
Homework 8

1. Prove that if f ∈ L1(Rn) then f̂ is uniformly continuous on Rn.

Solution: Note that we have

f̂(y + h)− f̂(y) =

∫
Rn
f(x)

(
e−2πix·(y+h) − e−2πix·y) dx

=

∫
Rn
f(x)e−2πix·y(e−2πix·h − 1)dx

Thus we have that ∣∣∣f̂(y + h)− f̂(y)
∣∣∣ ≤ ∫

Rn
|f(x)|

∣∣e−2πix·h − 1
∣∣ dx

It suffices to show that this last expression can be made arbitrarily small as we let
h → 0, independently of y. The idea is to apply the Dominated Convergence Theorem.
Set gh(x) = f(x)e−2πix·(y+h). Then we have that |gh| ≤ |f |, and gh → g0 = f(x)e−2πix·y

almost everywhere in Rn. So we then have that

f̂(y + h) =

∫
Rn
gh(x)dx→

∫
Rn
g0(x)dx = f̂(y)

as h→ 0 by Dominated Convergence.

2. Give f ∈ L2(Rn), prove that

ξ →
∫
|x|≤N

f(x)e−2πix·ξdx

converges to f̂ in L2(Rn) as N →∞.

Solution: Let

gN(ξ) =

∫
|x|≤N

f(x)e−2πix·ξdx.

Observe that

f̂(ξ)− gN(ξ) =

∫
Rn
f(x)1{x:|x|>N}e

−2πix·ξdx = ̂f1{x:|x|>N}(ξ).

Then we have that ∥∥∥f̂ − gN∥∥∥
L2(Rn)

=
∥∥∥ ̂f1{x:|x|>N}

∥∥∥
L2(Rn)

=
∥∥f1{x:|x|>N}

∥∥
L2(Rn)

But, for N large enough, we have that this last expression can be made smaller than any
given ε > 0 since f ∈ L2(Rn).



3. If fk, f ∈ S(Rn) and fk → f in S(Rn), then f̂k → f̂ and f̌k → f̌ in S(Rn).

Solution: Recall that fk → f ∈ S(Rn) if for all multi-indices α and β we have

ρα,β(fk − f) = sup
x∈Rn

∣∣xα(∂β(fk − f))
∣∣→ 0

as k →∞. We then have that

sup
x∈Rn

∣∣∣xα∂β(f̂k − f̂)
∣∣∣ = C(α, β) sup

x∈Rn

∣∣∣ ̂∂α(xβ(fk − f))
∣∣∣ ≤ ∥∥∂α(xβ(fk − f))

∥∥
L1(Rn)

Recall that if fk → f in S(Rn), then we have that fk → f in Lp(Rn) for any 0 < p ≤ ∞.
Moreover, we have ∥∥∂βg∥∥

Lp(Rn)
≤ C(p, n)

∑
|α|=bn+1

p
c+1

ρα,β(g).

Apply this estimate with g = fk − f and p = 1 to conclude that f̂k → f̂ . Similar
computations prove the statement for f̌k → f̌ .

4. Find the set of eigenvalues of the Fourier transform, namely the λ such that

f̂ = λf.

Hint: Apply the Fourier transform to the above identity, and consider functions of the form
xe−πx

2
, (a+ bx2)e−πx

2
and (cx+ dx3)e−πx

2
for good choices of a, b, c, d.

Solution: Note that we have
ˆ̂
f(x) = f(−x)

and so
ˆ̂
ˆ̂
f(x) = f(x). If f is an eigenfunction then we see that the corresponding eigenvalue

must satisfy
λ4 − 1 = 0.

From this we see that the eigenvalues of the Fourier transform are 1,−1, i,−i. Using
the remaining part of the hint, one can deduce the corresponding eigenfunctions to be
Hermite polynomials.

5. If 0 < c <∞, define fc(x) = e−cx
2

(a) Compute f̂c in the following way: Let ϕ = f̂c and show that 4π2tϕ(t) + 2cϕ′(t) = 0
and then solve the resulting differential equation;

(b) Show that there is one (and only one) value of c for which fc = f̂c;

(c) Show that fa ∗ fb = γfc where γ = γ(a, b) and c = c(a, b).



Solution: Part (a): Set

ϕ(t) = f̂c(t) =

∫
R
e−cx

2

e−2πixtdx.

Then we have

ϕ′(t) = 2πi

∫
R
xe−cx

2

e−2πixtdx

= −π
c
i

∫
R

d

dx

(
e−cx

2
)
e−2πixtdx

= −π
c
i

∫
R
e−cx

2 d

dx

(
e−2πixt

)
dx

= −2
π2

c
tϕ(t).

Rearrangement gives the resulting differential equation. Interchange of the derivative
with respect to t, and switching the derivative with respect to x is justified since e−cx

2
is

a Schwarz class function. Solving the resulting differential equation gives that

f̂c(t) = ke−
π2

c
t2

where k is some constant. Note that we have that f̂c(0) = k =
∫

R e
−cx2

dx =
√

π
c
. Thus

we have that

f̂c(t) =

√
π

c
e−

π2

c
t.

Part (b): Suppose that we have a value of c such that

fc(t) = f̂c(t).

Then for all t ∈ R we have that √
π

c
e
t2

“
π2

c
−c

”
= 1.

In particular, it must be true when t = 0, and we obtain that c = π is the only value
that works.

Part (c): Taking the Fourier Transform, we have that

f̂a ∗ fb = f̂af̂b =
π√
ab
e−

π2

a
t2e−

π2

b
t2 =

π√
ab
e−π

2( 1
a
+ 1
b )t2 =

π√
ab
e−π

2 a+b
ab

t2 .

Set c = c(a, b) = ab
a+b

and γ = γ(a, b) =
√

π
a+b

, then we have that

π√
ab
e−π

2 a+b
ab

t2 = γ

√
π

c
e−

π2

c
t2 = γf̂c(t).

So we have that when c = c(a, b) = ab
a+b

and γ = γ(a, b) =
√

π
a+b

that

fa ∗ fb = γfc.



6. Suppose that f ∈ L1(Rn) and f > 0. Show that
∣∣∣f̂(y)

∣∣∣ < f̂(0) for y 6= 0.

Solution: Note that for any y ∈ Rn we have∣∣∣f̂(y)
∣∣∣ ≤ ‖f‖L1 =

∫
Rn
f(x)dx = f̂(0).

Suppose that for some y 6= 0 we have that∣∣∣f̂(y)
∣∣∣ = f̂(0).

This then leads to a contradiction. Indeed, we have that∫
Rn
f(x)dx = f̂(0) =

∣∣∣∣∫
Rn
f(x)e−2πix·ydx

∣∣∣∣ = η

∫
Rn
f(x)e−2πix·ydx

where η is a constant complex number with |η| = 1. Re-arrangement of this inequality
gives that ∫

Rn
f(x)(1− ηe−2πix·y)dx = 0.

This implies that f(x)(1− ηe−2πix·y) = 0 almost everywhere on Rn. But, since y 6= 0, we
have that (1− ηe−2πix·y) 6= 0 almost everywhere on Rn, and so f = 0 almost everywhere
on Rn. This is a contradiction to the conditions on f , and so there can not be a y 6= 0
with equality holding. Thus we must have for y 6= 0 that∣∣∣f̂(y)

∣∣∣ < f̂(0).

7. Compute the Fourier transform of g(x) = e−2π|x| using the following steps:

(a) Let f ∈ L1(R) and show that∫
R
f(x)dx =

∫
R
f

(
x− 1

x

)
dx.

(b) Use part (a) with f(x) = e−tx
2

and t > 0 to obtain the following identity:

e−2t =
1√
π

∫ ∞
0

e−y−
t2

y
dy
√
y

;

(c) Set t = π |x| and integrate with respect to e−2πiξ·xdx to obtain that

ĝ(ξ) =
Γ(n+1

2
)

π
n+1

2

1

(1 + |ξ|2)n+1
2

.



Solution: Part (a): For one proof, one can check the identity when f(x) = 1[0,1](x), and
then use that simple functions are dense in L1(R). Here is another proof that one can
give. Note that we have∫

R
f(x)dx =

∫ ∞
0

f(x)dx+

∫ 0

−∞
f(x)dx.

We work with each of these integrands separately. For the first one, we have that∫ ∞
0

f(x)dx =

∫ ∞
1

f

(
x− 1

x

)(
1 +

1

x2

)
dx.

While for the second one, we have∫ 0

−∞
f(x)dx =

∫ −1

−∞
f

(
x− 1

x

)(
1 +

1

x2

)
dx.

Now, note that we have∫
R
f

(
x− 1

x

)
dx =

∫ −1

−∞
f

(
x− 1

x

)
dx+

∫ 1

−1

f

(
x− 1

x

)
dx+

∫ ∞
1

f

(
x− 1

x

)
dx

Using these identities from above, it is easy to see that∫
R
f(x)dx =

∫
R
f

(
x− 1

x

)
dx+

∫
|x|>1

f

(
x− 1

x

)
dx

x2
−
∫ 1

−1

f

(
x− 1

x

)
dx.

To conclude the computation, we are left with showing that∫
|x|>1

f

(
x− 1

x

)
dx

x2
=

∫ 1

−1

f

(
x− 1

x

)
dx.

To prove this last identity one shows that∫ 1

0

f

(
x− 1

x

)
=

∫ −1

−∞
f

(
x− 1

x

)
dx

x2

and ∫ 0

−1

f

(
x− 1

x

)
=

∫ ∞
1

f

(
x− 1

x

)
dx

x2

via a standard change of variables. Part (b): We use part (a) applied to the function
f(x) = e−tx

2
. Now observe that ∫

R
e−tx

2

dx =

√
π

t
.

But, we also have that ∫
R
e−t(x−

1
x)

2

dx = e2t
∫

R
e−tx

2−t 1
x2 dx

=
e2t√
t

∫
R
e
−y2− t2

y2 dy

=
e2t√
t

∫ ∞
0

e−u−
t2

u
du√
u
.



Using Part (a), we have that √
π

t
=

e2t√
2t

∫ ∞
0

e−u−
t2

u
du√
u
.

Rearrangement gives the result.

Part (c): Now set t = π |x| in Part (b) and obtain,

e−2π|x| =
1√
π

∫ ∞
0

e−y−
π2|x|2
y

dy
√
y
.

Then integrate this expression with respect to e−2πix·ξdx to obtain that

ĝ(ξ) =

∫
Rn
e−2π|x|e−2πix·ξdx

=

∫
Rn

(
1√
π

∫ ∞
0

e−y−
π2|x|2
y

dy
√
y

)
e−2πix·ξdx

=
1√
π

∫ ∞
0

e−y
(∫

Rn
e−

π2

y
|x|2e−2πix·ξdx

)
dy
√
y

=
1

π
n+1

2

∫ ∞
0

e−y(1+|ξ|2)y
n−1

2 dy

=
1

π
n+1

2

1

(1 + |ξ|2)n+1
2

∫ ∞
0

y
n−1

2 e−ydy

=
Γ(n+1

2
)

π
n+1

2

1

(1 + |ξ|2)n+1
2

.


