∞

∫ R

1

x2 cos(xβ)dx.

Solution: When β ≤ 0, cos(xβ) tends to a positive limit as x →∞, and hence

lim
R→∞

∫ R

1

x2 cos(xβ)dx = ∞.

When β > 0, write the integral as I(R) := β−1
∫ R

1
x3−βd sin(xβ). When 0 < β ≤ 3, the limit

does not exist, since the differences I((2πk + π/2)1/β)− I((2πk − π/2)1/β) do not tend to 0
as k →∞. When β > 3, integration by parts shows that

I(R) = const + const R3−β sin(Rβ) + const

∫ R

1

x2−β sin(xβ)dx.

The integral on the right has a limit since sin(xβ) is bounded, and
∫∞

1
x2−βdx converges

absolutely when 2−β < −1. The finite terms have a limit since R3−β → 0. Therefore, when
β > 3, the limit of I(R) exists and is finite.

Problem 2B.
Let P be a square matrix over R such that P T P = P . Prove that there exists a matrix

A such that AT A is invertible and P = A(AT A)−1AT .

Solution: For any matrix A with linearly independent columns, AT A is invertible, and
A(AT A)−1AT is the matrix of the orthogonal projection on the column space of A. (Indeed,
the null space of AT is the orthogonal complement to the column space of A, and for every x
from the column space of A we have x = Az for some z, an hence A(AT A)−1AT x = Az = x.)
Taking A to be a matrix whose columns are a basis of the column space of P , we have only
to prove that P is the matrix of an orthogonal projection (necessarily onto its own column
space). In other words, we must show that x − Px is orthogonal to Py for all vectors x, y.
But (x−Px)T Py = xT (P −P T P )y = 0 by the hypothesis. (Another way: P T P = P implies
that P T = (P T P )T = P T P = P , i.e. P is a self-adjoint idempotent: P 2 = P .)

Problem 3B.
Prove that the function f(z) = z

(1−z)2
is injective on the disk B1(0) = {z ∈ C| |z| < 1}.

Find the Taylor series about z = 0, and determine its radius of convergence. What is the
maximal disk Br(0) = {w ∈ C| |w| < r} such that Br(0) ⊂ f(B1(0))?

Solution: Suppose that f(z1) = f(z2), where |zi| < 1. Then z1

(1−z1)2
= z2

(1−z2)2
, and cross-

multiplying, we have z1(1− z2)
2 = z2(1− z1)

2. Thus, z1 − z2 = z2z
2
1 − z1z

2
2 = z1z2(z1 − z2).

If z1 6= z2, then dividing we see that 1 = z1z2, which is impossible since then we would have
1 = |z1z2| = |z1||z2| < 1, a contradiction. So z1 6= z2, and f(z) is thus injective on B1(0).



Noting that f(z) = z−1+1
(1−z)2

= −1
1−z

+ 1
(1−z)2

, and that 1
(1−z)2

= 1
1−z

′
= (1 + z + z2 + · · · )′ =

1+2z +3z2 + · · · , we have f(z) = −1− z− z2−· · ·+1+2z +3z2 + · · · = z +2z2 +3z3 + · · · .
The radius of convergence is 1, since f(z) has a pole at 1, and is analytic on B1(0).

Note that for |z| = ρ < 1, we have |f(z)| =
∣∣∣ z
(1−z)2

∣∣∣ ≥ ρ/(1+ ρ)2, since |1− z| ≤ 1+ |z| ≤
1 + ρ, and this is an equality if z = −ρ. Thus, the disk Bρ/(1+ρ)2(0) lies outside of the curve
f(ρeiθ), 0 ≤ θ < 2π. Let |a| < 1/4, and choose 0 < ρ < 1 such that |a| < ρ/(1 + ρ)2, which

we may do since lim
ρ→1

ρ/(1 + ρ)2 = 1/4. The integral 1
2πi

∫
|z|=ρ

f ′(z)
f(z)−a

dz gives the multiplicity

|{z| f(z) = a, |z| < ρ}| by the argument principle. Since f is injective, f(0) = 0, and
Bρ/(1+ρ)2 lies in the complement of the contour f(ρeiθ), we see that there exists |z| < ρ,
f(z) = a.

Problem 4B.
Determine the number of rotationally distinct colorings by two colors of the edges of a

regular tetrahedron T .

Solution 1: The number of colorings with 0, 1, 2, 3, 4, 5, 6 red edges is 1, 1, 2, 4, 2, 1, 1.
Total 12.
Solution 2: According to Cauchy’s theorem, the number of orbits of a finite group (of 12
rotations of the tetrahedron in this case) on a finite set (of all 2-color colorings of the edges)
is equal to the average number of fixed points of group elements. A rotation g permutes the
edges, and in the cycle decomposition of this permutation, the edges of the same cycle must
have the same color for the coloring to be fixed by g, and vice versa. The identity rotation
has 6 cycles (of length 1), each of the 8 rotations through the angle 120◦ has 2 cycles (of
length 3 each), and each of the 3 rotations by 180◦ has 4 cycles (of lengths 1,1,2,2). Thus,
the average number of fixed points is

1

12

(
1× 26 + 8× 22 + 3× 24

)
=

144

12
= 12.

Problem 5B.
Solve the differential equation

xy′ + y = y2

with initial condition y(1) = 2.

Solution: Separation of variables gives dx/x = dy/(y2 − y), and integrating both sides of
this gives log x = log(y − 1) − log(y) + c, or y = 1/(Kx + 1), so using the initial condition
we get y = 2/(2− x).

Problem 6B.
Let 〈z, w〉 =

∑
ziw̄i be the Hermitian dot product on Cn, and let A be a normal linear

operator on Cn, i.e. A∗A = AA∗ where A∗ = Āt is Hermitian adjoint to A. Prove that the
set of complex numbers

ΛA := {〈Az, z〉 | z ∈ Cn, 〈z, z〉 = 1}



is a convex polygon.

Solution: According to the orthogonal diagonalization theorem, a normal operator has an
Hermitian orthonormal basis of eigenvectors. In such a basis, 〈Az, z〉 =

∑
λi|zi|2, where λi

are the eigenvalues of A, while 〈z, z〉 = 1 becomes
∑
|zi|2 = 1. This shows that ΛA coincides

with the convex hull of the finite set λ1, . . . , λn of eigenvalues of A.

Problem 7B.
Suppose α is a complex number, |α| 6= 1. Compute∫ 2π

0

dθ

1− 2α cos θ + α2

by integrating (z − α)−1(z − α−1)−1 over the unit circle.

Solution: Parameterize the unit circle C by z(θ) = eiθ, θ ∈ [0, 2π]. Then z′(θ) = ieiθ =
iz(θ), and we have cos θ = 1

2
(eiθ + e−iθ) = 1

2
(z + z−1). We also have dθ = −idz/z, so we have∫ 2π

0

dθ

1− 2α cos θ + α2
=

∫
C

−idz/z

1− α(z + z−1) + α2
=

∫
C

idzα−1

z2 − (α + α−1)z + 1

=
i

α

∫
C

dz

(z − α)(z − α−1)
.

If α = 0, then ∫ 2π

0

dθ

1− 2α cos θ + α2
=

∫ 2π

0

dθ = 2π =
2π

1− α2
.

If 0 < |α| < 1, then 1
z−α−1 is analytic inside C since |α−1| > 1, so by Cauchy’s integral

formula, we have

iα−1

∫
C

(z − α−1)−1dz

z − α
= iα−1 2πi

α− α−1
=

2π

1− α2
.

If |α| > 1, then exchanging the roles of α and α−1, we have

iα−1

∫
C

(z − α)−1dz

z − α−1
= iα−1 2πi

α−1 − α
=

2π

α2 − 1
.

So we have for |α| 6= 1:∫ 2π

0

dθ

1− 2α cos θ + α2
=

2π

α2 − 1
· |α| − 1

||α| − 1|
.



Problem 8B.
Let n be a positive integer, Cn the cyclic group of order n, and Sn the symmetric group

on n points. For each of the groups

A = R∗ B = C∗ C = C2 × C3 D = S4 E = SL2(R)

prove or disprove that C6 is isomorphic to a subgroup of it.

Solution: C6 is not a subgroup of A because in R∗, if r 6= ±1, then r6 6= 1, or of D because
if s ∈ D and s is not the identity s has a cycle decompositions of the form (a b)(c d), (a b c)
or (a b c d) and these have orders 2, 3 and 4.

C6 is a subgroup of B, C and E because cos(π/3) + i sin(π/3) ∈ B, (1, 1) ∈ C, and(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
∈ E

all have order 6.

Problem 9B.
If f is a smooth real valued function of x, y, z such that

∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 > 0

for all x, y, z, show that f does not have a local maximum.

Solution: At a local maximum of f all second derivatives with respect to x, y, z must be
at most 0, so their sum cannot be positive.


